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ABSTRACT 

Automatic face recognition is a challenging task due to intra-class variations. Changes in lighting conditions during 

enrolment and identification stages contribute significantly to these intra-class variations. A common approach to 

address the effects such of varying conditions is to pre-process the biometric samples in order normalise intra-class 

variations. Histogram equalisation is a widely used illumination normalisation technique in face recognition. 

However, a recent study has shown that applying histogram equalisation on well-lit face images could lead to a 

decrease in recognition accuracy. This paper presents a dynamic approach to illumination normalisation, based on 

face image quality. The quality of a given face image is measured in terms of its luminance distortion by comparing 

this image against a known reference face image. Histogram equalisation is applied to a probe image if its luminance 

distortion is higher than a predefined threshold. We tested the proposed adaptive illumination normalisation 

method on the widely used Extended Yale Face Database B. Identification results demonstrate that our adaptive 

normalisation produces better identification accuracy compared to the conventional approach where every image 

is normalised, irrespective of the lighting condition they were acquired. Keywords: Biometrics, Quality Measures, 

Face Recognition, Illumination, Wavelet Transforms 

1. INTRODUCTION 

Automatic face recognition is one of the most desired forms of person identification. Continued research in this area 

is motivated by the need for convenient, reliable, pervasive and universal person identification methods to grant 

access to information and services and as a counter measure to identity theft. Robust face recognition algorithms, 

complemented by the availability of high quality sensors at a low-cost, have made it possible to transfer face 

biometrics from theory to successful, automated person identification systems for various applications. Most 

common approaches to face recognition are appearance based, holistic methods such as eigenfaces,1 Fisher’s Linear 

Discriminant (FLD)2,3 and Independent Component Analysis (ICA),4 which treat face images as a point in a high-

dimensional image space and geometrical feature points based approaches.5,6 However, automatic face recognition 

remains a challenging task when presented with uncooperative users as well as in uncontrolled environments. 

Intra-class variations due to occlusion, facial expressions, changes in head pose, orientation and lighting conditions 

are some of the difficulties an automated face recognition system is faced with, resulting in increased identification 

errors. These variations can be thought of as distortions from “standard” reference images, giving rise to measures 

of face image quality.7–9 This paper is concerned with face recognition under varying illumination conditions. 

Changes in lighting conditions during enrolment and identification stages contribute significantly to intraclass 

variations. Typical methods used to address varying illumination conditions could be categorised as: feature-based 

methods, generative methods and holistic methods. In feature-based methods, faces are represented by illumination 

invariant features. These are geometrical measurements and relationships between local facial features such as the 

eyes, mouth, nose and chin.5,6 Feature-based methods are known to be robust against varying illumination 

conditions. However, they rely on accurate automated face and facial feature detection, which are challenging tasks 

on their own, especially under extreme lighting conditions. 
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Generative methods10–13 have been proposed to address the problem of varying illumination conditions based 

on the assumption of the Lambertian model. Previous work has demonstrated that the variability of images under 

a fixed pose, consisting of only diffuse reflection components and varying illumination conditions can be 

represented by a linear combination of three basis images.14,15 In16 Belhumeur and Kriegman demonstrated that a 

set of images of an object under fixed posed, consisting of diffuse reflection components and shadows under 

arbitrary lighting conditions forms a convex cone (termed the illumination cone) in the image space and that this 

illumination cone can be approximated by a low-dimensional subspace. Experimental results have shown that these 

generative methods perform well under varying illumination conditions. However, generative approaches require 

a number of training samples which represent extreme illumination conditions to model the illumination cone for 

a given face. It may be possible to acquire sufficient number of training images for certain applications such as ID 

cards and physical access control systems, where the person under consideration is cooperative, but it is not so for 

surveillance and counter terrorism related applications. 

