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A Redundancy Detection Algorithm for Fuzzy Stochastic Multi-Objective 

Linear Fractional Programming Problems 

Abstract 

The computational complexity of linear and nonlinear programming problems depends on the 

number of objective functions and constraints involved and solving a large problem often becomes 

a difficult task. Redundancy detection and elimination provides a suitable tool for reducing this 

complexity and simplifying a linear or nonlinear programming problem while maintaining the 

essential properties of the original system. Although a large number of redundancy detection 

methods have been proposed to simplify linear and nonlinear stochastic programming problems, 

very little research has been developed for fuzzy stochastic (FS) fractional programming problems. 

We propose an algorithm that allows to simultaneously detect both redundant objective function(s) 

and redundant constraint(s) in FS multi-objective linear fractional programming problems. More 

precisely, our algorithm reduces the number of linear fuzzy fractional objective functions by 

transforming them in probabilistic-possibilistic constraints characterized by predetermined 

confidence levels. We present two numerical examples to demonstrate the applicability of the 

proposed algorithm and exhibit its efficacy. 

Keywords: Redundancy detection; Fuzzy; Stochastic; Multi-objective; Fractional programming. 
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1. Introduction 

In mathematical programming, a constraint or a variable is redundant if it does not define the 

solution space, that is, removing the constraint or the variable, the set of feasible solutions remains 

unaltered. Even though the presence of redundant constraints/variables does not alter the optimal 

solutions, they usually involve extra computational effort. Thus, redundancy allows to reduce a 

programming problem to a simpler one from the computational viewpoint without losing any 

relevant information or property.  

Redundancy may occur in the modeling phase of a programming problem and is mostly 

due to errors in the data input or to the attempt of not omitting any relevant constraints/variables. 

As a consequence, redundancy is quite common in practical mathematical programming model 

which makes the development of redundancy detection algorithms a crucial tool in order to obtain 

efficient solutions to real-life problems. Indeed, redundancy detection algorithms apply to several 

branches of mathematical programming including linear, integer, nonlinear, and stochastic 

fractional programming, which have become one of the main planning tools in engineering, 

business, finance and economics among other disciplines (Bajalinov, 2003; Jeeva et al., 2004; 

Charles et al., 2010). In particular, fractional programming and stochastic programming have been 

used to model problems related to investment portfolio, strategic investments, risk management, 

production planning and scheduling, supply chain optimization, manpower planning, electricity 

generation capacity, energy planning, environmental and pollution control, telecommunications 

and so on (Wallace and Ziemba, 2005; Zarif et al., 2013; Ahmed et al., 2014). 

We include below a short excursus of the main approaches that have been proposed to 

identify and remove redundant constraints/variables in mathematical programming, from LP to 

stochastic fractional programming. 

In the mid 1970’s, Gal (1975) presented a note on redundancy and linear parametric 

programming, followed by Gal and Laberling (1977), who presented an algorithm to identify 

redundant objective functions in a linear vector maximization problem. Later on, Uthariaraj et al. 

(1999), Rhymend et al. (1999) and Jacob et al. (2002) proposed algorithms to identify a priori 

redundant constraints when solving LP problems.  

Fractional programming has been studied by many researchers, including Charnes and 

Cooper (1962), Schaible (1981), Pal and Basu (1995), and Pal et al. (2003), among others. 

Fractional programming deals with the optimization of one or more ratios of functions subject to 
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constraints. Each objective function takes the form of a ratio whose numerator and denominator 

are both linear. Linear fractional objectives have many applications in financial planning.  

 In the mid-1950’s, Dantzig (1955) and Charnes and Cooper (1959) first proposed to use 

stochastic programming to deal with uncertainty in optimization problems. Uncertainty in 

stochastic programming is usually characterized by the fact that the parameters have known 

probability distributions. The literature on this topic has been increasingly enriched by the 

contributions of different disciplines such as operations research and probability theory (Birge, 

1995; Wets, 1996; Dupacova, 2002; Birge and Louveaux, 2011). A classification of stochastic 

programming problems is given by Liu (1999), who introduces the following three groups: (1) the 

expected value models; (2) Chance-Constrained Programming (CCP) models (Charnes and 

Cooper, 1959, 1963; Henrion, 2007; Henrion and Strugarek, 2008; Huang, 2007; Yang and Wen, 

2005; Pagnoncelli, 2009); and (3) dependent-chance programming models (Liu, 1997; Liu, 2006). 

Recently, some more results have been achieved in stochastic fractional programming. 

Charles and Dutta (2006) proposed an algorithm that identifies redundant objective functions in 

multi-objective stochastic fractional programming problems, while Charles et al. (2010) provided 

an algorithm that identifies redundant objective function(s) and redundant constraint(s) 

simultaneously in multi-objective nonlinear stochastic fractional programming problems.   

Despite the large literature existing on linear and nonlinear stochastic fractional 

programming, not much attention has been paid to fuzzy stochastic (FS) fractional programming 

problems. 

Ever since its introduction by Zadeh (1965), fuzzy set theory has been developing very 

rapidly and has been applied to a wide variety of real problems. In particular, the possibility theory 

described by Zadeh (1978) and herein related to fuzzy sets and systems provides a homogeneous 

framework for the representation of both imprecise and uncertain information. This aspect has 

been subsequently developed by many researchers; see, among others, Dubois and Prade (1988a, 

1988b).  

A parallel approach to fuzziness, often considered, is represented by randomness. Indeed, 

in many complex real-world problems, decision makers (DMs) may encounter a hybrid uncertain 

environment where fuzziness coexists with randomness. The observed values of data in real-world 

situations are often inexact, incomplete, vague, ambiguous, or imprecise. Several researchers have 

combined fuzziness and randomness to model uncertainty. As a consequence, many notions such 
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as those of the probability of fuzzy events (Zadeh, 1978), linguistic probabilities (Dubois and 

Prade, 1980), fuzzy random (FR) variables (Kwakernaak, 1978, 1979; Liu, 2004) and probabilistic 

sets (Hirota, 1981) have been introduced in the literature. In particular, the concept of a FR variable 

provides a useful tool to model phenomena where both fuzziness and randomness play a role 

simultaneously. 

