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A Redundancy Detection Algorithm for Fuzzy Stochastic Multi-Objective

Linear Fractional Programming Problems

Abstract

The computational complexity of linear and nonlinear programming problems depends on the
number of objective functions and constraints involved and solving a large problem often becomes
a difficult task. Redundancy detection and elimination provides a suitable tool for reducing this
complexity and simplifying a linear or nonlinear programming problem while maintaining the
essential properties of the original system. Although a large number of redundancy detection
methods have been proposed to simplify linear and nonlinear stochastic programming problems,
very little research has been developed for fuzzy stochastic (FS) fractional programming problems.
We propose an algorithm that allows to simultaneously detect both redundant objective function(s)
and redundant constraint(s) in FS multi-objective linear fractional programming problems. More
precisely, our algorithm reduces the number of linear fuzzy fractional objective functions by
transforming them in probabilistic-possibilistic constraints characterized by predetermined
confidence levels. We present two numerical examples to demonstrate the applicability of the

proposed algorithm and exhibit its efficacy.

Keywords: Redundancy detection; Fuzzy; Stochastic; Multi-objective; Fractional programming.



1. Introduction

In mathematical programming, a constraint or a variable is redundant if it does not define the
solution space, that is, removing the constraint or the variable, the set of feasible solutions remains
unaltered. Even though the presence of redundant constraints/variables does not alter the optimal
solutions, they usually involve extra computational effort. Thus, redundancy allows to reduce a
programming problem to a simpler one from the computational viewpoint without losing any
relevant information or property.

Redundancy may occur in the modeling phase of a programming problem and is mostly
due to errors in the data input or to the attempt of not omitting any relevant constraints/variables.
As a consequence, redundancy is quite common in practical mathematical programming model
which makes the development of redundancy detection algorithms a crucial tool in order to obtain
efficient solutions to real-life problems. Indeed, redundancy detection algorithms apply to several
branches of mathematical programming including linear, integer, nonlinear, and stochastic
fractional programming, which have become one of the main planning tools in engineering,
business, finance and economics among other disciplines (Bajalinov, 2003; Jeeva et al., 2004;
Charles et al., 2010). In particular, fractional programming and stochastic programming have been
used to model problems related to investment portfolio, strategic investments, risk management,
production planning and scheduling, supply chain optimization, manpower planning, electricity
generation capacity, energy planning, environmental and pollution control, telecommunications
and so on (Wallace and Ziemba, 2005; Zarif et al., 2013; Ahmed et al., 2014).

We include below a short excursus of the main approaches that have been proposed to
identify and remove redundant constraints/variables in mathematical programming, from LP to
stochastic fractional programming.

In the mid 1970’s, Gal (1975) presented a note on redundancy and linear parametric
programming, followed by Gal and Laberling (1977), who presented an algorithm to identify
redundant objective functions in a linear vector maximization problem. Later on, Uthariaraj et al.
(1999), Rhymend et al. (1999) and Jacob et al. (2002) proposed algorithms to identify a priori
redundant constraints when solving LP problems.

Fractional programming has been studied by many researchers, including Charnes and
Cooper (1962), Schaible (1981), Pal and Basu (1995), and Pal et al. (2003), among others.
Fractional programming deals with the optimization of one or more ratios of functions subject to



constraints. Each objective function takes the form of a ratio whose numerator and denominator
are both linear. Linear fractional objectives have many applications in financial planning.

In the mid-1950’s, Dantzig (1955) and Charnes and Cooper (1959) first proposed to use
stochastic programming to deal with uncertainty in optimization problems. Uncertainty in
stochastic programming is usually characterized by the fact that the parameters have known
probability distributions. The literature on this topic has been increasingly enriched by the
contributions of different disciplines such as operations research and probability theory (Birge,
1995; Wets, 1996; Dupacova, 2002; Birge and Louveaux, 2011). A classification of stochastic
programming problems is given by Liu (1999), who introduces the following three groups: (1) the
expected value models; (2) Chance-Constrained Programming (CCP) models (Charnes and
Cooper, 1959, 1963; Henrion, 2007; Henrion and Strugarek, 2008; Huang, 2007; Yang and Wen,
2005; Pagnoncelli, 2009); and (3) dependent-chance programming models (Liu, 1997; Liu, 2006).

Recently, some more results have been achieved in stochastic fractional programming.
Charles and Dutta (2006) proposed an algorithm that identifies redundant objective functions in
multi-objective stochastic fractional programming problems, while Charles et al. (2010) provided
an algorithm that identifies redundant objective function(s) and redundant constraint(s)
simultaneously in multi-objective nonlinear stochastic fractional programming problems.

Despite the large literature existing on linear and nonlinear stochastic fractional
programming, not much attention has been paid to fuzzy stochastic (FS) fractional programming
problems.

