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Abstract—The mobile market has taken huge leap in the last
two decades, re-defining the rules of communication, networking,
socializing and transactions among individuals and organizations.
Authentication based on verification of signature on mobile
devices, is slowly gaining popularity. Most online signature ver-
ification algorithms focus on computing the global Equal Error
Rate across all users for a dataset. In this work, contrary to such a
representation, it is shown that there are user-specific differences
on the combined features and user-specific differences on each
feature of the Equal Error Rate(EER) values. The experiments
to test the hypothesis is carried out on the two publicly available
dataset using the dynamic time warping algorithm. From the
experiments, it is observed that for the MCYT-100 dataset, which
yields an overall EER of 0.08, the range of user-specific EER is
between 0 and 0.27.

I. INTRODUCTION

With the rapid development of touch screen capabilities on
mobile devices, virtual transactions and the need to have secure
biometric authentication services have also increased. Along
with facial recognition, voice recognition, one of the biometric
modality that is gaining popularity recently is online signature
verification. Signatures have been used to authenticate individ-
uals for over centuries and is a legally accepted biometric trait
for authenticating an individual. The fundamental advantage of
the signature modality over other biometric modalities (like
face, fingerprints etc.) is that it gives the user the control to
change their signature in an event of a predicted impending
security attack. Signatures are personalized gesture patterns
within a finite space. There are two traditional approaches to
signature verification: online and offline systems. In an offline
system, the image attributes are matched for authenticating
an individual [1] while in an online system, dynamic features
like the x or y coordinates, pressure, azimuth etc. are used for
verification purposes.

In this work, it is shown through experiments that different
dynamic attributes of a signature contributes differently for
every user. The rest of paper is arranged as follows: Section II
details the background of online signature verification and the
dynamic time warping (DTW) algorithm, Section III method-
ology of the experiments, Section IV discusses the results of
the experiments and Section V consist the conclusions.

II. BACKGROUND

DTW-based online signature verification algorithms have
proved to be effective based on effective In this section,
different approaches of online signature verification systems
is discussed followed by the DTW-based approaches.

Fig. 1. A generic signature Verification algorithm

A. Online Signature Recognition

In an online signature verification system, the dynamic
features of a test signature is compared against one or a set
of genuine enrolled signatures to obtain a verification score
and decide whether the test signature is genuine or forged as
shown in Fig. 1. The dynamic features of a signature includes
the positional information (i.e. the x and y coordinates) and
the pressure information as temporal functions of the signing
process. Often additional features like the pen-up/pen-down
points, the azimuth or the inclination angle of signing are also
captured depending on the hardware used. A signature is often
represented as a stroke or a collection of strokes where each
stroke starts with a pen-down signal and ends with a pen-up
signal. One of the main challenges of any biometric based
verification system is that the recogntion process depends
heavily on the quality of the enrolment samples [2]. Quality
of enrolment is often measured through the ‘character’ and
‘fidelity’ of a signature [3]. The character refers to the general
characteristics of a signature represented by average speed,
average acceleration, length of the signature etc. The fidelity of
a signature represents the consistency with which an individual
can replicate own signature.

Online signature verification can be broadly divided into two
broad approaches, function-based and feature-based. Feature-



TABLE I
EER VALUES OF DIFFERENT DTW-BASED APPROACHED ON THE

MCYT-100 DATASET

Method EER Reference
Kholmatov et al. 0.09 [9]
Faundez-Zanuy 0.05 [10]

Muramatsu et al. 0.10 [11]
Maiorana et al. 0.05 [12]
Barkoula et al. 0.06 [13]
Sharma et al. 0.02 [14]

based approaches include converting the dynamic features into
a fixed length feature vector and then comparing them using
using histograms [4] or distance-based functions. Though
feature-based models are computationally inexpensive, the
function-based approaches like dynamic time warping and
hidden markov models [5] yield better accuracy as it gives
a better representation of the distribution of the original data.
Generative classifiers like Gaussian-mixture models as well
as discriminative classifiers like Support Vector Machines [6]
and multilayer neural networks [7] are used for classification
in these model-based approaches.

B. DTW based online signature verification

The DTW algorithm finds its earliest application in the
speech recognition algorithms where two varying lengths of
speech signals are matched against one another to get a
similarity score [8]. DTW has been used widely to solve the
signature verification problem for nearly a decade [9] [13].
TABLE I lists the performance of the different variations of
the DTW algorithm on the MCYT-100 dataset.