In holistic methods, the entire face image is considered for face representation without taking into account any 

specific geometrical features. A face image is considered as a point in a high-dimensional image space. To avoid 

computational complexities and to reduce redundant data, a face image is first linearly transformed into a 

lowdimensional subspace, prior to extracting a feature vector that would be used later for classification. The most 

commonly used dimension reduction technique in face recognition is the Principal Component Analysis (PCA).1 PCA 

is known to retain intra-class variations due to changes in illumination and pose. It has been demonstrated that 

leaving out the first 3 eigenfaces that corresponds to the 3 most significant eigenvalues could reduce the effect of 

variations in illumination.2 However, this may also lead to the loss of discriminant information that is useful for 

accurate identification. An alternative approach to PCA based linear projection is Fisher’s Linear Discriminant 

(FLD), or the Linear Discriminant Analysis (LDA) which is used to maximize the ratio of the determinant of the inter-

class scatter to that of intra-class scatter.2,3 Like generative methods, the downside of these approaches is that a 

number of samples, of each person, from different conditions are required to train the subspace in order to identify 

faces in uncontrolled environments. In addition, adding new identities to the recognition system is cumbersome as 

it requires to retrain the face subspace. In recent years, wavelet transforms (WT) have been successfully used in a 

variety of face recognition schemes as a dimension reduction technique17,18 or as a tool to extract a multi-resolution 

feature representation of a given face image.19,20 In most instances, only the approximation subband of the WT are 

used to represent face images as these give the best overall recognition accuracy. The detail subbands (i.e. 

horizontal, vertical and diagonal features) of the transformed face images are generally ignored. 

A common approach to address the effects of varying lighting conditions is to pre-process face images in order 

to normalise such variations. Histogram equalisation (HE) is a commonly used technique in holistic methods to 

normalise the illumination. In automated face recognition systems, such normalisation techniques are applied on 

all face image samples during enrolment and testing stages. However, previously in,21 we have shown that 

normalisation by HE could lead to a decrease in face recognition accuracy when images are captured under 

reasonably controlled lighting conditions. In this paper, an adaptive approach to illumination normalisation, based 

on face image quality, is presented. 

The contribution in this paper is two fold. First, the illumination quality of a given probe face image is measured 

in terms of its luminance distortion compared to a known reference image. This quality measure is used as the base 

for adapting the application of illumination normalisation procedures. Secondly, the global quality measure is 

extended to a region-based quality measure which is then used for a region quality-based approach to adaptive 

illumination normalisation. The work presented in this paper is an initial step of a wider study on sample quality 

based adaptive approaches for face recognition, which aims to address the challenges posed by varying conditions 

in real-life face recognition systems. 

The rest of the paper is organised as follows. Section. 2 presents a review of recent work in21 and highlight the 

need for an adaptive approach to illumination normalisation. We discuss the use of biometric sample quality 



measures and introduce the illumination quality measure used in this study in Sec. 3. Section 4 is devoted to the 

description of the proposed adaptive approach to illumination normalisation and the experiments conducted to 

compare the identification performance of the proposed adaptive method with the conventional approach to 

illumination normalisation. A region quality-based adaptive approach to illumination normalisation is presented in 

Sec. 5. Finally, conclusions and future work are presented in Sec. 6. 

2. BACKGROUND 

One of the main influencing factors on the accuracy of automatic face recognition systems is the intra-class 

variations due to changes in lighting conditions between the enrolled (gallery) and test (probe) images. These 

changes can be attributed to the differences in light source, direction and intensity of light. Common approaches to 

illumination normalisation methods include HE, histogram matching (HM) and gamma intensity correction (GIC) 

and Self Quotient Image (SQI).22 It has been shown that these normalisation techniques help to improve recognition 

accuracy.23,24 The affect of varying lighting conditions on different wavelet-based face representations was analysed 

in21 using the popular Yale Face Database B11 (YaleB) and Extended Yale Face Database B13 (Extended YaleB). 

Contrary to expectation, the results showed that the use of HE on images with small variations in illumination 

conditions lead to a decrease in recognition accuracy. Here we will discuss relevant work in,21 beginning with a brief 

introduction to wavelet-based face recognition. 

2.1. Wavelet Transforms in Face Recognition 

A wavelet transform (WT) is a multiresolution signal analysis tool that hierarchically decomposes a signal into its 

low- and high-frequency components allowing one to view the signal’s regular patterns as well as its anomalies. 