Ever since its introduction by Zadeh (1965), fuzzy set theory has been developing very
rapidly and has been applied to a wide variety of real problems. In particular, the possibility theory
described by Zadeh (1978) and herein related to fuzzy sets and systems provides a homogeneous
framework for the representation of both imprecise and uncertain information. This aspect has
been subsequently developed by many researchers; see, among others, Dubois and Prade (1988a,
1988b).

A parallel approach to fuzziness, often considered, is represented by randomness. Indeed,
in many complex real-world problems, decision makers (DMs) may encounter a hybrid uncertain
environment where fuzziness coexists with randomness. The observed values of data in real-world
situations are often inexact, incomplete, vague, ambiguous, or imprecise. Several researchers have

combined fuzziness and randomness to model uncertainty. As a consequence, many notions such



as those of the probability of fuzzy events (Zadeh, 1978), linguistic probabilities (Dubois and
Prade, 1980), fuzzy random (FR) variables (Kwakernaak, 1978, 1979; Liu, 2004) and probabilistic
sets (Hirota, 1981) have been introduced in the literature. In particular, the concept of a FR variable
provides a useful tool to model phenomena where both fuzziness and randomness play a role
simultaneously.

In this paper, we consider situations where the parameters are estimated by fuzzy variables
whose means are Gaussian random variables and, hence, can be represented by FR variables. We
build on the redundancy detection algorithms defined by Charles and Dutta (2006) and Charles et
al. (2010) for stochastic fractional programming problems to develop an algorithm that allows to
identify and remove redundant objective functions in multi-objective linear FS fractional
programming problems. We introduce a probabilistic-possibilistic constrained version of multi-
objective fractional programming and rely on the properties of FR variables to operate the
necessary conversions of constraints and objective functions to deterministic forms. Hence, the
number of linear FS fractional objective functions is reduced by transforming them in
probabilistic-possibilistic constraints which are defined by predetermined confidence levels.

The remainder of the paper is organized as follows. In Section 2, we review some basic
concepts and definitions related to fuzzy variables and FR variables while, in Section 3, we
describe the generic multi-objective fractional programming model and its FS version introducing
the probabilistic-possibilistic model. In Section 4, we describe how to obtain the deterministic
equivalents of probabilistic-possibilistic constraints and convert objective functions into
deterministic constraints. In Section 5, we present the proposed redundancy detection algorithm.
In Section 6, we present two numerical examples demonstrating the applicability and the efficacy
of the proposed redundancy detection algorithm. Finally, we present our conclusions in Section 7.

2. Background
Definition 1: Let X be a universal set and Ac X . The fuzzy subset A of X is defined by means

of a membership function x;: X —>[0, 1] assigning to each element X € X a real number

5 (X) €[0,1] which measures the degree of membership of x in A.

Definition 2 (Dubois and Prade, 1980): A fuzzy interval of L-R type is a tuple of the form

A=(a,m m,pB) ., Where a,B,m,m, are non-negative real values, whose membership

LR’

function is defined as follows:



m-x) .
L( ! j ifm-a<x<m
a

uz (X) =41, ifm <x<m, (1)

R(X_ﬂmz} ifm,<x<m,+p

The values « and g are the left and right spreads, respectively, while m, and m, are the
mean values of A . The letters L and R stand for non-increasing continuous functions of [0, 1]
into [0,1] such that L(0)=R(0)=1 and L(1)=R(1) =0, called the left and right functions,
respectively.

Henceforth, we will assume that

L(x) =R(x) = 1-x, 0<x<1
- o, otherwise.

If, in particular, m =m, =m, the fuzzy interval of L-R type A= (a,m,B) , =(a,m,B) is
also called (triangular) fuzzy number.
Definition 3: Let A be a fuzzy interval of L-R type. The support of A is the crisp set
supp(A) ={X|ﬂ;\ (x) > 0}. The » -cut of A , denoted by A, is the crisp set A, ={x| u;(x) >y}

As shown in Figure 1, the »-cut of a L-R fuzzy interval A=(a,m,,m,,p) ., Where
ye [0, 1], is a closed interval defined as follows:

A ={x] () = 73 = AL A= [m, — a2 (p), m, + RG],

where A- and AT are the left and right extreme points, respectively.

| Insert Figure 1 Here |

Definition 4 (Fuzzy Arithmetic) (Dubois and Prade, 1980): Let A=(a,m,ﬂ)LR and

B =(a, fﬁﬁ)m be two positive fuzzy numbers. Then:

Addition: (o, M, B) , +(2,M,B)  =(c+am+m,p+B)

Subtraction:(oc,m,B)LR —(&,rﬁ,E)LR =(a+§,m —nT,B+6c)LR

Definition 5 (Extension Principle) (Zimmermann, 1996): Assume that X is the Cartesian product



of r universes (r is a real number), i.e. X = X, x...x X _, and that Al Ar are r fuzzy subsets of

extension principle enables us to define a fuzzy subset B of Y by using the following membership

function:

I L U SOS H

0, otherwise

where f *denotes the inverse of f .

Dubois and Prade (1980) modified the extension principle and used the algebraic sum and

product instead of sup and min, respectively.