In this paper, we consider situations where the parameters are estimated by fuzzy variables 

whose means are Gaussian random variables and, hence, can be represented by FR variables. We 

build on the redundancy detection algorithms defined by Charles and Dutta (2006) and Charles et 

al. (2010) for stochastic fractional programming problems to develop an algorithm that allows to 

identify and remove redundant objective functions in multi-objective linear FS fractional 

programming problems. We introduce a probabilistic-possibilistic constrained version of multi-

objective fractional programming and rely on the properties of FR variables to operate the 

necessary conversions of constraints and objective functions to deterministic forms. Hence, the 

number of linear FS fractional objective functions is reduced by transforming them in 

probabilistic-possibilistic constraints which are defined by predetermined confidence levels. 

The remainder of the paper is organized as follows. In Section 2, we review some basic 

concepts and definitions related to fuzzy variables and FR variables while, in Section 3, we 

describe the generic multi-objective fractional programming model and its FS version introducing 

the probabilistic-possibilistic model. In Section 4, we describe how to obtain the deterministic 

equivalents of probabilistic-possibilistic constraints and convert objective functions into 

deterministic constraints. In Section 5, we present the proposed redundancy detection algorithm. 

In Section 6, we present two numerical examples demonstrating the applicability and the efficacy 

of the proposed redundancy detection algorithm. Finally, we present our conclusions in Section 7. 

2. Background  

Definition 1: Let X be a universal set and XA⊆ . The fuzzy subset A~  of X is defined by means 

of a membership function [ ]1,0:~ →XAµ  assigning to each element x X∈  a real number 

( ) [0,1]A xµ ∈  which measures the degree of membership of x in A. 

Definition 2 (Dubois and Prade, 1980): A fuzzy interval of RL -  type is a tuple of the form

1 2( , , , )LRA m mα β= , where 1 2, , ,m mα β  are non-negative real values, whose membership 

function is defined as follows: 
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The values α  and β  are the left and right spreads, respectively, while  and  are the 

mean values of . The letters L  and R  stand for non-increasing continuous functions of [ ]1,0  

into [ ]1,0  such that 1)0()0( == RL  and 0)1()1( == RL , called the left and right functions, 

respectively.  

Henceforth, we will assume that 

1 , 0 1
( ) ( )

0, otherwise.
x x

L x R x
− ≤ ≤

= = 


 

If, in particular, 
1 2m m m= = , the  fuzzy interval of RL -  type ( )( , , ) , ,LRA m mα β α β= =  is 

also  called (triangular) fuzzy number.  

Definition 3: Let A  be a fuzzy interval of RL -  type. The support of A  is the crisp set 

supp( ) { ( ) 0}
A

A x xµ= ≥
 . The γ -cut of  A , denoted by γA , is the crisp set })(|{ ~ γµγ ≥= xxA A

. 

As shown in Figure 1, the γ -cut of a RL -  fuzzy interval LRmmA ),,,(~
21 βα= , where

[ ]1,0∈γ , is a closed interval defined as follows: 

[ ] [ ])(),(,})(|{ 1
2

1
1~ γβγαγµ γγγ

−− +−==≥= RmLmAAxxA RL
A

, 

where LAγ  and RAγ  are the left and right extreme points, respectively. 

Insert Figure 1 Here 

Definition 4 (Fuzzy Arithmetic) (Dubois and Prade, 1980): Let ( ), ,
LR

A mα β=  and  

( ), ,
LR

B mα β=  be two positive fuzzy numbers. Then: 

Addition: ( ) ( ) ( ), , , , , ,
LR LR LR

m m m mα β + α β = α +α + β+ β  

Subtraction: ( ) ( ) ( ), , , , , ,
LR LR LR

m m m mα β − α β = α + β − β+α  

Definition 5 (Extension Principle) (Zimmermann, 1996): Assume that X is the Cartesian product 

1m 2m

A
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of r universes (r is a real number), i.e.
1 ... rX X X= × × , and that 

1,..., rA A   are r fuzzy subsets of

1,..., rX X , respectively. Let f  be a mapping from X  to a universe Y , i.e. 
1( ,..., )ry f x x= . The 

extension principle enables us to define a fuzzy subset B  of Y  by using the following membership 

function: 

{ }
1 1

1

1
1

( ,..., ) ( )
sup min ( ),..., ( ) , ( )

( )
0,

r
r

rA A
x x f y

B

x x

otherwis

f y
y

e

µ µ
µ −

−

∈

 ≠ ∅= 


 

  

where 1f − denotes the inverse of f .  

Dubois and Prade (1980) modified the extension principle and used the algebraic sum and 

product instead of sup and min, respectively. 

Definition 6: A fuzzy variable ξ  is a mapping from an abstract space onto the real line.  

Definition 7 (Zadeh, 1978; Zimmermann, 1996): Let ( )( ),P ,PosΘ Θ be a possibility space where

Θ  is a non-empty set involving all possible events, and ( )P Θ  is the power set of Θ . For every

)(Θ∈PA , there is a non-negative number ( )Pos A , so-called a possibility measure, satisfying the 

following axioms: 

(i) ( ) 0, ( ) 1;Pos Pos∅ = Θ =  

(ii) for every A, B∈ ( )P Θ , A B⊆   implies ( ) ( )Pos A Pos B≤   ; 

(iii) for every subset )(}:{ Θ⊆∈ PWwAw , ( ) ( )w w w wPos A Sup Pos A= . 

The elements of )(ΘP   are also called  fuzzy events. 

Definition 8: Let ξ  be a fuzzy variable on the possibility space ( )( ),P ,PosΘ Θ ,  [ ]0 1: ,ξµ ℜ→  

be the membership function of ξ  and r be a real number. The possibility of the fuzzy event { }r≥ξ

is given by { } ( )
t r

Pos r Sup tξξ µ
≥

≥ = . 

Definition 9 (Liu and Liu, 2003): A FR variable is a random variable ξ  on a probability space 

(Ω,𝒜𝒜,𝑃𝑃𝑃𝑃)  whose values are fuzzy numbers.  