The discrete wavelet transform (DWT) is a special case of the WT that provides a compact representation of a 

signal in time and frequency that can be computed efficiently.25,26 

There are a number of different ways of applying a 2D-wavelet transform. The most commonly used wavelet 

decomposition of an image, adopted in this paper, is the pyramid scheme (also referred to as the non-standard 

decomposition). At a resolution level of k, the pyramid scheme decomposes an image I into 3k + 1 subbands 

(LLk,HLk,LHk,HHk,...,HL1,LH1,HH1), with LLk, being the lowest-pass subband. The subbands LH1 and HL1, contain finest 

scale wavelet coefficients that get coarser with LLk being the coarsest. The LLk subband is considered as the k-level 

approximation of I, while HLk, LHk, and HHk captures vertical, horizontal and diagonal features of the image I. 

A subband of a wavelet transformed face image can be used as face feature descriptor.18,19,27 Therefore, different 

decomposition levels and/or wavelet filters yield different face feature vectors. Two such feature vectors are 

typically compared by calculating a distance score (e.g. using CityBlock distance) and the probe’s identity is 

classified according to the nearest-neighbour. Throughout this paper, the Haar wavelet filter is used for the DWT 

and the subband coefficients are normalised by z-score (ZN) normalisation. The CityBlock distance is used to 

calculate a distance score between a probe and a gallery image. 

2.2. Experiment Data: Extended Yale Face Database B 

Experiments in21 used the cropped face images of the Extended YaleB.13 The Extended YaleB consists of 38 subjects. 

Each subject was imaged under 64 illumination conditions, all in frontal pose, capturing a total of 2414 images. In 

addition to these images, an image was captured under ambient illumination for each one of the subjects. This image 

was not used for the experiments. 

The images in the Extended YaleB are divided into 5 illumination subsets according to the angle θ of the light-

source with respect to the optical axis of the camera. The subsets and the number of images used in each subset are 

shown in Tab. 1. All 168×192 cropped images were resampled to a fixed size of 80×96 pixels. Figure 1 shows an 

example image of each one of the 5 subsets in the Extended YaleB. 



2.3. Effect of Illumination Normalisation on Identification Accuracy 

In,21 a single image per subject was selected for the gallery (i.e. the image P00A+000E+00, captured with the light-

source on the optical axis of the camera). See example gallery images of four subjects in Fig. 2b. The remaining 2376 

images of the 38 persons are used as probes to test the accuracy of the recognition system. A subset of the 

identification results corresponding to the Haar wavelet and CityBlock distance function are shown in Tab. 2. 

Illumination Set Angel θ No. of Images 

Subset-1 θ < 12◦ 263 images 

Subset-2 20◦ < θ < 25◦ 456 images 

Subset-3 35◦ < θ < 50◦ 455 images 

Subset-4 60◦ < θ < 77◦ 526 images 

Subset-5 85◦ < θ < 128◦ 714 images 

Table 1: Illumination subsets in Extended Yale Face Database B. 

 

(a) Subset-1 (b) Subset-2 (c) Subset-3 (d) Subset-4 (e) Subset-5 Figure 1: 

Example images of Extended Yale Face Database B. 

The results show that for both LL and LH representations, applying HE on all images of the dataset reduced the 

overall identification error. However, a closer examination of error rates of individual illumination subsets show 

that HE resulted in either no reduction of identification errors or sometimes an increase in identification error of 

images belonging to that subset (e.g. see results for subsets-1,2&3). We note that HE reduced the identification error 

of subset-3 probes when compared to using non-normalised images. However, the best result for subset-3 was 

achieved by the simple ZN procedure (of the feature vector), without using HE on the original cropped face images. 

This analysis highlight the need for an adaptive approach to HE in order to avoid undesired effects of HE when 

applied on reasonably well-lit images that contains little or no shadowing artifacts. To achieve this, we need to 

identify quantitative measures that can be used intelligently, to dynamically adapt a face recognition system to 

different operating conditions. Motivated by these findings in,21 we propose an image quality-based, adaptive 

approach to illumination normalisation by HE, as an alternative to the conventional use of HE in face recognition, 

where every image is first normalised, irrespective of its illumination quality. The proposed adaptive approach is 

described in the following section. 