Definition 6: A fuzzy variable & is a mapping from an abstract space onto the real line.

Definition 7 (Zadeh, 1978; Zimmermann, 1996): Let (®, P (®), Pos ) be a possibility space where
O is a non-empty set involving all possible events, and P(@) is the power set of ®. For every

A e P(®), there is a non-negative number Pos (A) , So-called a possibility measure, satisfying the

following axioms:
(i) Pos(d) =0, Pos(®)=1;

(i)  forevery A, Be P(®), Ac B implies Pos(A)<Pos(B) ;

(iii)  for every subset {A,:weW}c P(®), Pos(U, A,) = Sup,Pos(A,).

The elements of P(®) are also called fuzzy events.

Definition 8: Let & be a fuzzy variable on the possibility space (®,P (©),Pos), u.:%—[0,1]
be the membership function of & and r be a real number. The possibility of the fuzzy event {&=>r}

is given by Pos{&>r} =Sup u,(t).
t>r

Definition 9 (Liu and Liu, 2003): A FR variable is a random variable & on a probability space
(Q, A, Pr) whose values are fuzzy numbers.

Each value &(w) (with we Q) taken by a FR variable has a membership ;. In

particular, a FR variable of L - R type takes values in the set of all fuzzy numbers of L - R type.



In the following, we will consider only this kind of FR variables. The associated membership

functions are described below.

L(M . x<m(w),

a
ﬂg((u)(x): 1 x=m(w),
R(m  xzm(w).

B

where m(w) is the normally distributed random variable.
Figure 2 shows a triangular FR variable, that is, a triangular fuzzy variable whose mean

value is a normally-distributed random variable (M ~ N(u,67)).

| Insert Figure 2 Here |

Proposition 1 (Liu, 2004): Let& be a FR vector and, for every j=12,..,n, let g be a real-

valued continuous function. Then, the possibility Posig;(&()) <0, j =1,..,n} is a random

variable.

Proposition 2 (Sakawa, 1993): Let Kl and ,&2 be two independent fuzzy numbers with continuous
membership functions. For a given confidence level y € [0, 1], we have:

Pos{&z&}z;/ S AN A,
where, for 1=1,2, A, and A" are the left and right extreme points of the y-cut [Aﬁy, A,'fy],
respectively. Pos{,&l > ,&2} represents the degree of possibility that A > A, .

3. Multi-objective fuzzy stochastic fractional programming
In this section we develop an imprecise fractional programming formulation to deal with the

randomness of fuzzy parameters in a possibility space (G), P(®), Pos) . First, we define a generic

multi-objective fractional programming model. Hence, we move to a multi-objective FS fractional

programming setting introducing the Probability-Possibility Constrained Programming (PPCP)

model. Note that, in the following, we will also use prob-pos to shorten Probability-Possibility.
The generic multi-objective fractional programming model is defined as follows:



d,x, + 5 _ d, X, + 5, d.X; + 8,
j=l j=1 j=1
s.t.
Yalx <b¥, r=12,.5, (2)
j=1

where
e &.d;,a, B, &% and b,” are FR variables for every i =1,..,m, every j=1,..,n and every
r=1..,s;

e a® and b”are deterministic parameters for every j=1..,n and every I =1,...,s.

Model (2) can be rewritten as a multi-objective FS fractional programming problem, which
we will refer to as PPCP model, as follows:

Max [4, Ay, - - A |

s.t.

M-
Ol
'_><

+
Qnr

PriPos| 2 ——> 1 [>6, |>y;,i=12,..,m,
20X+
L L= (3)
Pr| Pos Zalfjl)xjsb;r“)}zur}z p, r=12..,s,
=
>a@x, <b®, r=12 .5
=
X;20, j=12,..n
where
¢.dy, ap, & and b" are FR variables for everyi=1,..,m every j=1,..,N and every



r=1..,5:

o a® and b® are deterministic parameters for every j=1..,n and every I =1,...;$;

e & and y, with i=L...m, and u, and p,, with r=12,..,S, are the predetermined

confidence levels.

Note that:

S :{x = (X, X)) | VF =15, jZ_l:ér‘j”xj <b® and jz_llaff)xj <b®,Vj=1..,n,x > 0}

is a non-empty, convex and compact subset of R".
Recall that Pos[-] denotes the possibility of the event described in [-], while Pr[—] denotes

the probability of the event in [-].

4. Deterministic equivalents and conversions

4.1. Deterministic equivalents of probabilistic-possibilistic constraints

One way to solve the prob-pos constrained multi-objective FS fractional programming problem
described by model (3), i.e., the PPCP model, is to convert its constraints into their respective crisp

equivalents.