Each value ( )ξ ω  (with ω∈Ω ) taken by a FR variable has a membership ( )ξ ωµ . In 

particular, a FR variable of RL -  type takes values in the set of all fuzzy numbers of RL -  type. 
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In the following, we will consider only this kind of FR variables. The associated membership 

functions are described below.  

( )

( ) ( )

( ) ( )

, ,

( ) 1 ( ),

, .

m x
L x m

x x m

x m
R x m

ξ ω

ω
ω

α

µ ω

ω
ω

β

  −
≤  

  
= =
  − ≥     

where ( )m ω  is the normally distributed random variable.  

Figure 2 shows a triangular FR variable, that is, a triangular fuzzy variable whose mean 

value is a normally-distributed random variable 2( ( ))m ~ N ,µ σ . 

Insert Figure 2 Here 

Proposition 1 (Liu, 2004): Letξ be a FR vector and, for every 1,2,...,j n= , let jg  be a real-

valued continuous function. Then, the possibility { }njg j ,...,1,0))((Pos =≤ωξ  is a random 

variable. 

Proposition 2 (Sakawa, 1993): Let 1
~A  and 2

~A  be two independent fuzzy numbers with continuous 

membership functions. For a given confidence level [ ]1,0∈γ , we have: 

{ } γ≥≥ 21
~~Pos AA            ⇔ LR AA γγ ,2,1 ≥ , 

where, for 1, 2l = , L
lA γ,  and R

lA γ,  are the left and right extreme points of the γ-cut [ ]R
l

L
l AA γγ ,, , , 

respectively. { }21
~~Pos AA ≥  represents the degree of possibility that 1 2A A≥  . 

3. Multi-objective fuzzy stochastic fractional programming 

In this section we develop an imprecise fractional programming formulation to deal with the 

randomness of fuzzy parameters in a possibility space ( )( ),P ,PosΘ Θ . First, we define a generic 

multi-objective fractional programming model. Hence, we move to a multi-objective FS fractional 

programming setting introducing the Probability-Possibility Constrained Programming (PPCP) 

model. Note that, in the following, we will also use prob-pos to shorten Probability-Possibility.  

The generic multi-objective fractional programming model is defined as follows: 
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s.t. 
(2) ( ) ( )1 1

1
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n
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j

a x b r s
=
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,...,,2,1    ,)2(

1

)2( srbxa r
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j
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=

 

0, 1,2,..., .jx j n≥ =  

where 

• ijc , ijd , i
α , i

β ( )1
rja  and ( )1

rb are FR variables for every 1,...,i m= , every 1,...,j n=  and every

1,...,r s= ; 

• )2(
rja  and )2(

rb are deterministic parameters for every 1,...,j n=  and every 1,...,r s= .  

Model (2) can be rewritten as a multi-objective FS fractional programming problem, which 

we will refer to as PPCP model, as follows: 

[ ]1 2Max  ,  ,  . . .,  
s.t.

mλ λ λ
 

(3) 
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where 

• ijc , ijd , iα
~ , iβ

~
, ( )1

rja  and ( )1
rb  are FR variables for every 1,...,i m= , every 1,...,j n=  and every 
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1,...,r s= ; 

• )2(
rja  and )2(

rb  are deterministic parameters for every 1,...,j n=  and every 1,...,r s= ; 

• iδ  and iγ , with mi ,,1 = , and ru  and rp , with 1,2,...,r s= , are the predetermined 

confidence levels. 

Note that: 

(1) (1) (2) (2)
1

1 1
( ,..., ) | 1,..., ,  and , 1,..., , 0

n n

n rj j r rj j r j
j j

S x x r s a x b a x b j n x
= =

 = = ∀ = ≤ ≤ ∀ = ≥ 
 

∑ ∑x 

is a non-empty, convex and compact subset of .nℜ  

Recall that [ ]⋅Pos  denotes the possibility of the event described in [·], while [ ]⋅Pr  denotes 

the probability of the event in [·]. 

4. Deterministic equivalents and conversions 

4.1. Deterministic equivalents of probabilistic-possibilistic constraints  

One way to solve the prob-pos constrained multi-objective FS fractional programming problem 

described by model (3), i.e., the PPCP model, is to convert its constraints into their respective crisp 

equivalents. 

For every nj ,...,1=  and every sr ,...,1= , the variable ( )1
rja  appearing in the second set of 

constraints of PPCP model (3) is assumed to be a FR variable. Thus, ( )1
rja  can be written as 

( ) ( )( )1 1, , ,rj rj rj rj LR
a aα β=  where, for every nj ,...,1=  and every sr ,...,1= , ( )1

rja  , rjα and rjβ stand for 

the center value,  the left tail and the right tail, respectively. In particular, )1(
rja ~ ( )2)1( , rjrjaN σ , where 

( )1
rja  denotes the mean and 2

rjσ  the variance.  

Theorem 1: Let ( )
LRj

m
jjj aaaa βα ,,~ = , with nj ,...,1= ,  and ( )

LR
m bbbb βα ,,

~
=  be FR numbers such 

that ( )2~ ,m
j j ja N a σ  and ( )2ˆ~ ,mb N b σ have a normal distribution. Let u  and p be two 

predetermined confidence levels. The following are equivalent: 

(a) 
1
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n
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j
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Proof: By Definition 2, we can assume the FR numbers ja , with nj ,...,1= , and b to be 

characterized, respectively, by the following membership functions: 

For every nj ,...,1= , 
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Using the extension principle (see Definition 5), the fuzzy number 
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( ) ( ) 1 1, ( ) , ( )
L R

m m

u u
b b b L u b b R u b− −   = − +   
  α β . 

By Proposition 2, the constraint pubxa
n

j
jj ≥












≥








≤∑

=1

~~PosPr is equivalent to the 

following: 

( ) pbxa
R

u

L

u

n

j
jj ≥












≤








∑
=

~~Pr
1

, 

which, in turn, is equivalent to: 

( ) pxauLabuRb
n

j
jj

m
j

m ≥







−≥+ ∑

=

−−

1

11 )()(Pr αβ . 