Wavelet 

subband 

Error Rate (%) Vs. Illumination Subset 

/Pre-process Set 1 Set 2 Set 3 Set 4 Set 5 Total 

LL2 
None 

HE 

8.89 

2.67 

18.20 

25.44 

83.30 

71.65 

95.82 

91.25 

97.20 

86.83 

70.71 

65.15 

LL2 (ZN) 
None 

HE 

2.67 

3.11 

22.59 

25.88 

69.45 

70.99 

93.16 

90.11 

96.92 

85.57 

67.63 

64.52 

LH2 
None 

HE 

8.00 

7.56 

0.00 

0.00 

30.55 

23.08 

71.10 

55.32 

95.24 

40.62 

50.97 

29.59 

LH2 (ZN) 
None 

HE 

7.11 

7.56 

0.00 

0.44 

10.99 

17.58 

34.22 

26.62 

66.95 

14.15 

30.47 

14.31 



HL2 
None 

HE 

10.22 

12.44 

0.44 

0.44 

38.46 

40.66 

93.35 

80.99 

97.48 

77.17 

58.38 

50.17 

HL2 (ZN) 
None 

HE 

8.00 

8.44 

0.00 

0.00 

11.43 

13.85 

63.88 

46.96 

96.22 

66.11 

46.00 

33.71 

Table 2: Identification error rates (%): illumination subsets vs. illumination normalisation. 

3. BIOMETRIC SAMPLE QUALITY MEASURES 

Real-time computation of quantitative, objective quality measures are a useful tool for biometric-based 

identification applications and there is a notable increase in the use of biometric quality measures in single modality 

recognition as well as in multimodality systems.7–9 These measures can be used at different stages of biometric 

based identification: as a quality control measure (e.g. to accept or reject a presented biometric sample or reacquire 

a new sample based on sample quality), for quality-based processing (e.g. selection of biometric modality, 

algorithm, system parameters) and as a confidence measure (e.g. decision reliability estimation). We adopted an 

existing quality index as a simple and efficient measure to quantify the illumination quality of a given face image 

with respect to a known reference face. 

Wang and Bovik28 presented a quality measure, universal image quality index (Q), applicable to various image 

processing applications. The universal quality index aims to provide meaningful comparisons across different types 

of image distortions by modelling any image distortion as a combination of three factors: loss of correlation, 

luminance distortion and contrast distortion. In this paper, the illumination quality of a given face image is to be 

defined in terms of its luminance distortion in comparison to a known reference image and we will called this the 

luminance quality index (LQI). The universal quality index, the LQI measure and an analysis of LQI as a suitable 

candidate to measure illumination quality are presented in the remainder of this section. 

3.1. Universal Quality Index 

Let x = {xi|i = 1,2,...,N} and y = {yi|i = 1,2,...,N} be the reference and the test images, respectively. The universal quality 

index in28 is defined as 

  , (1) 

where 

 , , 

 , 

 

Statistical features in Eq. 1 are measured locally to accommodate space variant nature of image quality and then 

combine them together to a single quality measure for the entire image. A local quality index Qj is calculated by 

sliding a window of size B×B, pixel-by-pixel, from top-left corner until the window reaches the bottom-right corner 

of the image. For a total of M steps, the overall quality index is given by 

  (2) 

3.2. Luminance Quality Index 

The universal quality index Q can be written as a product of three components: 



  (3) 

The luminance quality index (LQI), which is the luminance distortion factor in Q is defined as 

  (4) 

 

 (a) Reference (b) Example gallery images of 4 subjects 

Figure 2: The reference face image used to calculate LQI and a sample of the gallery images. 

With a value range [0, 1], the LQI measures how close the mean luminance is between x and y. LQI equals 1, if 

and only if ¯x = ¯y. Global LQI (GLQI) is calculated similarly to the calculation of a single Q value in Eq. 2. 

Throughout this paper, the window size used is the default 8×8 window size as proposed in.28 

3.3. Evaluation of LQI as an Illumination Quality Measure 

In order to demonstrate the appropriateness of GLQI for our purposes, we determined the distribution of GLQI 

values in different subsets of the Extended YaleB. Since the illumination condition of each image and subset in the 

database is well defined, this analysis can also be used to evaluate the reliability of GLQI as an illumination quality 

measure. The cropped and rescaled face images from each illumination subset of the database is used for this 

experiment, and the reference image is the average face image (see Fig. 2a) of the 38 gallery face images (i.e. the 

P00A+000E+00 image of each subject). The P00A+000E+00 image of each subject was excluded from the 

illumination subset-1 since these images are used to calculate the reference image. The distribution of GLQI scores 

of the images in each illumination subset is shown in Fig. 3a. 

