
Ebejer et al. J Cheminform  (2016) 8:30 
DOI 10.1186/s13321-016-0143-5

RESEARCH ARTICLE

Are the physicochemical properties 
of antibacterial compounds really different 
from other drugs?
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Abstract 

Background: It is now widely recognized that there is an urgent need for new antibacterial drugs, with novel 
mechanisms of action, to combat the rise of multi‑drug resistant bacteria. However, few new compounds are reach‑
ing the market. Antibacterial drug discovery projects often succeed in identifying potent molecules in biochemical 
assays but have been beset by difficulties in obtaining antibacterial activity. A commonly held view, based on analysis 
of marketed antibacterial compounds, is that antibacterial drugs possess very different physicochemical properties to 
other drugs, and that this profile is required for antibacterial activity.

Results: We have re‑examined this issue by performing a cheminformatics analysis of the literature data available 
in the ChEMBL database. The physicochemical properties of compounds with a recorded activity in an antibacte‑
rial assay were calculated and compared to two other datasets extracted from ChEMBL, marketed antibacterials and 
drugs marketed for other therapeutic indications. The chemical class of the compounds and Gram‑negative/Gram‑
positive profile were also investigated. This analysis shows that compounds with antibacterial activity have physico‑
chemical property profiles very similar to other drug classes.

Conclusions: The observation that many current antibacterial drugs lie in regions of physicochemical property space 
far from conventional small molecule therapeutics is correct. However, the inference that a compound must lie in one 
of these “outlier” regions in order to possess antibacterial activity is not supported by our analysis.
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Background
The continued development of antibiotic resistance in 
bacteria responsible for common infections is of grow-
ing worldwide concern. The Chief Medical Officer for 
England, Professor Dame Sally Davies has said that anti-
microbial resistance poses a “catastrophic threat” to the 
health of the nation. It is estimated that in the countries 
of the European Union plus Iceland and Norway there 
were 25,000 deaths due to multi-drug resistant Staphy-
lococcus aureus, Enterococcus spp., Escherichia coli, 
Klebsiella spp., Enterobacter spp. or Pseudomonas aer-
uginosa in 2007 [1]. However, this urgent medical need 

is not being adequately addressed by the development of 
new antibiotic therapies. Driven by a variety of issues, the 
scale of antibacterial research within the pharmaceutical 
industry has declined in recent years and the number of 
novel therapies approved has been very small [2].

The issue is made even more serious by the great 
technical difficulty of the discovery and development 
of antibacterial compounds. Large scale reviews of the 
antibacterial research at the pharmaceutical compa-
nies GSK [3], and, more recently, Astra Zeneca [4], have 
highlighted the challenges involved. Hit rates from high-
throughput screens are often low. When hits are found, 
there is a high attrition rate in optimizing them to com-
pounds with good levels of antibacterial activity, even 
when potent enzyme inhibitors are obtained.
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One commonly cited rationalization of the failure of 
antibacterial drug discovery projects is lack of penetra-
tion to the site of action of the drugs. The bacterial cell 
wall presents a barrier to penetration, for which no analo-
gous structure is present in mammalian cells. A corollary 
of this is that the physicochemical properties required for 
antibacterial activity may lie in a different region of prop-
erty space to that of other drugs. Indeed, in the original 
Rule-of-5 publication [5] it was noted that antibacterial 
compounds were exceptions. In 2008 O’Shea and Moser 
[6] published a comparison of the physicochemical prop-
erties of 147 antibacterial compounds that were, at that 
time, currently used or under clinical investigation with 
a subset of 4623 non-antibacterial compounds from the 
commercially available CMC database. They found that 
antibacterial drugs occupy a remarkably different phys-
icochemical property space—to take just two example 
properties, the mean molecular weight of the CMC data 
set was 338, whereas for Gram-positive compounds it 
was 813 and for Gram-negatives 414; mean calculated 
logD(7.4) was 1.6 for the CMC set, but −0.2 for Gram-
positives and −2.8 for Gram-negatives. A more recent 
analysis by Davis et  al. [7] based on a small dataset of 
91 antibacterial and the 50 top-selling non-antibacterial 
marketed drugs, came to similar conclusions.