Letting ( ) βα buRbxauLah m
n

j
jj

m
j )()(~ 1

1

1 −

=

− −−−=∑ , we have  

Pr 0h p ≤ ≥ 
 . 

Obviously, h  also has a normal distribution with: 

 ( ) βαµ buRbxauLahE
n

j
jjjh )()()~( 1

1

1
~

−

=

− −−−== ∑   and  2

1

222
~ σ̂σσ +=∑

=

n

j
jjh x . 

Finally, we claim that: 

Pr 0h p ≤ ≥ 
  1  ( ) 0hE h p σ− ⇔ +Φ ≤  

  

where 1−Φ  is the inverse of the CDF.  

In fact: 

Pr 0 Pr Pr
h h h h h

h E h E h E h h E h E h
h

σ σ σ σ σ

              − − −              ≥ = ≥ = ≤ = Φ               

      
  

From which it follows that: 

Pr 0     1-Pr 0     Pr 0 1     1  
h

E h
h p h p h p p

σ

         ≤ ≥ ⇔ ≥ ≥ ⇔ ≥ ≤ − ⇔ Φ ≤ − ⇔       
 


    

1 1 1 1(1 )    (1 )  (1 ) 0    ( ) 0h h h
h

E h
p E h p E h p E h pσ σ σ

σ
− − − −

        ≤ Φ − ⇔ ≤ Φ − ⇔ −Φ − ≤ ⇔ +Φ ≤       




  
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Therefore,  Pr 0h p ≤ ≥ 
  is equivalent to  

( )1 1 2 2 2 1

1 1

ˆ( ) ( ) ( )
n n

j j j j j
j j

a L u a x p x b R u b− − −

= =

− +Φ + ≤ +∑ ∑α βσ σ .                        

4.2. Conversion of objective functions into deterministic constraints 

In this section, we use Proposition 2 and Theorem 1 to obtain a deterministic programming version 

of model (3). The main feature of the model is that it takes into account the probability distribution 

of the objective functions by maximizing the lower allowable limit of the objective functions 

subject to chance constraints where both the numerator and denominator coefficients are FR 

variables. As in Subsection 4.1, we will work with the PPCP model (3), that is: 

[ ]1 2Max  ,  ,  . . .,  
s.t.

mλ λ λ
 

(7) 





















=≥

=≤

=≥











≥








≤

=≥



















≥



















≥
+

+

∑

∑

∑

∑

=

=

=

=

,...,,2,1    ,0

,...,,2,1    ,

,...,,2,1    ,
~~PosPr

,...,,2,1    ,~~

~~

PosPr

1

(2)(2)

1

(1)(1)

1

1

njx

srbxa

srpubxa

mi
xd

xc

j

n

j
rjrj

rr

n

j
rjjrj

iiin

j
ijij

n

j
ijij

γδλ
β

α

 

where 

• ijc , ijd , iα
~ , iβ

~
, ( )1

rja  and ( )1
rb  are FR variables for every 1,...,i m= , every 1,...,j n=  and every 

1,...,r s= ; 

• )2(
rja  and )2(

rb  are deterministic parameters for every 1,...,j n=  and every 1,...,r s= . 

More precisely, for every 1,...,i m=  and every 1,...,j n= , let  

( )
LRij

m
ijijij cccc βα ,,~ = , ( )

LRij
m
ijijij dddd βα ,,

~
= , ( )LRi

m
iii

βα αααα ,,~ = , ( )LRi
m
iii

βα ββββ ,,
~
= , 
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where m
ijc , m

ijd , m
iα  and m

iβ  are normally distributed, that is, ( )2,m
ij ij cijc N c σ: , 

( )2,m
ij ij dijd N d σ: , ( )2,m

i i iN αα α σ:  and ( )2,m
i i iN ββ β σ: . Hence, ,ij ic α (resp. ,ij id β ) and 

2 2,cij iασ σ (resp. 2 2,dij iβσ σ ) are the mean and the variance of ,m m
ij ic α  (resp. ,m m

ij id β ), respectively. 

For every 1,...,i m= , the unknown parameter iλ , which is less than or equal to 1

1

n

ij j i
j
n

ij j i
j

c x

d x

α

β

=

=

+

+

∑

∑

 

 
, 

satisfies the following inequality: 