Forevery j=1..,n and every I=1,...,S, the variable &(" appearing in the second set of

constraints of PPCP model (3) is assumed to be a FR variable. Thus, g can be written as
a)) :(a a ﬁ,.) . where, for every j=1l..nandevery r=1..S, ", «, and g, stand for

i i P )

the center value, the left tail and the right tail, respectively. In particular, 8’ ~ N(a(l) a?), where

rj 1

al denotes the mean and afj the variance.
Theorem 1: Let &, —(av, a7, a#) _, with ] =1,..,n, and b = (b, b, bﬁ)LR be FR numbers such

that af ~N(a;,o%) and b™~N(b,6%)have a normal distribution. Let u and pbe two

predetermined confidence levels. The following are equivalent:

(b) Zn:(ai — L (Waf)x; + @7 (p), /Zn‘,o*fo? +62 <b+R(u)b”
= j=1

10



Proof: By Definition 2, we can assume the FR numbers aj with | =
characterized, respectively, by the following membership functions:
Forevery | =1..,n,
ay—t) .
L{ ! J ifal —af <t<af
a“

J

ﬂg.(t):
J t_
R( y J ifal <t<af +aﬁ
a;
and
L(bb;t} if b —b” <t<b"
,Ub:(t): (pn
R( _ ) ifb" <t<b™+b”
bﬂ

n
Using the extension principle (see Definition 5), the fuzzy number ZEJ X,

j=l

for every j=1,...,n, can be associated with the following membership function:
n
2.a7x; —t
j=1 RN m o a C m
L =—— | if D alx; - aix; <t< Y afx,
Zaqx_ j=1 =1 j=1
17
j=1
Mo (t)= )
axJ m
= t—Zlaj Xj | | .
j= - m m B
RI—=—— | if > alx; <t<> al'x; + > alx;
a’x. j=1 j=1 j=1
17
j=1

Therefore, Za X ; corresponds to the triple [Za X za X Za X, j

j=1

1..,n, and b to be

(4)

(5)

, Where x; >0
(6)

, While the

LR

n —_—
following intervals describe the u -cut (see Definition 3) of Zzij X; and b, respectively:

j=1

11

l | Saps LSt St R0 S al |



{(E)L , (E)T =[b" - L(u)b?, b" + R ()b’ ]

n o~ =
By Proposition 2, the constraint Pr{Po {ZEJ X Sb}ZU}Z Pis equivalent to the

j=1

following:
(zajxjj g(~)f]> 0

which, in turn, is equivalent to:

P

-

Pr| b™ + R (u)b” > Zn:(a;‘ - L‘l(u)a;")xj} > p.
L i1
Letting h = Z(a}” -~ L’l(u)a‘j")xj —b™ =R (u)b”, we have
j=1
Pr[ﬁ < O] >p.

Obviously, h also has a normal distribution with:
p-=E(M) =Y (a,-L*Was Jx, -b-R*Wb” and  62= 02 +6%.
j=1 j

Finally, we claim that:

Pr[h<0]>p & E[ ]+CD (p)o. <0

where (D'l is the inverse of the CDF.

I:rf;i 0]=P{H—E~[ﬁ] , —Eﬁﬁ]}zpr[E[ﬁ]—ﬁ ) E[ﬁ]}@f[ﬁ]}

From which it follows that:

: : ~ L]
Pr[hsO]Zp = 1-Pr[h20]2p = Pr[hzo]ﬂ—p = @{0—131—p =

h

E[h]scp-la—p) o E[ ]<cp-1(1 p)o. @E[] d*(1-p)o. <0 = E[ ]+c1> (p)o, <

Oy

12



Therefore, Pr[ﬁ < 0] > p is equivalent to

2 (a; - LH(way)x, +®1(9)W£b+ R (u)b” . O
j=1 =1

4.2. Conversion of objective functions into deterministic constraints

In this section, we use Proposition 2 and Theorem 1 to obtain a deterministic programming version
of model (3). The main feature of the model is that it takes into account the probability distribution
of the objective functions by maximizing the lower allowable limit of the objective functions
subject to chance constraints where both the numerator and denominator coefficients are FR
variables. As in Subsection 4.1, we will work with the PPCP model (3), that is:

Max [4, 4, .. .4, ]
S.t.

ZE,—X, +a,
Pr{Pos| 22— >4 |>5, |25, i=12,..,m,

iXj T P
i Z o ™
Pr| Pos Z;zi(jl)xj gﬁnf”}ZUrlz p,, r=12,..,s,
NE

n
D aPx; <b®?, r=12.s,
=1

X;20, j=12,..,n,

where
o ¢, dy, Ez,ﬁi,aﬁg” and b"” are FR variables for everyi=1..,M, every j=1,..,N and every
r=1..,s;

e a® and b are deterministic parameters for every j=1,..,n and every I =1,..,;S.