In [12], the authors propose a template protection scheme
using a transformation function and the DTW algorithm to
secure the privacy of the enrolled signatures. A local-based
feature approach is adopted in [15] to distinguish between a
genuine and forged signature within an authentication system.
A sparse implementation of the DTW algorithm was intro-
duced where the distance is computed on a select number
of extreme points of the signature trace in [16]. The sparse
implementation was improved in [17] using a string edit
distance function. Another variant of the DTW implementation
is introduced in [10], where the algorithm is amalgamated
with a vector quantizer and classified using neural networks.
Using the similar DTW-VQ strategy, authors in [14] propose
an enhanced mechanism to vote a binary cost matrix along the
warping path to account for the distortions between the two
compared signals.

III. METHODOLOGY

The proposed hypothesis is validated through a number of
experiments on 2 widely used datasets for online signature
verification.

A. The Hypothesis

As mentioned in II, there are number of proposed online
signature verification algorithms. As shown in TABLE I, all
the algorithms report a global EER value for the whole dataset.

Fig. 2. A genuine signature of user number 50 of the MCYT-100 dataset

Fig. 3. A genuine signature of user number 50 of the MCYT-100 dataset

Fig. 4. A skilled forged signature of user number 50 of the MCYT-100 dataset

EER values for online verification system forms the basis
for choosing a threshold based on the intersection point of
the false acceptance rate and the true acceptance rate for the
system. Having a common global threshold for a range of users
affects the performance of the verification system in real life
scenarios.

The hypothesis behind this work is that there are user-
specific differences on the combined features and user-specific
differences on each feature of the EER values. Experiments
show that different features in a signature contributes different
amount of information for different users. To test out hypothe-
sis, the normalized DTW score between every pair of genuine
signatures and also every pair of genuine and skilled forgery
signatures is computed for each user. The EER values are
computed for the whole feature matrix as one signal as well as
taking individual features as individual signals to demonstrate
the user-based variation within a dataset.

B. Feature Extraction

Each sample point of an individual signature(S) in the
dataset is represented by a set of positional (x, y) and pressure
p features. From these raw feature, a set of basic derived
features are obtained at each sample point. These include the
differences of x co-ordinate, y co-ordinate and the pressure
between consecutive points, as well as other derived features
angle, speed, velocity, acceleration etc.

For sample points i = 1, 2, 3, ...., n, where n is the total
number sample points, the basic derived feature are obtained
by:

δx(i) = x(i+ 1)− x(i), (1)



δy(i) = y(i+ 1)− y(i), (2)

δp(i) = p(i+ 1)− p(i). (3)

Hence, each sample point of a signature is represented by
a three dimensional feature vector fi = δx, δy, δp and
each signature S is represented by a feature matrix (FS =
f1, f2, ...., fn−1). Each feature matrix FS is further scaled to
have a zero mean and unit variance.

C. Dynamic Time Warping

Dynamic Time Warping is an algorithm to find the similarity
score and the path of alignment between a pair of time series
signal of varying lengths. For two feature matrices FA and FB

of lengths u and v respectively, a cost matrix C of dimension
uxv is obtained. The (uxv)th position of the cost matrix is
populated with the dissimilarity scores between the feature
matrices FA and FB by computing the Euclidean distance
between the uth sample point of FA and the vth sample point
of FB denoted by d(u, v).

One of the main aims of the DTW algorithm is to find an
optimal warping path [W = (a1, b1), (a2, b2), ..., (aWl

, bWl
)],

so that the distance along the warping path is minimized
subjected to the boundary conditions of monotonicity and
continuity with an anchored beginning [(a1, b1) = (1, 1)] and
anchored ending [(aWl

, bWl
) = (u, v)] of the cost matrix C.

The optimal minimization along the warping path is obtained
by the following recursion:

γ(u, v) = d(u, v) +min


γ(u, v − 1)

γ(u− 1, v − 1)

γ(u, v − 1),

(4)

where γ(u,v) is the cumulative distance upto the current
element. Since the length of the two feature matrices are
different, the cumulative distance score of the optimal warping
path is normalized over the length of the path (Wl).

D. Dataset for testing the Hypothesis

The two popularly available datasets that are used to test the
hypothesis are MCYT-100 [18] and SUSIG [19]. The MCYT-
100 dataset consists of 100 individuals with 50 signatures per
individual. For every user, there are 25 genuine samples and
25 skilled forgery samples. In the SUSIG dataset, there are
94 individuals with 20 genuine samples from two different
sessions and 10 skilled forgery samples. Both the dataset
contain the positional information (x and y coordinates) and
the pressure information of each user signature trace. The
temporal information in the SUSIG dataset has been ignored
for this work.

IV. DISUCSSIONS

For this work, only the positional and pressure features are
used for both the datasets. Fig. 2 and Fig. 3 shows 2 genuine
signatures of an user within the MCYT-100 dataset. It is
clearly evident that variations between the positional features
and pressure features for a genuine signature are minimal.