0
~~~~

11
≥








+−+ ∑∑

==

n

j
ijiji

n

j
ijij xdxc βλα . 

By Proposition 2, the ith inequality of the first set of constraints in model (7) is equivalent 

to the following inequality: 

( )( ) ( ) ( )( ) ( )

1 1

1 1 1 1

1 1

Pos 0
n n

ij j i i ij j i i
j j

n n
m m m m

i ij i ij j i i i ij i ij j i i i
j j

c x d x

d L d x L c R c x R

= =

− − − −

= =

  
+ − + ≥ ≥ ⇔  

   
 

− + − − + ≤ + 
 

∑ ∑

∑ ∑

 

α α β β

α λ β δ

λ δ β δ β δ α δ α

For every 1,...,i m= , let 

( )( ) ( ) ( )( ) ( )1 1 1 1

1 1

n n
m m m m

i i ij i ij j i i i ij i ij j i i i
j j

f d L d x L c R c x Rα α β βλ δ β δ β δ α δ α− − − −

= =

 
= − + − − + − − 

 
∑ ∑

The expected value and variance of if are obtained as follows: 

( )( ) ( ) ( )( ) ( )1 1 1 1

1 1

n n
m m m m

i i ij i ij j i i i ij i ij j i i i
j j

E f E d L d x L c R c x Rα α β βλ δ β δ β δ α δ α− − − −

= =

= − + − − + − −
  

      
  
∑ ∑  

( )( ) ( ) ( )( ) ( )1 1 1 1

1 1

n n

i ij i ij j i i i ij i ij j i i i
j j

d L d x L c R c x Rα α β βλ δ β δ β δ α δ α− − − −

= =

 
= − + − − + − − 

 
∑ ∑  

iVar f  = 
  

( )( ) ( ) ( )( ) ( )1 1 1 1

1 1

n n
m m m m

i ij i ij j i i i ij i ij j i i i
j j

Var d L d x L c R c x Rα α β βλ δ β δ β δ α δ α− − − −

= =

− + − − + + +
    

   
    
∑ ∑  

2 2 2 2 2 2 2 2

1 1

.
n n

i dij j i i cij j i
j j

x xβ αλ σ λ σ σ σ
= =

= + + +∑ ∑  
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Reasoning as in the proof of Theorem 1 (see Claim at the end of the proof), we have: 
1Pr 0     ( ) 0

ii i i i ff E fγ γ σ−   ≤ ≥ ⇔ +Φ ≤    
  . 

Thus, the ith prob-pos constraint is converted into the following:  

1 1

Pr 0
n n

ij j i i ij j i i i
j j

Pos c x d xα λ β δ γ
= =

   
+ − + ≥ ≥ ≥ ⇔   

     
∑ ∑    Pr 0    i if γ ≤ ≥ ⇔ 

  

( )( ) ( ) ( )( )1 1 1

1 1

n n

i ij i ij j i i i ij i ij j
j j

d L d x L c R c xα α βλ δ β δ β δ− − −

= =

 
− + − − + 

 
∑ ∑  

0)()(                                       12

1

2222

1

2221 ≤−−+++Φ+ −

==

− ∑∑ β
αβ αδασσσλσλγ iiii

n

j
jcijii

n

j
jdijii Rxx . 

5. Redundancy detection algorithm 

In this section, we build on the algorithms proposed by Charles et al. (2006, 2010), we present an 

algorithm to identify redundant fractional objective functions in multi-objective linear FS 

fractional programming problems. First, we need to recall the following definitions (Charles and 

Dutta, 2006; Charles et al., 2010). 

Definition 10: 

Let λ  be the following scalar: 



















ℜ=
+

+
≤=

∑

∑

=

= n
nn

j
ijij

n

j
ijij

i xxxmi
xd

xc
 ofr unit vecto  theis ),,,( and ,...,2,1|~~

~~

min 21

1

1 

β

α
λλ . 

The decision space relative to all the prob-pos constrained objective functions is defined by the 

following set:  

( )( ) ( )( ) ( )

( ) ( )( )

1 1 1 2 2 2 2 2 2 2 2

1 1 1 1

1 1 , 1,2,..., , 0 for 1,2,..., .

n n n n
n

ij i ij j ij i ij j i dij j i cij j iO
j j j j

i i i i i i j

d L d x c R c x x x
S

R L i m x j n

− − −

= = = =

− −

∈ℜ − − + + Φ + + +
=

≤ + − − = ≥ =

  
  

  
 
 

∑ ∑ ∑ ∑x α β
β α

β α

λ δ δ γ λ σ λ σ σ σ

α δ α λ β δ β

 

For mw ...,,2,1= , the decision space relative to all the prob-pos constrained objective functions 

except the w-th one is defined as follows: 

( )( ) ( )( ) ( )

( ) ( )( )

1 1 1 2 2 2 2 2 2 2 2

1 1 1 1

1 1 , 1,2,..., , , 0 for 1,2,..., .

n n n n

ij i ij j ij i ij j i dij j i cij j in
j j j jw

i i i i i i j

d L d x c R c x x x
S

R L i m i w x j n

− − −

= = = =

− −

− − + + Φ + + +
= ∈ℜ

≤ + − − = ≠ ≥ =

  
  

  
 
 

∑ ∑ ∑ ∑
x

α β
β α

β α

λ δ δ γ λ σ λ σ σ σ

α δ α λ β δ β
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Definition 11: For every mw ...,,2,1= , the constrained form of the wth objective function is given 

by: 

( )( ) ( )( ) ( )

( ) ( )( )

1 1 1 2 2 2 2 2 2 2 2

1 1 1 1

1 1

n n n n

wj w wj j wj w wj j w dwj j w cwj j w
j j j j

w w w w w w

d L d x c R c x x x

R L

− − −

= = = =

− −

 
− − + +Φ + + + ≤ 

 

+ − −

∑ ∑ ∑ ∑α β
β α

β α

λ δ δ γ λ σ λ σ σ σ

α δ α λ β δ β

This constrained form is called redundant in model (3) if So = Sw.  

It follows from Definition 11 that the constrained form of the wth objective function is 

redundant if and only if, for all wS∈x , we have: 

( )( ) ( )( )

( ) ( ) ( )( )

1 1

1 1

1 2 2 2 2 2 2 2 2 1 1

1 1

n n

wj w wj j wj w wj j
j j

n n

w dwj j w cwj j w w w w w w w
j j

d L d x c R c x

x x R L

− −

= =

− − −

= =

 
− − + + 

 

Φ + + + ≤ + − −

∑ ∑

∑ ∑

α β

β α
β α

λ δ δ

γ λ σ λ σ σ σ α δ α λ β δ β

 (8) 

Henceforth, we let: 

( ) ( ) +







−−−−+= ∑

=

−−−
n

j
jwjwwjwwwwwww xdLdLRs

1

111 )()()()( ααβ δλβδβλαδαx

( )( ) ( )1 1 2 2 2 2 2 2 2 2

1 1 1

n n n

wj w wj j w dwj j w cwj j w
j j j

c R c x x x− −

= = =

+ −Φ + + +∑ ∑ ∑β
β αδ γ λ σ λ σ σ σ  

and 

}|)(min{ www Sss ∈= xx  

Definition 12: The constrained form of the wth objective function (8) is redundant in model (3) if

0≥ws . 

Definition 13: The constrained form of the wth objective function (8) is strongly redundant in 

model (3) if 0>ws . Note that the constraint can be redundant without being strongly redundant. 

Definition 14: The constrained form of the wth objective function (8) is weakly redundant in model 

(3) if 0=ws . 

Using sequential LP, we start by linearizing the constrained version of the fractional 

objective function as defined in Section 4. In order to do so, we consider the constrained form of 

the ith fractional objective function (see Definition 11), with 1, 2, ...,i m= , rewritten as follows: 
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( ) ( ) ++−







−= ∑∑

=

−

=

−
n

j
jijiij

n

j
jijiiji xcRcxdLdf

1

1

1

1 )()()( βα δδλx  

( ) ( ) 0)()()( 112

1

2222

1

2221 ≤−++−+++Φ+ −−

==

− ∑∑ αβ
αβ βδβλαδασσσλσλγ iiiiiii

n

j
jciji

n

j
jdiji LRxx  

Using Taylor’s Formula for a function of n variables, we have:    