More precisely, for every i=1..,M and every j=1..,Nn, let

Eij :(Ci?’ CiT’CiJ'ﬂ)LR’ d:ij :(di;l' di;n’di,jB)LR’ 0:‘i :(aia’ aim’aiﬁ)LR' ﬁ_), :(ﬂia’ﬁim’ﬁiﬂ)ﬁ’

13



m

where ¢, di', o« and pg" are normally distributed, that is, Cj : N(c”,acu)

ij ! i
dj' : N (d.po'd.,) o' N (ai’o-ii) andf" 1 N (ﬂi,O'f;,) Hence, c,, e (resp. d;, 3 ) and

oo (resp. oy, o}, ) are the mean and the variance of ¢, " (resp. d, "), respectively.

cij ! ij

Zc“xj+a

For every i=1..,M, the unknown parameter A, which is less than or equal to 11—,

Zdu i +A

satisfies the following inequality:

ZcuxJ +a A(Zd” J+EJ20.

By Proposition 2, the ith inequality of the first set of constraints in model (7) is equivalent

to the following inequality:
PO{ZCUXﬁa A(Zd” J ]>O}>5 =N
{Z( 8)d)x; + B = LH(5 )ﬁf}i(cgﬂm1(5i)c§)ijaim+R1(§i)aiﬂ

i=L

Forevery 1=1,..,m et

fi =4 [i(d.;n -L7(5, )di?)xj +B" —L7(5, )ﬁia}_Z(Ci}n +R7(5, )cijﬂ)xj —a" =R7(5,)af

j=1 j=1

The expected value and variance of f are obtained as follows:

j=1 j=1

e[ 1| ] Soy LA 0a)s, L0 |- S0 4R ), - R (0)er |

(dy = L*(8)d5 )%, + 5 — Ll(cyi)ﬁia}_zn:(cij +R7(8)ef)x; —a; —R7(8)af

j=1

n

]
L” (dr - (5)dg) +/z;“—L‘l(fx)/z“HZ(ca”+R‘1(5i)c£)xj +ai””+R‘1(5i)afﬂ

j=1
55+ Aoy, +Za X +0o?

pi cij™j

14



Reasoning as in the proof of Theorem 1 (see Claim at the end of the proof), we have:
Prlf<0]>y o E[f|+@"()o; <0.

Thus, the ith prob-pos constraint is converted into the following:

P{Pos{iﬁJXﬁi—&{Zﬂ:QXﬁ;1 0}>5]>y,© Pr[f <0:|>7/I =

n

ﬂ[ (dij—L-l(mdﬁ)xj+ﬁi—r1((z)ﬂf}_2(cu+R‘1(5i>cif)xj

=1

+cD‘1(yi)\/ﬂ,fZa§ijxf+/l,zaﬂ,+Zac” 2o —a;—R(8)al <0.
j-1

5. Redundancy detection algorithm

In this section, we build on the algorithms proposed by Charles et al. (2006, 2010), we present an
algorithm to identify redundant fractional objective functions in multi-objective linear FS
fractional programming problems. First, we need to recall the following definitions (Charles and
Dutta, 2006; Charles et al., 2010).

Definition 10:

Let 4 be the following scalar:

Zc“xj+5
A=min< 4 §‘~—||:1,2,...,mand (X;s X, ..., X, ) is the unit vector of R" ;.
J

j=1

_hll

The decision space relative to all the prob-pos constrained objective functions is defined by the

following set:

z{i(d” - Ll(@)df)xi} J

j=1

Xe

(c; +R™(8)c))x, +d>1(;/i)\//12iadux] + A0, +ZacuxJ +07,
j=1

<o +RY(8)a/ -A(B-L"(3)B"), i=12,...m, x;20for j=1,2,..,n.

|
[N

For W=1,2,...,m, the decision space relative to all the prob-pos constrained objective functions

except the w-th one is defined as follows:

s o /I{Zn:(dij - Ll(é})di?)xj}—zn:(cij + Rfl(é})cijﬂ)xj +® (1) \//1 Zadu i +/120' +Z:UC”Xl +o,
=49X€E j=1

w =1

<o +R*(8)a/ —A(B-L*(8)B) i=12,...m i=w, X 20 forj=12,.,n

15



Definition 11: Forevery W=1, 2, ..., M the constrained form of the wth objective function is given

ﬁ{_znl:(dwj — L"1(5W)dv0v’j)xj —2(% + R_l(é'w)cv/jj)xj +CD‘1(;/W)\//IZan:U§WjX? +ﬂ,20'ﬂw + ZGCWJXJ +o2, <
j= = j=
a, +R*(8,)al - A(B,-L(3,)Bs)

This constrained form is called redundant in model (3) if S° = Sy.

It follows from Definition 11 that the constrained form of the wth objective function is

redundant if and only if, for all xS, we have:

SRR T IS YO CARAES

=1 j=1

- 8)
cpl(yw)\/%;odw,x + A0, Zacwjxjmaw <a,+R*(3,)af - A(B,-L(5,)B)
j=

Henceforth, we let:

n

s.(X) = &, + RN(S,)al — A(B. — L(5,) %) 4 [

(d, - Ll(aw)d;;j)xj}

Zn:(cwj + R‘l(5w)c x - _l(yw)\/i Z%W,XJ +A%c%, +ZUCW,X, +02,
=1 =1
and
S, =min{s,(x)|xeS,}

Definition 12: The constrained form of the wth objective function (8) is redundant in model (3) if
5, >0.
Definition 13: The constrained form of the wth objective function (8) is strongly redundant in
model (3) if S, > 0. Note that the constraint can be redundant without being strongly redundant.
Definition 14: The constrained form of the wth objective function (8) is weakly redundant in model
(3)ifs, =0.

