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Abstract

ABSTRACT

Partial Differential equations (PDEs) have been used to model various phenomena/tasks
in different scientific and engineering endeavours. This thesis is devoted to modelling
image inpainting by numerical implementations of certain PDES. The main objectives
of image inpainting include reconstructing damaged parts and filling-in regions in
which data/colour information are missing. Different automatic and semi-automatic
approaches to image inpainting have been developed including PDE-based, texture
synthesis-based, exemplar-based, and hybrid approaches. Various challenges remain
unresolved in reconstructing large size missing regions and/or missing areas with highly
textured surroundings. Our main aim is to address such challenges by developing new
advanced schemes with particular focus on using PDEs of different orders to preserve

continuity of textural and geometric information in the surrounding of missing regions.

We first investigated the problem of partial colour restoration in an image region whose
greyscale channel is intact. A PDE-based solution is known that is modelled as
minimising total variation of gradients in the different colour channels. We extend the
applicability of this model to partial inpainting in other 3-channels colour spaces (such
as RGB where information is missing in any of the two colours), simply by exploiting
the known linear/affine relationships between different colouring models in the
derivation of a modified PDE solution obtained by using the Euler-Lagrange
minimisation of the corresponding gradient Total Variation (TV). We also developed
two TV models on the relations between greyscale and colour channels using the
Laplacian operator and the directional derivatives of gradients. The corresponding
Euler-Lagrange minimisation yields two new PDEs of different orders for partial
colourisation. We implemented these solutions in both spatial and frequency domains.
We measure the success of these models by evaluating known image quality measures
in inpainted regions for sufficiently large datasets and scenarios. The results reveal that
our schemes compare well with existing algorithms, but inpainting large regions

remains a challenge.

Secondly, we investigate the Total Inpainting (T1) problem where all colour channels
are missing in an image region. Reviewing and implementing existing PDE-based total

inpainting methods reveal that high order PDEs, applied to each colour channel
i
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separately, perform well but are influenced by the size of the region and the quantity of
texture surrounding it. Here we developed a Tl scheme that benefits from our partial
inpainting approach and apply two PDE methods to recover the missing regions in the
image. First, we extract the (Y, Cb, Cr) of the image outside the missing region, apply
the above PDE methods for reconstructing the missing regions in the luminance channel
(Y), and then use the colourisation method to recover the missing (Cb, Cr) colours in
the region. We shall demonstrate that compared to existing TI algorithms, our proposed
method (using 2 PDE methods) performs well when tested on large datasets of natural
and face images. Furthermore, this helps understanding of the impact of the texture in

the surrounding areas on inpainting and opens new research directions.

Thirdly, we investigate existing Exemplar-Based Inpainting (EBI) methods that do not
use PDEs but simultaneously propagate the texture and structure into the missing region
by finding similar patches within the rest of image and copying them into the boundary
of the missing region. The order of patch propagation is determined by a priority
function, and the similarity is determined by matching criteria. We shall exploit recently
emerging Topological Data Analysis (TDA) tools to create innovative EBI schemes,
referred to as TEBI. TDA studies shapes of data/objects to quantify image texture in
terms of connectivity and closeness properties of certain data landmarks. Such
quantifications help determine the appropriate size of patch propagation and will be
used to modify the patch propagation priority function using the geometrical properties
of curvature of isophotes, and to improve the matching criteria of patches by calculating
the correlation coefficients from the spatial, gradient and Laplacian domains. The
performance of this TEBI method will be tested by applying it to natural dataset images,

resulting in improved inpainting when compared with other EBI methods.

Fourthly, the recent hybrid-based inpainting techniques are reviewed and a number of
highly performing innovative hybrid techniques that combine the use of high order PDE
methods with the TEBI method for the simultaneous rebuilding of the missing texture
and structure regions in an image are proposed. Such a hybrid scheme first decomposes
the image into texture and structure components, and then the missing regions in these
components are recovered by TEBI and PDE based methods respectively. The
performance of our hybrid schemes will be compared with two existing hybrid

algorithms.

Fifthly, we turn our attention to inpainting large missing regions, and develop an
innovative inpainting scheme that uses the concept of seam carving to reduce this
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problem to that of inpainting a smaller size missing region that can be dealt with
efficiently using the inpainting schemes developed above. Seam carving resizes images
based on content-awareness of the image for both reduction and expansion without
affecting those image regions that have rich information. The missing region of the
seam-carved version will be recovered by the TEBI method, original image size is
restored by adding the removed seams and the missing parts of the added seams are then
repaired using a high order PDE inpainting scheme. The benefits of this approach in

dealing with large missing regions are demonstrated.