We were motivated to re-investigate the relationship 
between physicochemical properties and antibacterial 
activity for several reasons. The analyses of O’Shea and 
Moser and Davis et  al. were based on a relatively small 
number of antibacterial compounds (necessarily) drawn 
from the limited number of classes of marketed antibiot-
ics, many of which are natural products or their deriva-
tives. Whilst the set of compounds analysed by O’Shea 
and Moser undoubtedly has the physicochemical prop-
erty spectrum described, it is less clear that this spec-
trum is a requirement for antibacterial activity. Another 
interesting question is whether physicochemical proper-
ties vary by target class. A very recent analysis has looked 
at this question, again using a dataset of marketed drugs 
(157 antibacterials and 966 human) [8]. This analysis 
found a clear distinction between antibacterials targeting 
riboproteins, which were on average large and polar, and 
those with protein targets, which fell into classical drug-
like ranges.

A disadvantage of using marketed drugs to study anti-
bacterial-physicochemical property relationships is that, 
as the endpoints of drug development, they have been 
optimized to fulfil many criteria, of which antibacte-
rial activity is only one. In recent years large cheminfor-
matics databases, most notably ChEMBL [9], have been 
developed. An advantage of the use of ChEMBL data is 
that it allows the analysis of the significant quantity of 

biological assay data available in the literature. This is 
considerably more diverse, both in terms of biological 
target and chemotype, than the collection of marketed 
drugs and it potentially enables a more direct investiga-
tion of the physicochemical-activity relationships. In 
addition, the recent reports from Pharma companies of 
their antibacterial discovery efforts allow comparison 
with compounds arising from a pharmaceutical company 
compound collection.

Here we report our cheminformatics analysis of the 
small molecule antibacterial data available in ChEMBL. 
The analysis is sub-divided by compounds with activity 
(or inactivity) in biochemical and/or growth inhibition 
assays. Further analyses by chemotype and Gram-pos-
itive/negative classes have been performed. These data-
sets are compared with the set of marketed antibacterial 
drugs and a comparison set of marketed drugs taken 
from other therapeutic areas.

Results and discussion
Analysis of ChEMBL antibacterial activity data
ChEMBL (Version 20) contains over 10,000 compounds 
with at least one antibacterial activity data point. The 
detailed definition of activity is provided in Methods, 
but broadly corresponds to an MIC value of ≤8  µg/
ml, which has commonly been used as an activity cut-
off in the literature and in HTS campaigns. There are 
c. 2400 compounds with biochemical activity against 
a bacterial target protein. We have calculated physico-
chemical property distributions for the eight ChEMBL 
subsets described in Table  1. Briefly, these are: antibac-
terial actives (AA), compounds active in at least one 
antibacterial assay; antibacterial inactives (AI), com-
pounds with only inactive antibacterial assay records; 
biochemical actives (BA), compounds active against at 
least one bacterial target protein; Biochemical Inactives 
(BI), compounds with only inactive biochemical assay 
records; Compounds with both biochemical and antibac-
terial activity (BAAA); Compounds active in biochemical 
assays but no reported antibacterial activity (BAAI); mar-
keted antibacterial drugs (MAD); Marketed other, non-
anticbacterial, drugs (MOD). One of the disadvantages 
of using marketed antibacterials for the determination 
of property requirements is their limited chemical diver-
sity. As a measure of diversity we calculated the pairwise 
Tanimoto similarity, using ECFP fingerprints, of the AA, 
MAD and MOD sets (see Additional file  1: Figure S1). 
The pairwise Tanimoto distributions indicate limited 
diversity in the MAD set, with many highly similar pairs 
and a peak in the distribution at 0.475. The AA set has a 
lower peak (0.375) and very few highly similar pairs. As 
expected, the MOD distribution is the most diverse, with 
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a peak at approximately 0.3. The greater diversity of the 
AA set (when compared to MAD) may allow a more gen-
eral and widely applicable conclusion to be reached.