Using sequential LP, we start by linearizing the constrained version of the fractional
objective function as defined in Section 4. In order to do so, we consider the constrained form of

the ith fractional objective function (see Definition 11), with i =1, 2, ..., m, rewritten as follows:
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=1
=1

(dy - |_-1(5i)o|g‘)x,}—Z(cij + RSl X, +

j=1

f.(X) = /1{

j=1

+q>1(7i)\//12_zn:a§ux§+f +ZO'C”XJ+O' —(oy + R )+ (B - LH5) 7)< 0

Using Taylor’s Formula for a function of n variables, we have:
i) = fi,(xX)+ Vi (x) - (x=x")" <0
where vf,(x") is the gradient row vector of f,(x) at X =(,1,...,1).

Since,

n n

100 = 3o, - 000 )| - S, -t

+®%anzqm;f Zamur—@ﬁR%@mﬂ+AA—rmmwﬁ

and, forevery j=1 2,..,n, the jth coordinate of the gradient vector vf.(x") is given by

2
A (Tdu + 0'CIJ

n
2 2 2 2
\//1 Zadij + A0y, +ZUC“ +o2
j=1

() A(dy —LH@)di )= (¢ +RH(@S)e) )+ D7 (1)

we have:

VE(X) - (x=x)" =

of. .. of . of . T
= =L — I (x -1, x,-1,...,x —1) =
(éxl (x), ox, (x), '3 ] J (X1 X, Xq )

=1
j=1

\ Zn:ﬂzagij + ano'czu
_’{ (dij - Ll(@)di?)}’z“(cij + Rfl(@)cijﬂ)_qyl(%) = 1=
j=1 j=1 \//Atzgo-jij +/120123i +Zo-cu +G
j=

z GduXJ+Z Ojj J

j=1

>

(dij - Ll(é‘i)di(jx)xj:|_2(cij + Ril(é‘i)cif)xj +¢)71(7i)
= \//1220'5“ + /120; + ZGCU +02
i1

and hence,
fL(x) = f,(x) + Vf,(x)- (x—x)" = (9)
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n 2ol + o2
(c; + R™MG)cl X, + () Op 7 T

n n
i=1 2 2 2 2 2 2
\//1 E Oy + A0, + E O + 0
i=1

= ;{ ” (dij - L‘l(@)di?)xj}—

1

i=1

n n
2 __2 2
D Houx + D 0aX,
= =

-1
+07 () - -
2 2 2 __2 2 2
\//1 Zadij + o, +ZO'C”- +0;
=1 =1

—(@ + R B )+ A8 - L5 B7)<0

We can rewrite inequality (9), for every 1 =1, 2, ..., m, as follows:
f.00 < (e + R (S)ea? )= A5, - L (5)87),
where X = (X, X, ..., X,), with x, >0, forevery j=12,..,n.

When i ranges from 1 to m, inequality (9) gives place to a system of inequalities that can be

interpreted in matrix form as follows:
F-x<a-p

where F e R™" and o, p e R™ are defined by:
a=(a+RYS)L ..., a0 + RIS, )al)

B=(B— LGB B~ (50 BE)-
By adding slack variables to the constraints form of the m objective functions, pre-
multiplying by the inverse of an appropriate basis and redefining the variables (both slacks and

structural variables) as x }'® (or) x ; according to their status (NB for non-basic, and B for basic),

we obtain the following equivalence system:
(Fe)* 1 ]KNBT =
where x"® = (x",...,x"® ) and x® = (xZ,...,x ) are such thatx!® >0 for every j=1,2, ... Ky
and x® >0 forevery j=12,..Kk;.

The matrix (IENB )_l is usually referred to as the Contracted Simplex Tableau (Dantzig,
1963). Let ¢, denote the I] th element of the matrix (IENB)_I. Also, let m be the “updated right

hand side”, that is, (IENB )71 (a—4B).
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Theorem 2 (Charles et al., 2006; 2010): A constrained form of the wth objective function is

redundant if and only if its associated slack variable s,, has the property s, = x* in a basic solution

where o, <0, forevery j=12,..,n and n >0,

n
Proof: If: In a basic solution, X® =7, — D" @;X; . Since in any feasible solution the value of x ®
j=1
will be at least zero, the sum is at least zero and, hence, s, = x? >7, >0. Therefore, S, 20.
Only If: Let us consider the tth row of the tableau as the objective function for the sequential LP

s, =min{s, (x)|xeS,}. If §, >0, it follows that in the optimal solution ¢, <0 for all

J=12,..,n with 77, >0. Since this optimal solution is a feasible extreme pointof S, it s a basic

feasible solution for the original set of constrained forms of the objective functions. O

Note that, since in the theorem above S, =7, , the constrained form of the wth objective

function is strongly redundant if 7, >0 and weakly redundant if 77, =0.