The distributions of quality scores reveal that 71% of the 225 images in subset-1 have a GLQI score of 0.95 or 

higher, while 92% and 80% of the images in subsets-1&2 have a GLQI score of 0.9 or higher. Compared to subset-

1, only about 30% of the images in subset-2 have a GLQI score of 0.95 or higher. This demonstrates that the GLQI 

measure correctly quantified the illumination quality of images in subsets-1&2 to be very near to that of the 

reference image, while also recognising that images in subset-1 are nearer to the reference image. Only 7% of 

images in subset-3 have a GLQI score of 0.9 or higher, while 40% of the images have a GLQI value range of [0.8, 0.9], 

which indicates the noticeable variation in illumination in subset-3 images. The highest GLQI score of the images 

selected from subset-4 is 0.78 and nearly 74% of the images of subset-4 has a GLQI value less than 0.6. Nearly 43% 

of the images in subset-5 scored a quality value under 0.3, while the highest GLQI score is only 0.59. This reflects 

the poor illumination quality of the images in subsets-4&5 due to the extreme changes in illumination direction 

(horizontally and/or vertically) with regard to the camera axis (see Tab. 1 for details) and is further evidence to the 

use of GLQI as a reliable illumination quality estimator. 

3.4. Effect of Illumination Normalisation on Image Quality 

We looked at how illumination normalisation affects image quality. Cropped and resampled face images from each 

illumination subset is used for this purpose. The P00A+000E+00 image of each subject was excluded from the 

illumination subset-1 since these images were used to calculate the reference image. The illumination quality of the 

selected images in each subset, before and after HE was measured using GLQI. The distribution of GLQI scores of 

original and normalised images in each illumination subset is shown in Fig. 3. 



Compared with 92% and 84% of original images in subset-1&2 respectively, having a GLQI score of 0.9 or higher, 

only 91% and 46% of images in the same 2 subsets achieved a quality score of 0.9 or higher after normalisation by 

HE. However, all images of subset-3 achieved a quality score over 0.8 after HE, while only 45% of original images in 

the same set had a quality score over 0.8. However, GLQI scores of around 4% of the original images in subset-3 are 

higher than the highest GLQI score of images after HE. Nearly all the images of subset-4&5 scored GLQI values over 

0.8, demonstrating that HE is a very useful illumination normalisation tool when there is a significant variation in 

lighting between the gallery and probe images. It is also worth 

 

 

Figure 3: Distribution of GLQI scores of the five illumination subsets (GLQI of original images and after HE). 

mentioning here that the highest GLQI score of normalised images of subset-4&5 is 0.92 and 0.94 respectively, 

which suggests that there is room for further improvement in illumination quality. 

This assessment of image quality, before and after illumination normalisation, shows that normalising images 

captured under controlled lighting conditions could deteriorate image quality. The decrease in image quality due 

to HE correlates with the decrease in recognition accuracy when HE is applied to well-lit images.21 At the same time, 

the increase in image quality seen in subsets-3,4&5 correlates with the increase in recognition accuracy after these 

images are normalised. Therefore, GLQI: a quantitative measure of image quality, can be used to design an adaptive 

approach to illumination normalisation for face recognition. 

4. ADAPTIVE ILLUMINATION NORMALISATION 

The proposed approach uses an illumination quality measure for quality-based pre-processing. The analysis in the 

previous section and the efficient computation of GLQI justifies the introduction of GLQI-based adaptive 

normalisation. In this study, HE is selected as the pre-processing method for the adaptive normalisation, which we 

refer to as global quality-based adaptive HE or GQbHE. The GQbHE works by first calculating GLQI of the input 

image and only if its GLQI score is less than a predefined threshold (LQIT), then apply HE to the image. The threshold 



can be determined empirically depending on the objectives of the applications under consideration. For the 

Extended YaleB database, a sensible threshold that leads to improved GLQI value is around 0.8 GLQI. 