The distributions for nine physicochemical and related 
properties that describe the size, polarity, charge and 
flexibility of the subsets have been calculated. These are 
shown in Fig. 1, Table 2 and in Additional file 1, and are 
discussed below.

Size
Average molecular weight is higher for the AA than the 
BA class, but not greatly so (385 vs. 358 Daltons). Active 
compounds (AA and BA) have a slightly higher molecu-
lar mass distribution than inactive ones (AI and BI), in 
keeping with the generally observed trend that adding 
molecular weight is associated with higher target affin-
ity. The molecular weight distribution of the ChEMBL 
antibacterials is similar to marketed drugs. The percep-
tion that marketed antibacterials are larger than other 

drugs is confirmed in this analysis, as can be seen in 
the distributions  in Fig.  1. Although the median values 
are not greatly different, the means show greater diver-
gence, because of the large number of high molecu-
lar weight antibacterials (427 vs. 345 Da). Only 75 % of 
marketed antibacterials have molecular weight below 
500 Da, whereas for marketed drugs the figure is 86.7 % 
for ChEMBL antibacterial actives 82.4  % and ChEMBL 
biochemical actives 90.3 %.

Polarity
Calculated LogD, calculated LogP, numbers of hydro-
gen bond donor and acceptors and TPSA distributions 
express aspects of compound polarity. Perhaps surpris-
ingly, given the common perception that antibacterials 
tend to be highly polar, the distribution for these proper-
ties for the AA set largely fall within the classical Rule-
of-5 regions. The bulk of antibacterial active compounds, 
70.4  %, have calculated LogP values lying in the range 

Table 1 Datasets used in the analysis

Description Set label Set size

Antibacterial actives compounds active in at least one antibacterial assay AA 10,503

Antibacterial inactives, compounds with only inactive ChEMBL records AI 340

Biochemical actives, compounds active against at least one antibacterial protein BA 2470

Biochemical inactives, compounds with only inactive biochemical assay records BI 399

Compounds active in both antibacterial and biochemical assays BAAA 555

Compounds active in biochemical assays, but no reported antibacterial activity BAAI 1835

Marketed antibacterial drugs MAD 116

Marketed other (non‑antibacterial) drugs MOD 1225

Fig. 1 Distributions of molecular weight, calculated LogD, TPSA and number of rotatable bonds for antibacterial compounds from ChEMBL‑20 
(upper panel), marketed antibacterials and non‑antibacterial marketed drugs (lower panel)
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0–5, similar to the ranges seen in the BA and MOD sets 
(70.6 and 69.5 % respectively). Only 34.4 % of marketed 
antibacterials have logP in this range. The calculated 
LogD and calculated LogP distributions are rather simi-
lar, reflecting the fact that neutral compounds predomi-
nate for most of the classes. The other polarity-related 
properties tell a consistent story, with hydrogen-bond 
donor, hydrogen bond acceptor and TPSA distributions 
being similar across antibacterial, biochemical and mar-
keted other drugs categories. Again marketed antibac-
terials are quite different: The percentage of compounds 
with TPSA less than 120  Å2 for the AA, BA and MOD 
sets is 81.1, 75.8 and 84.4 respectively, but only 52.6 % for 
marketed antibacterials.

Thus, in agreement with the previous analyses, the 
marketed antibacterial drugs do have a more polar 
distribution, with a lower median calculated logP, 
elevated donor and acceptor counts and higher TPSA 
(compare the MAD and MOD rows of Table 2). How-
ever, the ChEMBL analysis indicates that this is not a 
profile necessary to obtain antibacterial activity: the 
difference in profile between research compounds and 
marketed antibacterials could be driven by other fac-
tors. There are a limited number of classes of antibac-
terial drugs, each containing many structurally related 
compounds, including charge-carrying templates such 
as penicillins and fluoroquinolones. The physical prop-
erty distributions are dominated by the relatively few 
chemotypes of the antibacterial drug classes that have 
made it to market, but that does not imply that high 
polarity is a necessary property of antibacterial com-
pounds per se. Also, many antibacterial compounds 
have been developed for intravenous administration 
where high solubility is a key requirement for an effica-
cious compound. Thus the higher polarity of marketed 
antibacterials is likely to be influenced by optimization 
to obtain a suitable pharmacokinetic profile. For exam-
ple, a review of industry DNA-gyrase/Topoisomerase 

IV programs over many decades [10] points to mul-
tiple occasions were the focus of optimization of the 
inhibitors was on increasing solubility to aid intrave-
nous administration.