The proposed redundancy detection algorithm is composed of seven steps as depicted in

Figure 3:

| Insert Figure 3 Here

1. Convert the FS fractional objective functions into constraints.
2. By using sequential LP (SLP), linearize the constrained form of the objective functions.
3. A matrix of intercept is constructed with decision and slack variables as rows and columns,

respectively. This matrix is of ordermxn .

If n, 20, then

0, - (ai+R’1(5i)aiﬂ)—_/1(ﬂi—L’l(@)ﬁ’ia); F20:1=12.,m; j=12,.,n

F,; denotes the ij th element of the matrix F

Else

eji _ (ai +R71(é‘i)aiﬂ)—_ﬂ«(ﬂi _Lfl(é‘i)ﬁia); If” <0: i :1’ 2' wyM: J :1,2’“_’n

F,; denotes the ij th element of the matrix F
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4. Identify the pivot element in each row.

If o, +R_1(§i )aiﬂ <0, then

v, =max; {6, |,

Else

¥, =min, {Hji } , for all j while the objective is maximum, vice versa.

5. Score out the row and column corresponding to the entering and leaving variables. If a column
has more than one maximum/minimum, score out those rows also.

6. Remove these redundant constrained forms of fractional objective functions from the original
model.

7. Solve the reduced multi-objective stochastic fractional programming problem to get the
optimal solution with any mathematical programming solver.

6. Numerical Examples

In this section, two numerical examples (Examples 1 and 2) are presented to both demonstrate the

applicability and exhibit the efficacy of the proposed redundancy algorithm for FS multi-objective

fractional programming problems.

6.1 Example 1
" { Gt X 4 Gyt S, + }
dllxl + d12X2 + 1 d21X1 + d22X2 + 2

s.t.

- - = 10
PF[POS[EX1+§2XZSbJZu:|Zp (10)
S5X, +2X, <10

X, X, 20

where o, =a,=0, B =p,=1 and the confidence levels u and p are given by u=0.5 and
p=0.90.

In Example 1, we consider two objectives, where all the coefficients are assumed to be FR
numbers. Each of the FR coefficients has a symmetrical triangular membership function, which is

a special case of a trapezoidal membership function. In fact, if in Eq. (1) we let o = S, then the
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triangular fuzzy number is a symmetrical triangular fuzzy number. Hence, the membership

functions for the coefficients in the example can be represented by pairs of the form (m, « ), where

m: N(U,O'rf,) and (m,«)is a symmetrical triangular fuzzy number. Note that M is the center

and « is the spread. Table 1 provides the data used in Example 1.

| Insert Table 1 Here

The deterministic equivalent of the constraint 6?1X1 +52x , < b is the following:

2X, +3X, +1.28\/x 2+ x> +1<7

The deterministic equivalent of the constrained form of the fractional objective functions is
described below. This description is based on the confidence levels y,, 7,, 6, and 6,, that appear

in the constrained form of the objective functions (i.e. the first set of constraints of model (3)),
defined by:

7,=0.10, 7,=0.90 and &, =5, =0.5.

6X, + 3%, — 4, (5% +2x%, +1) + 1.28\/(2/112 +2)x; + (A7 +1)x 20, (11)

16X, +11x, — A, (X, + X, +1) —1.28\//122x12 + X+ X2+ %5 >0, (12)

Let A=min{1.125,9}=1.125 at (x,,x,)=(1,1) from equations (11)-(12). Therefore,
inequalities (11)-(12) reduce to (13)-(14):

0.375x, +0.750x, + 1.28\/4.531X12 +2.266x; >1.125, (13)

14.875x, +9.875x, —1.28\/2.266X12 +2.266x. >1.125. (14)

Using the inequality (9) and SLP (Charles and Dutta, 2003, 2006; Charles et al., 2010), the
following linear constraints are obtained:

2.6, +1.863x, >1.125,
13.513, +8.513x, >1.125

Insert Table 2 Here

By using the proposed algorithm, it can be concluded from Table 2 that the second
objective function is strongly redundant. Therefore, the problem can be solved by removing the

second objective function from the original problem. The bi-objective FS fractional programming
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problem reduces to the following problem:

Max 0904,
S.t.