0)()()()( *** ≤−⋅∇+= T
iii fff xxxxx  

where )( *xif∇  is the gradient row vector of )(xif  at )1,,1,1(* =x . 

Since,  

( ) ( )++−







−= ∑∑

=

−

=

−
n

j
ijiij

n

j
ijiiji cRcdLdf

1

1

1

1* )()()( βα δδλx  

( ) ( )αβ
αβ βδβλαδασσσλσλγ iiiiiii

n

j
ciji

n

j
diji LR )()()( 112

1

222

1

221 −−

==

− −++−+++Φ+ ∑∑  

and, for every nj ...,,2,1= , the jth coordinate of the gradient vector )( *xif∇  is given by 

( ) ( )
2 2 2

* 1 1 1

2 2 2 2 2 2

1 1

( ) ( ) ( ) ( ) dij ciji
ij i ij ij i ij i n n

j
dij i cij i

j j

f d L d c R c
x

α β

β α

λ σ σ
λ δ δ γ

λ σ λ σ σ σ

− − −

= =

+∂
= − − + +Φ

∂
+ + +∑ ∑

x  

we have: 

=−⋅∇ T
if )()( ** xxx  

( )* * *
1 2

1 2

( ), ( ), , ( ) 1, 1, , 1 Ti i i
n

n

f f f x x x
x x x

 ∂ ∂ ∂
= ⋅ − − − = ∂ ∂ ∂ 

x x x   

( ) ( )
2

1

222

1

22

1

2

1

22

1

1

1

1

1 )()()(

i

n

j
ciji

n

j
dij

n

j
jcij

n

j
jdij

i

n

j
jijiij

n

j
jijiij

xx
xcRcxdLd

αβ

βα

σσσλσλ

σσλ
γδδλ

+++

+
Φ++−








−=

∑∑

∑∑
∑∑

==

==−

=

−

=

−  

( ) ( )
2

1

222

1

22

1

2

1

22

1

1

1

1

1 )()()(

i

n

j
ciji

n

j
dij

n

j
cij

n

j
dij

i

n

j
ijiij

n

j
ijiij cRcdLd

αβ

βα

σσσλσλ

σσλ
γδδλ

+++

+
Φ−++








−−

∑∑

∑∑
∑∑

==

==−

=

−

=

−  

and hence, 

=−⋅∇+= T
iii fff )()()()( *** xxxxx  (9) 
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( ) ( )
2

1

222

1

22

222
1

1

1

1

1 )()()(

i

n

j
ciji

n

j
dij

ii
i

n

j
jijiij

n

j
jijiij xcRcxdLd

αβ

αββα

σσσλσλ

σσλ
γδδλ

+++

+
Φ++−








−=

∑∑
∑∑

==

−

=

−

=

−  

( ) ( ) 0)()()( 11

2

1

222

1

22

1

2

1

22

1 ≤−++−
+++

+
Φ+ −−

==

==−

∑∑

∑∑
αβ

αβ

βδβλαδα
σσσλσλ

σσλ
γ iiiiii

i

n

j
ciji

n

j
dij

n

j
jcij

n

j
jdij

i LR
xx

 

 We can rewrite inequality (9), for every mi ...,,2,1= ,  as follows: 

( ) ( )αβ βδβλαδα iiiiiii LRf )()()( 11 −− −−+≤x , 

where ),,,( 21 nxxx =x , with 0≥jx , for every nj ...,,2,1= . 

When i  ranges from 1 to m ,  inequality (9) gives place to a system of inequalities that can be 

interpreted in matrix form as follows: 

βαx λ−≤⋅F  

where nmF ×ℜ∈  and mℜ∈βα,  are defined by: 

( )ββ αδααδα mmm RR )(,,)( 1
11

1
1

−− ++= α  

( )αα βδββδβ mmm LL )(,,)( 1
11

1
1

−− −−= β . 

By adding slack variables to the constraints form of the m  objective functions, pre-

multiplying by the inverse of an appropriate basis and redefining the variables (both slacks and 

structural variables) as NB
jx  (or) B

jx  according to their status (NB for non-basic, and B for basic), 

we obtain the following equivalence system: 

( )[ ] η
x
x

=






−

B

NB

NB IF 1  

where ( )NB
k

NBNB
NB

xx ,,1 =x  and ( )B
k

BB
B

xx ,,1 =x  are such that 0≥NB
jx  for every NBkj ...,,2,1=  

and 0≥B
jx  for every Bkj ...,,2,1= . 

The matrix ( ) 1−
NBF  is usually referred to as the Contracted Simplex Tableau (Dantzig, 

1963). Let ijϕ denote the ij th element of the matrix ( ) 1−
NBF . Also, let η  be the “updated right 

hand side”, that is, ( ) )(1 βα λ−
−

NBF . 
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Theorem 2 (Charles et al., 2006; 2010): A constrained form of the wth objective function is 

redundant if and only if its associated slack variable ws  has the property B
tw xs =  in a basic solution 

where 0≤tjϕ , for every nj ...,,2,1= , and 0≥tη . 

Proof: If: In a basic solution, ∑
=

−=
n

j

B
jijt

B
t xx

1
ϕη . Since in any feasible solution the value of NB

jx

will be at least zero, the sum is at least zero and, hence, 0≥≥= t
B
tw xs η . Therefore, 0ws ≥ . 

Only If: Let us consider the tth row of the tableau as the objective function for the sequential LP 

}|)(min{ www Sss ∈= xx . If 0ws ≥ , it follows that in the optimal solution 0≤tjϕ  for all 

1,2,...,j n=  with 0≥tη . Since this optimal solution is a feasible extreme point of wS , it is a basic 

feasible solution for the original set of constrained forms of the objective functions.  

Note that, since in the theorem above tws η= , the constrained form of the wth objective 

function is strongly redundant if 0>tη  and weakly redundant if 0=tη . 

The proposed redundancy detection algorithm is composed of seven steps as depicted in 

Figure 3: 

Insert Figure 3 Here 

1. Convert the FS fractional objective functions into constraints.  

2. By using sequential LP (SLP), linearize the constrained form of the objective functions.  

3. A matrix of intercept is constructed with decision and slack variables as rows and columns, 

respectively. This matrix is of order m n× . 

If 0≥tη , then 

( ) ( )
ij

iiiiii
ji F

LR αβ βδβλαδαθ )()( 11 −− −−+
= ; 0≥ijF ; 1, 2, ...,i m= ; 1,2,...,j n=  

ijF  denotes the ij th element of the matrix F  

Else 

( ) ( )
ij

iiiiii
ji F

LR αβ βδβλαδαθ )()( 11 −− −−+
= ; 0<ijF ; mi ...,,2,1= ; 1,2,...,j n=  

ijF  denotes the ij th element of the matrix F  
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4. Identify the pivot element in each row. 

If ( )1 0i i iR βα δ α−+ ≤ , then 

{ }maxj i jiθΨ = ,  

Else  

{ }minj i jiθΨ = , for all j while the objective is maximum, vice versa. 

5. Score out the row and column corresponding to the entering and leaving variables. If a column 

has more than one maximum/minimum, score out those rows also. 

6. Remove these redundant constrained forms of fractional objective functions from the original 

model. 

7. Solve the reduced multi-objective stochastic fractional programming problem to get the 

optimal solution with any mathematical programming solver. 

6. Numerical Examples 

In this section, two numerical examples (Examples 1 and 2) are presented to both demonstrate the 

applicability and exhibit the efficacy of the proposed redundancy algorithm for FS multi-objective 

fractional programming problems.  

6.1 Example 1 













++

++

++

++

2222121

2222121

1212111

1212111 ~~~
~~~