Charge
The antibacterial and biochemical datasets show a similar 
distribution with a preponderance of neutral molecules 
and approximately equal numbers of the other three 
classes. Although the non-systematic nature of the data-
set precludes any firm conclusion, this is suggestive that 
overall charge state is not a significant influence on pen-
etration. Interestingly, the profile of antibacterial drugs is 
very different, with a markedly lower number of neutral 
compounds so that all categories are well-represented, 
with a small preponderance of acidic compounds. The 
profile of the MOD set is intermediate, with the major-
ity being neutral but with basic compounds also being 
highly represented.

Flexibility
None of the classes can be distinguished by the number 
of rotatable bonds or rings, and thus there is no indica-
tion of antibacterial compounds being any more or less 
flexible, on average, than other drugs.

Another comparison provides further evidence that 
antibacterial compounds are not atypical. If they were, 
then one would expect the properties of compounds 
that have biochemical activity and antibacterial activ-
ity “BAAA” to have a distinct profile from those that do 
not. Despite the size of the ChEMBL database, rather 
few compounds fall into this latter category. However, it 
is likely that most BA compounds without an antibacte-
rial data record do not possess antibacterial activity and 
so we include these compounds in a putative (“BAAI”) 
set (see “Methods” for full definitions). These two sets, 
BAAA and BAAI, are not significantly different in their 
physical property profiles.

Table 2 Median values of physicochemical properties and charge class distribution

Set label Median values Charge classes

MWt LogD LogP HBA HBD Rot bonds Rings TPSA Acidic Basic Neutral Zwitter

AA 385 2.8 3.2 6 2 5 3 81 1046 1746 5968 1743

AI 339 2.3 3.0 5 2 4 3 67 30 32 254 24

BA 358 1.7 2.2 6 2 4 3 92 546 290 1364 270

BI 321 1.7 1.9 6 2 4 3 80 59 58 253 29

BAAA 391 2.3 2.9 6 2 5 3 94 97 66 335 57

BAAI 346 1.4 1.7 6 2 4 3 93 441 209 988 197

MAD 389 −1.2 −0.7 8 3 4 3 117 37 27 23 29

MOD 316 1.1 1.8 5 2 4 3 69 195 425 495 110
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Another possibility that we investigated is whether 
there is an historical bias in the data. Drug discovery 
timelines are long and many of the marketed antibac-
terials were developed decades ago. It is possible that 
since the publication of the Rule-of-5 (1997), medicinal 
chemists working on antibacterial drug discovery pro-
jects shifted the physicochemical properties of the com-
pounds they made from “antibacterial space” to “druglike 
space” in order to comply. There is no evidence for this. 
The molecular weight profile of compounds over time is 
remarkably constant, extending back to at least the mid 
1970s (see Additional file 1: S2). The time series for logP 
(Additional file  1: S3) shows greater variability in the 
early years, but also has no evidence for any major shift 
over time.

Gram‑positive and Gram‑negative active compound 
profiles
The cell envelopes of Gram-positive and Gram-nega-
tive bacteria are very different. The outer membrane of 
Gram-negative organisms presents an additional barrier 
to penetration, and there are many examples of com-
pounds which are antibacterial against Gram-positive 
organisms but which are ineffective against Gram-neg-
ative ones. It is plausible that these differences in cell 
envelope structure would present differential barriers to 
penetration that would be reflected in divergent physico-
chemical property patterns for drugs effective against the 
two classes. Indeed, the O’Shea and Moser analysis indi-
cated very different profiles for Gram-positive and Gram-
negative antibacterials.

However, the ChEMBL analysis does not support 
this conclusion. For all of the size, polarity and flexibil-
ity properties considered here, the differences between 
the distributions for Gram-positive and Gram-negative 
actives are unexpectedly small. Figure 2 shows the com-
parisons for molecular weight, calculated logD, TPSA 
and rotatable bonds; the distributions for the other prop-
erties are provided in Additional file 1: Figure S4.