6X, +3X, — 4, (5% +2X, +1) +1.28\/(2212 +2)x; + (A7 +1)% 20,

(15)
2%, +3X, +1.28\X; + X; +1<7,
5X, +2x, <10,
X, X, 2 0.
The solution is obtained as follows: x, =1.547, x, =0.000 and 4, =2.384.
6.2 Example 2
Let us consider the previous example along with a third objective function. That is:
Maxl:_@lxl—i_(;:iLZXZ +O:iL §21X1+%_:_22X2 +0:£? §3lxl+§32x2 +(§~3
di X +d,X, + B Ay X +d,X, + 5, Ay X +d3,X, + S,
s.t.
(16)

Pr[Pos[zﬁlx1 +aX, < lﬂ > u} >p
5x, +2x, <10
X, X, 20

Let the confidence levels y,, 7,, 75, J;, 0, and J,, that appear in the constrained form of
the objective functions (i.e. the first set of constraints of model (3)), be given by:

7, =0.70, y,=0.90, 7, =0.40 and &, =5, =5, =05.

| Insert Table 3 Here |

The deterministic equivalent of the constrained form of the fractional objective functions

is given below:
5X, +2X, — A, (5%, +2X, +1) — 0.52\/(2,112 +2)x; +( A7 +1)% 20, (17)
16X, +11x, — A, (X, + X, +1) —1.28\//122x12 + X2+ X+ %5 >0. (18)
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11X, +13%, — A (5%, +2%, +1) +0.25222%2 + A2x% + 2x2 + X2 > 4 (19)

Let A=min{0.875,9,2.5} =0.875 at (x,,x,)=(1,1) from equations (17)-(19). Therefore,
inequalities (17)-(19) are converted to (20)-(22):

0.625X, +0.25X, +1.28,/3.531x? +1.766x% > 0.875, (20)
15.125x, +10.125x, —1.28,/1.766x? +1.766X? > 0.875, (21)
6.625x, +11.25x, +0.25,/3.531x% +1.766x? > 4.875. (22)

By using SLP (Charles and Dutta, 2003, 2006; Charles et al., 2010), the following linear

constraints are obtained:

2.580x, +1.232x, > 0.875,

13.299x, +8.424x, > 0.875,
7.009x, +11.442x, > 4.875,

Insert Table 4 Here

By using the proposed algorithm, from the Table 4 it can be concluded that the second
objective function is strongly redundant. Therefore, the problem is solved by removing the second
objective function from the original problem. The tri-objective FS fractional programming
problem can be converted into the following problem:

Max 0.304, +0.604,

5X, + 2%, — 4 (5%, + 2%, +1) +1.28,/(247 +2) ¢ + (47 +1) ¢ >0,

16X, +11x, — A, (X, + X, +1) —1.28\//122x12 + X2+ X2+ x5 >0,

11, +13%, — A, (5%, + 2, +1) + 0.25222%% + A2x2 + 2x2 + X2 > 4, (23)

2%, +3X, +1.28\X; + X; +1<7,

5x, +2x, <10,

X, X, 2 0.
The solution is obtained as follows: x, =0.000, x, =1.547, 4, =1.503 and A, =4.444.
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7. Conclusion
We considered the redundancy problem in a multi-objective linear FS fractional programming
setting. Detecting and, consequently, eliminating redundant objective functions and/or constraints
from the system under analysis is the key to avoid unnecessary calculations and reduce the
computational complexity of the associated optimization algorithm.

Our analysis has focused on the fuzzy component characterizing many of the real-life
situations where stochastic fractional programming can be applied and deliver significant results.

Despite the considerable literature on linear and nonlinear stochastic fractional
programming, not much attention has been paid so far to FS fractional programming problems.
The present paper shades some light in this direction developing an algorithm that allows to
simultaneously identify redundant objective functions and redundant constraints in multi-objective
linear FS fractional programming problems. More precisely, the proposed algorithm reduces the
number of linear fuzzy fractional objective functions after transforming them in probabilistic-
possibilistic constraints with respect to predetermined confidence levels.

The applicability of the proposed algorithm has been demonstrated by means of two
numerical examples, where the existing redundancy has been removed and the number of linear

fractional objective functions has been reduced accordingly.
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Figure 1. y-cut of a generic L-R fuzzy number
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Figure 3. Redundancy detection algorithm

30



Table 1. FR parameters and variables for Example 1

Parameters Fl_JZZy
variables
a, (N@E,1)2)
a, (N(5,1).4)
b (N(G,1).4)
Cu (N(5.,2).2)
S (N(25,1),1)
= (N(15,1),2)
= (N(8.,1).4)
d, | NE22
d, | ae2
d, | MN@s.
d, | Ne»2
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Table 2. Matrix-of-intercept for Example 1

Slacks Objective

Decision function
variables S1 Sz value
()
X1 0.433 | 0.083 0.433
X2 0.604 | 0.132 0.604

32



Table 3. FR parameters and variables for Example 2

Parameters v:rlijékz)llles
S (N(4,2),2)
i (N(15,1),2)
C., (N(10,2),2)
Ca (N(9.,1).6)
d, | NE22
d, | ®NGY2
a, (N(6,1),4)
B, (N(2.1).2)
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Table 4. Matrix-of-intercept for Example 2

Slacks Objective
Decision function
i value
variables s S S5
()
X1 0.338 | 0.066 | 0.696 0.696
X2 0.710 | 0.104 | 0.426 0.710
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