TABLE II
AVERAGE EER VALUES OF INDIVIDUAL DYNAMIC FEATURES OF THE

MCYT-100 DATASET AND THE SUSIG DATASET

Dataset X Y P Overall
MCYT-100 0.10 0.09 0.31 0.08

SUSIG 0.21 0.18 0.38 0.47

Since the warping path of the cost matrix is selected based
on the minimal cost, the resultant score obtained is extremely
low. If the positional features of the genuine signature is
compared to the positional features of the forged signature,
it can be seen here also the variations are minimal as the
forged signature is done by a skilled forger. It must also be
noted that between the x and y coordinate values, the y values
offer more discriminative information for this user than the x
values. This is mainly due to the orientation of the signature.
However, when the pressure attribute is compared, it can be
seen that there are minor variations between the 2 genuine
signatures but the variation is major between a genuine and
a forged signature. This highlights the importance of the
pressure attribute for any online signature verification method.
Even though the forged signature looks similar to the genuine
signature and the positional features bear minor variations, it
is the pressure attribute has the highest discrimination power
to distinguish between the genuine and forged signature.

A. User-based differences on the whole feature matrix

The overall EER for the DTW algorithm using only three
dynamic features is 0.08. Though is this lower than state-
of-art algorithms, in this work, it is highlighted that such a
global EER value is not enough to determine the threshold of
the verification system. As shown in Fig. 5, the user specific
EER values, and it can be observed the for certain users, the
EER is as low as 0 while the highest value is around 0.27.
This signifies that the quality and robustness of the signatures
of certain users are extremely high as compared to others.
Even in the SUSIG dataset as shown in Fig. 6, the variations
among the users are even larger with a range of 0 to 0.70
whereas the overall EER for the whole dataset is only 0.47.
Though EER is only an indicative representation, computing
the global EER across all users is an incorrect representation of
the performance and should not be used as a basis for setting
the threshold for a verification system.

B. User-based differences on individual features

On further investigation, at a feature-level, it is observed that
the different features have different levels of discrimination
power for different users. Table II shows the average EER
across all users for individual features for both the datasets.

Table III shows the extreme variations of a few selected
users of the MCYT-100 dataset. It can be observed that for
users like userID 19, an EER of 0 can be achieved only
with the x and y coordinate values whereas for users like
userID 33, the additional pressure information is needed to
achieve maximum accuracy. Again for users like userID 27
and 28, there is contribution of each of the dynamic features.



Fig. 5. EER distribution of individual users of the MCYT-100 dataset

Fig. 6. EER distribution of individual users of the SUSIG dataset

Hence, it can be concluded that the dynamic features of a
signature contribute different varying amount of information
for different users.

User-specific threshold are being proposed in recent times
[20], to have a robust solution, along with the threshold,
the contribution of each feature should be user-specific and
adaptive. The discriminative power of each feature varies
from user to user and contributes to the biometric trait of an
individual. Hence for a plausible real life solution, an adaptive
weighting of features is required as opposed to having an equal
weighting for each of features as advocated by all the proposed
algorithms.

V. CONCLUSIONS

The hypothesis proposed that different dynamic features
contribute differently for each user is tested using the DTW
algorithm on two publicly available datasets. Though varia-
tions of the DTW algorithm seem to achieve good results
on datasets, for real-life implementation of an authentication
engine, these results are hard to replicate as a global EER value
irrespective of users is not indicative of the performance of
the algorithm. Experiments reveal that there are user-specific
differences in the EER values at a global level as well as at

TABLE III
EER VALUES OF INDIVIDUAL FEATURES OF SELECTED USERS OF THE

MCYT-100 DATASET

UserID X Y P Overall
19 0 0 0.10 0
33 0.04 0.03 0.14 0
67 0.003 0 0.12 0
51 0.25 0.31 0.47 0.09
27 0.24 0.31 0.45 0.18
28 0.45 0.30 0.41 0.28

feature level. Having equal contribution of dynamic features
in the feature matrix does not work for all users. In future,
the authors would like to investigate the use of a weighted
contribution of the dynamic features for online signature
verification so that an adaptive user-specific threshold could
be formulated based on the quality of the enrolled genuine
signatures.
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Fig. 7. EER distribution of individual users using only the x-attribute of the
MCYT-100 dataset

Fig. 8. EER distribution of individual users using only the y-attribute of the
MCYT-100 dataset

Fig. 9. EER distribution of individual users using only the pressure attribute
of the MCYT-100 dataset

Fig. 10. EER distribution of individual users using only the x-attribute of the
SUSIG dataset

Fig. 11. EER distribution of individual users using only the y-attribute of the
SUSIG dataset
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