The calculated logD values in the ChEMBL dataset 
show Gram-positive and Gram-negative active com-
pounds having overlapping clogD ranges, with the Gram-
positives having the higher mean and a slightly smaller 
standard deviation (3.1 ± 2.5 vs. 2.0 ± 3.4, respectively). 
The averages in both cases are more lipophilic than those 
obtained by O’Shea and Moser, with the ChEMBL analy-
sis being closer to the MOD distribution. They are also 
consistent with the analyses of pharmaceutical company 
experiences (see below).

Relationship to target class and site of action
Analysis of the physicochemical properties of antibacteri-
als is further complicated by their varying sites of action. 
While some antibacterial classes have targets in the bac-
terial cytoplasm, others target the bacterial cell wall, in 
principle making access easier.

We have compared the physicochemical profiles of a 
variety of beta-lactam containing chemotypes, as cell-
wall targeted agents, with fluoroquinolones and oxa-
zolidinones as representatives of compounds hitting 
cytoplasmic targets. This represents a limited number 
of structural classes, because we have restricted the 

Fig. 2 Comparison of distributions of molecular weight, calculated LogD, TPSA and number of rotatable bonds for Gram‑negative and Gram‑
positive assay data in ChEMBL‑20
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analysis to cases where at least 40 examples are present 
in ChEMBL.

This analysis shows limited differences between the two 
sets. The compounds with intracellular targets are slightly 
less polar (higher logD and slightly lower TSPA) but the 
differences are unlikely to be significant, especially as 
other classes of antibiotics with intracellular targets, such 
as the aminoglycosides, are very polar compounds.

Comparison with literature analyses
Further support for the conclusion that antibacterial 
drugs often possess conventional drug-like physico-
chemical properties is provided by a comparison with the 
reports of pharmaceutical company experiences.

Polarity of Gram‑positive and Gram‑negative compounds
The results from the ChEMBL analysis are mirrored in 
the reports of the antibacterial drug discovery experi-
ence of pharmaceutical companies. Astra Zeneca (AZ) 
[4] reported that HTS compounds active against Gram-
positive species had average clogD values that were slightly 
positive (range approximately 0.5–1.5) and thus higher 
than the Moser and O’Shea value of −0.2. For the Gram-
positive phenotypic HTS campaign discussed in detail the 
average clogD was 3.6. The clogD range for Gram-negative 
organisms was slightly negative (range between −1.5 and 
0); however, the median cLogD values reported for seven 
specified Gram-negative phenotypic screens ([4], Table 2) 
were between 1.7 and 3.5 The authors also report several 
specific examples of Gram-negative active compounds 
discovered by phenotypic screens with measured logD val-
ues between 1.4 and 4.3. Thus the logD ranges observed 
in the AZ examples are rather similar to the range of the 
ChEMBL AA compounds. Recently reported antibacterial 
pyrazolopyrimidinedione inhibitors of tRNA synthetases 
also have physicochemical properties in the typical drug-
like ranges [11]. Taken together, these data indicate that 
compounds with physicochemical property values in the 
typical drug range can be potent antibacterials.

Antibacterial activity can be improved by increasing 
lipophilicity within these ranges, just as with mamma-
lian cell assays. The DNA-gyrase review [10] includes 
several examples of improving Gram-positive activity 
with increasing lipophilicity, with several programs find-
ing optimal logD in the 0–3 range. Davis et al. [7] showed 
that for a series of acylsulphonamide isoleucyl-tRNA 
inhibitors there is also a tendency for activity to improve 
with increasing lipophilicity, although the relationship is 
not simple and is organism dependent.

Charge state preferences for antibacterials
AZ analyzed the charge category of their antibacterial 
project actives relative to a representative sample of their 

internal compound collection. The collection as a whole 
was rather similar to the MOD profile presented here, 
but there was a lower proportion of neutral compounds 
in their Gram-positive antibacterial actives and a much 
lower proportion in the Gram-negative actives. The 
degree to which the AZ profiles reflect the particular set 
of targets that they have investigated historically is dif-
ficult to assess but it probably has some influence. They 
note, for example, that the large number of acidic com-
pounds in their Gram-negative organism screens primar-
ily belong to the β-lactam class.