,~~~
~~~

Max 
β

α

β

α

xdxd

xcxc

xdxd

xcxc  

(10) 
s.t. 

1 1 2 2Pr Pos a x a x b u p  + ≤ ≥ ≥   
   

1 25 2 10x x+ ≤  

1 2, 0x x ≥  

where 021 ==αα , 121 == ββ  and the confidence levels u  and p  are given by 0.5u =  and 

0.90p = . 

In Example 1, we consider two objectives, where all the coefficients are assumed to be FR 

numbers. Each of the FR coefficients has a symmetrical triangular membership function, which is 

a special case of a trapezoidal membership function. In fact, if in Eq. (1) we let =α β , then the 
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triangular fuzzy number is a symmetrical triangular fuzzy number. Hence, the membership 

functions for the coefficients in the example can be represented by pairs of the form ( ),m α , where 

( )2, mm N u σ:  and ( ),m α is a symmetrical triangular fuzzy number. Note that m  is the center 

and α  is the spread. Table 1 provides the data used in Example 1. 

Insert Table 1 Here 

The deterministic equivalent of the constraint 1 1 2 2a x a x b+ ≤   is the following: 

2 2
1 2 1 22 3 1.28 1 7x x x x+ + + + ≤  

The deterministic equivalent of the constrained form of the fractional objective functions is 

described below. This description is based on the confidence levels 1γ , 2γ , 1δ  and 2δ , that appear 

in the constrained form of the objective functions (i.e. the first set of constraints of model (3)), 

defined by: 

1 20.10, 0.90γ γ= =  and 1 2 0.5δ δ= = . 

( ) ( ) ( )2 2 2 2
1 2 1 1 2 1 1 1 26 3 5 2 1 1.28 2 2 1 0,x x x x x xλ λ λ+ − + + + + + + ≥  (11) 

( ) 2 2 2 2 2 2
1 2 2 1 2 2 1 2 2 1 216 11 1 1.28 0.x x x x x x x xλ λ λ+ − + + − + + + ≥  (12) 

Let  { }min 1.125,9 1.125= =λ  at ( ) ( )1 2, 1,1x x =  from equations (11)-(12).  Therefore, 

inequalities (11)-(12) reduce to (13)-(14): 

2 2
1 2 1 20.375 0.750 1.28 4.531 2.266 1.125,x x x x+ + + ≥  (13) 

2 2
1 2 1 214.875 9.875 1.28 2.266 2.266 1.125.x x x x+ − + ≥  (14) 

Using the inequality (9) and SLP (Charles and Dutta, 2003, 2006; Charles et al., 2010), the 

following linear constraints are obtained: 

1 2

1 2

2.6 1.863 1.125,
13.513 8.513 1.125

x x
x x
+ ≥

+ ≥
 

Insert Table 2 Here 

By using the proposed algorithm, it can be concluded from Table 2 that the second 

objective function is strongly redundant. Therefore, the problem can be solved by removing the 

second objective function from the original problem. The bi-objective FS fractional programming 
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problem reduces to the following problem: 

1Max 0.90
s.t.

λ
 

(15) 
( ) ( ) ( )2 2 2 2

1 2 1 1 2 1 1 1 26 3 5 2 1 1.28 2 2 1 0,x x x x x xλ λ λ+ − + + + + + + ≥  

2 2
1 2 1 22 3 1.28 1 7,x x x x+ + + + ≤  

1 25 2 10,x x+ ≤  

1 2, 0.x x ≥  

The solution is obtained as follows: 1 1.547x = , 2 0.000x =  and 1 2.384λ = . 

6.2 Example 2 

Let us consider the previous example along with a third objective function. That is: 













++

++

++

++

++

++

3232131

3232131

2222121

2222121

1212111

1212111 ~~~
~~~