4.1. Identification Experiments and Results 

The affect of GQbHE and HE on identification accuracy is evaluated using the well-known Extended Yale Face 

Database B. The experiment setting adopted here is the same as in,21 and described in Sec. 2.3. For GQbHE, LQI score 

threshold values 0.7, 0.75, 0.8, 0.85 and 0.9 are selected based on the analysis of the distributions of LQI scores for 

each illumination subset (see Sec. 3.2). Identification error of different wavelet-based feature 

Wavelet subband Error Rate (%) Vs. Illumination Subset 

/Pre-process Set 1 Set 2 Set 3 Set 4 Set 5 Total 

LL2 (ZN) 

None 

HE 

2.67 

3.11 

22.59 

25.88 

69.45 

70.99 

93.16 

90.11 

96.92 

85.57 

67.63 

64.52 

GQbHE 2.67 22.81 69.01 90.11 84.03 63.05 

LH2 (ZN) 

None 

HE 

7.11 

7.56 

0.00 

0.44 

10.99 

17.58 

34.22 

26.62 

66.95 

14.15 

30.47 

14.31 

GQbHE 7.11 0.00 11.65 20.34 11.76 10.94 

HL2 (ZN) 

None 

HE 

8.00 

8.44 

0.00 

0.00 

11.43 

13.85 

63.88 

46.96 

96.22 

66.11 

46.00 

33.71 

GQbHE 8.00 0.00 10.11 41.25 61.90 30.43 

Table 3: Recognition Error Rates: GQbHE (LQIT = 0.8) Vs. HE 

representations, with HE and GQbHE (with LQIT = 0.8) are shown in Tab. 3. We also included identification error 

rates without a pre-processing step to normalise illumination. 

Compared to the traditional use of HE, the proposed GQbHE further decreased the overall identification error 

by a further 1-3%, across different feature representations. More significant reduction in errors of up to 6% can be 

seen for individual illumination subsets. The improvement in identification accuracy of subsets-4&5 is quite 

significant. This improvement is due to the fact that the gallery images are not normalised under the GQbHE, where 

as traditionally, all images are normalised. These results justify the use of an adaptive approach to illumination 

normalisation and the use of LQI as a reliable illumination quality measure. 

5. REGION QUALITY-BASED ADAPTIVE ILLUMINATION NORMALISATION 

Shan et al.23 illustrated that a region-based approach to illumination normalisation achieves better identification 

accuracy rates by testing various global and region-based normalisation techniques on the Extended Yale B 

database. In the region-based approach, an image is first partitioned into four regions and the selected 

normalisation procedure (e.g. HE) is applied to each region separately. Inspired by their results and the fact that 

the images in the Extended YaleB exhibit regional variation in image quality as a result of the direction of the light 

source, we extended the adaptive illumination normalisation, presented in Sec. 4, by introducing a region quality-

based adaptive normalisation scheme. The LQI of each of the four regions (RLQI) is calculated by partitioning the 

local quality index map (resulting from the block-wise calculation of Eq 4) into four regions. 

The distribution of GLQI and RLQI scores are shown in Fig. 4. The of RLQI scores of images in subset-3,4&5, 

shown in Fig. 4c- 4e, demonstrates that although an image could be categorised as having poor illumination quality 

with respect to a known reference image, certain regions of that image could still be of good quality and visa-versa. 

The differences in the distribution of GLQI and RLQI scores of subsets-3,4&5 highlights the appropriateness of the 

RLQI as a measure of illumination quality, compared to the holistic, GLQI measure. 



The proposed Region Quality-based HE (RQbHE) works by first calculating RLQI of the input image and only if 

its RLQI score is less than a predefined threshold (LQIT), then apply HE is applied to that region. Example images, 

before and after conventional and the quality-based adaptive approaches to HE are shown in Fig 5. 

5.1. Identification Experiments and Results 

The same recognition experiment is repeated to compare the two proposed adaptive approaches to HE with the 

conventional HE. For RQbHE, LQI threshold values 0.7, 0.75, 0.8, 0.85 and 0.9 are selected. Identification error after 

illumination normalisation based on HE, GQbHE (LQIT = 0.80), RHE23 and RQbHE (LQIT = 0.80) are shown for each 

subset in Tab 4. As the results indicate, the lowest overall recognition error rate, as well as the lowest error rate of 

majority of the illumination subsets are achieved by using the proposed adaptive normalisation, RQbHE, with LH2 

as the feature representation. 

 

 (a) Subset-1 (b) Subset-2 

 

Figure 4: Distribution of GLQI and RLQI scores of the five illumination subsets. 