The AZ analysis of the results obtained with efflux 
mutants is particularly interesting. Compounds with low 
efflux (assessed from the ratio of MIC against wild type 
and efflux mutant) tend to be small and polar or large and 
zwitterionic. These characteristics are similar to those 
associated historically with antibacterial activity, which 
perhaps indicates that the major issue is not penetration, 
but efflux.

Conclusions
The set of currently approved antibacterial drugs do 
possess physicochemical property profiles that differ 
markedly from other drug classes, but this does not nec-
essarily mean that such a profile is required for antibacte-
rial activity. Indeed, although there are some differences, 
the physicochemical property distributions of antibac-
terial compounds in ChEMBL have rather similar pro-
files to other drug classes, with considerable overlap in 
the property ranges. An element of caution is needed in 
any broad cheminformatics study of this type, for exam-
ple a proportion of the literature antibacterials could be 
achieving their effects by non-specific mechanisms such 
as membrane disruption and thus skewing the true dis-
tributions; however, given the size and diversity of the 
ChEMBL dataset, our cheminfomatics analysis demon-
strates that the MAD physicochemical property profile is 
not a requirement and that “drug-like” physicochemical 
properties are compatible with antibacterial activity.

However, physicochemical properties in the optimal 
ranges are no guarantee of antibacterial activity. Our 
understanding of the physicochemical property-activity 
relationship remains rudimentary and provides little 
guidance for optimization of potent biochemical actives 
into antibacterial drugs. Following a detailed analysis 
of over 50  years of research and development directed 
against bacterial DNA gyrase/Topoisomerase IV [10] the 
authors conclude “At present, however, beyond imper-
fect correlations of logD and ionic charge with anti-
bacterial potency in Gram-positive bacteria, there is 
disappointingly little further quantifiable and generaliz-
able understanding of those specific factors that facilitate 
(or hinder) intracellular drug accumulation.”
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Many compounds have better MICs against efflux 
pump mutant strains than against the wild type organ-
ism. Antibacterial classes with cytosolic target sites are 
also known to use active transport mechanisms to gain 
access to the cell (aminoglycosides and erythromycins are 
examples) and Trojan Horse inhibitors such as microcin 
C also use bacterial transporters to gain access to the 
cell, a mechanism that can also be exploited by some, but 
not all, synthetic analogues [12, 13]. The lack of predic-
tive power of physicochemical properties alone is under-
standable if such mechanisms are common. The data are 
quite compatible with the hypothesis that access to the 
cytoplasm or periplasmic space rarely occurs by passive 
diffusion.

If this is the case, then there is a great need to learn 
more about the specific mechanisms of compound 
uptake. There is a growing understanding of the struc-
tural biology of the porins through which some drugs 
gain access to bacteria and of the relationship between 
porin structure and antibiotic transport. Additionally, 
next generation sequencing is providing new insights 
into the mechanisms of compound uptake that take a 
step towards the ability for rational design of antibacte-
rial activity [14]. Most of the information we possess 
regarding penetration of compounds into bacteria comes 
from observing their antibacterial effects—we have very 
little data on the penetration of non-antibacterial com-
pounds. Although technically demanding, further experi-
mental data on the ability of organic compounds to enter 
the bacterial cytosol would be of great utility by provid-
ing a structurally more diverse dataset for computational 
studies.

These and other developments in the regulatory frame-
work and funding environment may lead to improved 
success rates for antibacterial projects in the future [15]. 
This cheminformatics analysis represents another step 
towards an improved understanding and lays a founda-
tion for further work.