,~~~
~~~

,~~~
~~~

Max 
β

α

β

α

β

α

xdxd

xcxc

xdxd

xcxc

xdxd

xcxc  

(16) 

s.t. 

1 1 2 2Pr Pos a x a x b u p  + ≤ ≥ ≥   
   

1 25 2 10x x+ ≤  

1 2, 0x x ≥  

Let the confidence levels 1γ , 2γ , 3γ , 1δ , 2δ  and 3δ , that appear in the constrained form of 

the objective functions (i.e. the first set of constraints of model (3)), be given by: 

 1 2 20.70, 0.90, 0.40γ γ γ= = =  and 1 2 3 0.5δ δ δ= = = . 

Insert Table 3 Here 

The deterministic equivalent of the constrained form of the fractional objective functions 

is given below: 

( ) ( ) ( )2 2 2 2
1 2 1 1 2 1 1 1 25 2 5 2 1 0.52 2 2 1 0,x x x x x xλ λ λ+ − + + − + + + ≥  (17) 

( ) 2 2 2 2 2 2
1 2 2 1 2 2 1 2 2 1 216 11 1 1.28 0.x x x x x x x xλ λ λ+ − + + − + + + ≥  (18) 
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( ) 2 2 2 2 2 2
1 2 3 1 2 3 1 3 2 1 211 13 5 2 1 0.25 2 2 4x x x x x x x xλ λ λ+ − + + + + + + ≥  (19) 

Let { }min 0.875,9,2.5 0.875λ = =  at ( ) ( )1 2, 1,1x x =  from equations (17)-(19). Therefore, 

inequalities (17)-(19) are converted to (20)-(22): 

2 2
1 2 1 20.625 0.25 1.28 3.531 1.766 0.875,x x x x+ + + ≥  (20) 

2 2
1 2 1 215.125 10.125 1.28 1.766 1.766 0.875,x x x x+ − + ≥  (21) 

2 2
1 2 1 26.625 11.25 0.25 3.531 1.766 4.875.x x x x+ + + ≥  (22) 

By using SLP (Charles and Dutta, 2003, 2006; Charles et al., 2010), the following linear 

constraints are obtained: 

1 22.589 1.232 0.875,x x+ ≥  

1 213.299 8.424 0.875,x x+ ≥  

1 27.009 11.442 4.875.x x+ ≥  

Insert Table 4 Here 

By using the proposed algorithm, from the Table 4 it can be concluded that the second 

objective function is strongly redundant. Therefore, the problem is solved by removing the second 

objective function from the original problem. The tri-objective FS fractional programming 

problem can be converted into the following problem: 

1 3Max 0.30 0.60λ λ+  

(23) 

( ) ( ) ( )2 2 2 2
1 2 1 1 2 1 1 1 25 2 5 2 1 1.28 2 2 1 0,x x x x x xλ λ λ+ − + + + + + + ≥  

( ) 2 2 2 2 2 2
1 2 2 1 2 2 1 2 2 1 216 11 1 1.28 0,x x x x x x x xλ λ λ+ − + + − + + + ≥  

( ) 2 2 2 2 2 2
1 2 3 1 2 3 1 3 2 1 211 13 5 2 1 0.25 2 2 4,x x x x x x x xλ λ λ+ − + + + + + + ≥  

2 2
1 2 1 22 3 1.28 1 7,x x x x+ + + + ≤  

1 25 2 10,x x+ ≤  

1 2, 0.x x ≥  

The solution is obtained as follows: 1 0.000x = , 2 1.547x = , 1 1.503λ =  and 3 4.444.=λ   
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7. Conclusion  

We considered the redundancy problem in a multi-objective linear FS fractional programming 

setting. Detecting and, consequently, eliminating redundant objective functions and/or constraints 

from the system under analysis is the key to avoid unnecessary calculations and reduce the 

computational complexity of the associated optimization algorithm. 

Our analysis has focused on the fuzzy component characterizing many of the real-life 

situations where stochastic fractional programming can be applied and deliver significant results.  

Despite the considerable literature on linear and nonlinear stochastic fractional 

programming, not much attention has been paid so far to FS fractional programming problems. 

The present paper shades some light in this direction developing an algorithm that allows to 

simultaneously identify redundant objective functions and redundant constraints in multi-objective 

linear FS fractional programming problems. More precisely, the proposed algorithm reduces the 

number of linear fuzzy fractional objective functions after transforming them in probabilistic-

possibilistic constraints with respect to predetermined confidence levels. 

The applicability of the proposed algorithm has been demonstrated by means of two 

numerical examples, where the existing redundancy has been removed and the number of linear 

fractional objective functions has been reduced accordingly. 
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Figure 1. γ-cut of a generic L-R fuzzy number 
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Figure 2. A generic L-R type FR variable 
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Figure 3. Redundancy detection algorithm  
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Table 1. FR parameters and variables for Example 1  

Parameters Fuzzy 
variables 

1
~a  (N(3,1),2) 

2
~a  (N(5,1),4) 

b
~

 (N(5,1),4) 

11c  (N(5,2),2) 

12c  (N(2.5,1),1) 

21c  (N(15,1),2) 

22c  (N(8,1),4) 

11d  (N(6,2),2) 

12d  (N(3,1),2) 

21d  (N(1.5,1),1) 

22d  (N(2,1),2) 
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Table 2. Matrix-of-intercept for Example 1 

Decision 
variables 

Slacks Objective 
function 

value 
(ψ ) 

 s1  s2 

x1 0.433 0.083 0.433 
x2 0.604 0.132 0.604 
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Table 3. FR parameters and variables for Example 2 

Parameters Fuzzy 
variables 

11c  (N(4,2),2) 

12c  (N(1.5,1),1) 

31c  (N(10,2),2) 

32c  (N(9,1),6) 

31d  (N(6,2),2) 

32d  (N(3,1),2) 

3α  (N(6,1),4) 

3β


 (N(2,1),2) 
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Table 4. Matrix-of-intercept for Example 2 

Decision 
variables 

Slacks Objective 
function 

value 
(ψ ) 

 s1  s2  s3 

x1 0.338 0.066 0.696 0.696 
x2 0.710 0.104 0.426 0.710 

 

 