 

 (a) Original (b) HE (c) GQbHE (d) RHE (e) RQbHE 

 

 (f) Original (g) HE (h) GQbHE (i) RHE (j) RQbHE 



Figure 5: Example face images after normalisation using on HE, RHE and the proposed GQbHE and RQbHE methods 

Compared to the results in Tab. 4 which uses HE for illumination normalisation, other region-based illumination 

normalisation techniques23 and recently published face recognition algorithms such as local binary patterns (LBP) 

and local ternary patterns (LTP)29 have achieved better identification accuracy rates on the Extended Yale B. This 

could be due to the robustness of the face descriptor as well as the pre-processing chain used to normalise 

illumination. We are currently investigating the use of LQI-based adaptive illumination normalisation 

 

 (a) Subset-1 (b) Subset-2 

 

Figure 6: Distribution of GLQI scores of the five illumination subsets after HE, GQbHE and RQbHE. 

for different pre-processing techniques as well as the effects of the proposed adaptive normalisation on different 

face feature representations. 

6. CONCLUSIONS AND FUTURE WORK 

A common approach to address the effect of varying lighting conditions on the accuracy of face recognition systems 

is to pre-process the face image sample in order to normalise the illumination. Histogram equalisation is a widely 

used normalisation technique in face recognition. However, it has been shown that applying HE on well-lit face 

images could lead to a decrease in recognition accuracy. This paper presents a quality-based adaptive approach to 

illumination normalisation for face recognition. Illumination quality of a face image is measured in terms of its 

luminance distortion, using an efficient quality index that measures how close the mean luminance is between a 

probe image and a predefined reference image. In the proposed global quality-based HE or GQbHE, HE is applied 

on a probe image only if its luminance distortion is higher than a predefined threshold. The GQbHE is extended to 

a region quality-based HE, or RQbHE, where each 4×4 region of an image is normalised only if the region-LQI score 

is less than a predefined threshold. 

We tested the effect of the proposed adaptive approaches and the conventional use of HE, on identification 

accuracy using the Extended Yale Face Database B, which consists of images captured under controlled as well as 



extreme lighting conditions. Experimental results demonstrate that the proposed illumination quality based, 

adaptive approaches lead to significant improvements in recognition accuracy when compared to the use of 

corresponding non-adaptive illumination normalisation scheme. 

The LQI measure could also be used to select fusion parameters for the multi-stream face recognition.19–21 For 

example, a higher weight could be given to the approximation subband when probe images are captured under 

well-controlled lighting conditions, while a higher weight is given to the detail subbands (e.g. LH, HL) 

Extended Yale Database B: Identification Error Rates 

Wavelet subband Error Rate (%) Vs. Illumination Subset 

/Pre-process Set 1 Set 2 Set 3 Set 4 Set 5 Total 

LL2 (ZN) 

None 

HE 

GQbHE 

2.67 

3.11 

2.67 

22.59 

25.88 

22.81 

69.45 

70.99 

69.01 

93.16 

90.11 

90.11 

96.92 

85.57 

84.03 

67.63 

64.52 

63.05 

 RHE 0.00 0.00 30.77 79.47 81.79 48.06 

RQbHE 3.56 19.30 42.86 76.62 78.85 52.90 

LH2 (ZN) 

None 

HE 

GQbHE 

7.11 

7.56 

7.11 

0.00 

0.44 

0.00 

10.99 

17.58 

11.65 

34.22 

26.62 

20.34 

66.95 

14.15 

11.76 

30.47 

14.31 

10.94 

 RHE 7.56 0.00 16.70 24.14 13.45 13.30 

RQbHE 7.11 0.00 13.63 18.25 9.94 10.31 

HL2 (ZN) 

None 

HE 

GQbHE 

8.00 

8.44 

8.00 

0.00 

0.00 

0.00 

11.43 

13.85 

10.11 

63.88 

46.96 

41.25 

96.22 

66.11 

61.90 

46.00 

33.71 

30.43 

 RHE 9.78 0.00 13.85 47.53 65.69 33.84 

RQbHE 8.00 0.00 10.11 41.25 61.90 30.43 

Table 4: Recognition error rates for the Extended Yale B Database: RQbHE Vs. GQbHE 

when probe images are captured under poor lighting conditions. Future work involves the integration of LQI into a 

holistic quality measure that takes into account the changes in facial expressions and head pose during enrolment 

and test stages. 
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