Methods
The analysis was carried out using the PostgreSQL ver-
sion of ChEMBL V20. This was imported in a local instal-
lation of PostgreSQL (version 9.3) on Linux (Ubuntu 
14.04). Compounds from antibacterial and biochemi-
cal assays were extracted using the parameters speci-
fied in Additional file  1: Tables S1 and S2 respectively. 
Each compound’s activity in the bioassay was labelled 
using ‘ACTIVE’, ‘SLIGHTLY_ACTIVE’ or ‘INACTIVE’. 
The categorization is not straightforward because of the 
large variety of activity units and the fact that these data 
are assembled from a great many individual sources, 
leading inevitably to a degree of uncertainty regarding 

experimental protocols and differences in the reported 
units (for example, µg/ml or µM). We have endeavoured 
to select cutoff values that are consistent and which cor-
respond to typical values used for active/inactive deci-
sions in drug discovery projects. The parameter filters for 
these three classes of activities are shown in Additional 
file 1: Tables S3, S4 and S5 respectively.

To perform the activity labelling, two matrices are con-
structed (one for biochemical assays and one for bacterial 
assays). Each matrix is labelled m and is defined as:

Additional file 1: Table S6 describes the parameter filters 
used to define compounds which have been approved as 
drugs into two distinct subsets; antibacterials (labelled 
MAD) and non-antibacterials (labelled MOD).

Definition of compound sets
A schematic of the antibacterial structure–activity rela-
tionship matrix for ChEMBL used in our analysis is 
shown in Fig. 3. Each compound is represented as a vec-
tor of activities, e.g. the third compound in Fig. 3 may be 
represented as:

We define activity of molecules over two cases – the 
antibacterial assays (denoted AA) and the biochemical 
assays (denoted BA). For compounds tested in AA and 
BA, an active is defined as:

Activity = {A, SA, I}
mij :: N× N → Activity

c3 = [ A, A, SA,A, SA,−,−]

Active
(

cj
)

:= ∃i : mij = A ∧ ∄i
′

: mi′j = I

Fig. 3 Assays represented as columns and compounds represented 
as rows with activities in the intersection of the two. Four activity 
states are represented: Not tested (void cell), inactive (red), slightly 
active (yellow) and active (green). A single ChEMBL compound may 
be present in multiple assays (e.g. both biochemical and antibacterial)
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For compounds tested in AA and BA, an inactive is 
defined as:

The set of compounds which are both active in AA and 
BA is defined as:

The set of compounds which are active in BA and inac-
tive in AA, was originally defined as:

However this returned very few compounds, so we 
relaxed this to the following definition:

These rules give us the active and inactive compound 
sets for AA and BA. We have compounds that are active 
in both AA and BA (labelled AABA) and compounds 
which are active in BA, but have no activity recorded in 
AA (labelled BAAI). In combination with the MAD and 
MOD sets, this provides six sets in total.

Each of these six sets is clustered to avoid having 
similar molecules in the set, and to avoid chemotype 
bias [16]. For each compound set Morgan (ECFP like) 
fingerprints of length 2048 bits with diameter 4 were 
calculated, using RDKit (release 2014_09_2). These 
were then clustered using the SUBSET program [17] 
with a similarity threshold of 0.65. This guarantees 
that any pair of molecules has a Tanimoto similar-
ity of at least 0.65. Note that the SUBSET algorithm is 
non-deterministic.

A three step standardization procedure was performed 
before calculating the physicochemical property distri-
butions. Step one performs a standardization to ensure a 
consistent representation of, for example, aromatic rings 
and nitro groups. As the second step, where molecules 
have multiple components, salts are removed using a 
list of known salts. If there are still multiple components 
remaining after salt stripping, the largest component 
is retained. In the final step, the ionization state of the 
compounds is set to the most prevalent form at pH 7.4, 
based upon a set of substructure rules. These physico-
chemical properties and the methods of calculation for 
the molecular sets are given in Additional file  1: Table 
S7.

Inactive
(

cj
)

:= ∃i : mij = I ∧ ∄i′ : mi
′
j �= I

AABA := {x : x ∈ AA ∧ Active(x)}

∩
{

y : y ∈ BA ∧ Active
(

y
)}

AABI := {x : x ∈ AA ∧ Inactive(x)}

∩
{

y : y ∈ BA ∧ Active
(

y
)}

AABI := {x : x /∈ AA ∧ x ∈ BA ∧ Active(x)}
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