The extensive performance testing of the developed inpainting methods shows that
these methods significantly outperform existing inpainting methods for such a
challenging task. However, the performance is still not acceptable in recovering large
missing regions in high texture and structure images, and hence we shall identify
remaining challenges to be investigated in the future. We shall also extend our work by
investigating recently developed deep learning based image/video colourisation, with
the aim of overcoming its limitations and shortcoming. Finally, we should also describe
our on-going research into using TDA to detect recently growing serious “malicious”

use of inpainting to create Fake images/videos.
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(Cyan, Magenta, and Yellow) colour model
(Cyan, Magenta, Yellow, and Black) colour model
EBI method that introduced in (Criminisi et al. 2004).
Coherence and Structure Quality Measurement
Compactly Supported Radial Basis Function
Modified EBI method that introduced in (Deng et al. 2015).
Discrete Wavelet Transform

Discrete Fourier Transform

Exemplar-based Inpainting

Finite-Difference Method

Fourier Transform

(Hue, Intensity, and Saturation) colour model
High-High (refers to a wavelet subband)

High -Low (refers to a wavelet subband)
one-dimensional Hausdorff space

Sobolev space

High Texture

(Hue, Saturation, and Value) colour model

Local Binary Pattern

Low- High (refers to a wavelet subband)
Low-Low (refers to a wavelet subband)

Low Texture

modified Cahn-Hilliard model
Mumford-Shah-Euler Model

Mumford-Shah Model

Mean Squared Error

Mean of Structural Similarity



NCD
NCC
NTSC
PDE
PDE-BI
PSNR
QCDD
RGB
sC
SSIM
SVM
TDA
TEBI
TK

TI

TV
ULBP
WT
XYZ
YChCr
YUV

Normalised Colour Distance

Normalised Correlation Coefficients

(luminance, chrominance, and chrominance) colour model
Partial Differential Equation

Partial Differential Equation-Based Inpainting algorithm
Peak Signal to Noise Ratio

Quick Curvature-Driven Diffusion model

(Red, Green, Blue) colour space

Seam Carving approach

Structural Similarity Index

Support Vector Machine

Topological Data Analysis

Topological Exemplar-Based Inpainting Method
Tikhonov regularisation

Total Inpainting

Total Variation regularisation

Uniform LBP

Wavelet Transform

(chrominance, luminance, and chrominance) colour model
(luminance, chrominance, and chrominance) colour model

(luminance, chrominance, and chrominance) colour model
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Chapter 1: Introduction

Chapter 1 INTRODUCTION

Image inpainting is a process that has been investigated for a long time as the concept of
reconstructing old photos that have degraded over time or modifying a photo to remove
unwanted objects/persons from it. However, a variety of malicious as well as genuine
use of image inpainting started to grow fast as a result of the recent rapid advances in
technology that have led to exponential growth of deployment of cheaply available
computing devices (mobiles) of high computational power endowed with free software
that enable fast transmission of high-resolution digital images/videos. Indeed, the
concept of inpainting has expanded in many directions that go well beyond repairing
images. As an instant of missing data, interpolation has long been recognised as the
underlying tool of inpainting. Consequently, calculus of variation and numerical
solutions of partial differential equations have been the natural source of solutions for
the filling missing data version of image inpainting. The main aim of this thesis is to
investigate the use of Partial Differential Equation (PDE) for dealing with the emergent
aspects and application of inpainting with focus on developing innovative efficient
inpainting tools, testing the performance of these tools in terms of various image quality

measures as well as detection of malicious image modifications by inpainting.

The aim of this introductory chapter is to describe the general idea of image inpainting
and its challenges in image inpainting. First there is an overview of emerging inpainting
research challenges, briefly highlighting related approaches and directions of research,
if any, that have been adopted in the literature and the bases of our innovation to
improve and complement these efforts. Then the main modern applications that form
our motivations for doing this research are described, and the overall objectives of the
research reported in this thesis are stated. This will be followed by brief descriptions of
the main contributions of this thesis including the list of publications produced so far,

and of the thesis organisational structure.

1.1 Overview of the Research
In image processing and analysis, the success of most applications depends on the

quality of the image signal. The quality of digital images is a variety of
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actions/decisions that occur during recording, digitisation, compression, and in transit
over channels that are subject to signal interference. At each of these stages, factors
influencing the image quality include camera properties, lighting and environmental
conditions, compression rates and communication channel capacity and their effects are
manifested by the appearance of different types of noise and artefacts as well as blurring
and other type's degradations. In contrast, printed photographs, portraits, and pre-digital
age recorded films may over time degrade, fade and suffer from loss of image data in
irregular strokes-like regions and torn material as a result of storage/display related
conditions or sabotage. The most common feature in these cases, is the presence of
regions with  missing/incomplete image data/information. Repairing such
Images/photos/paintings and restoring missing data/ information to its “original state” is

referred to as image inpainting.

A well-established example of inpainting application is the regular restoration of old
paintings kept in museums carried out by skilled artists. Since the early days of the
discovery of photography, inpainting has been used, albeit sparingly, to remove
undesired objects/persons or superposing photos of unrelated objects/persons onto an
existing photo. The advent of digital imaging created not only new applications in a
variety of human activities but the digitisation process and other basic image processing
tasks such as compression result in a variety of image degradations that need to be dealt
with to ensure adequate image quality. To some extent, most image degradations result
in spurious local features not blending well with their surroundings, and inpainting-

related procedures may be useful for quality enhancements.

There are different types of missing image information such as missing colour, and
missing regions caused by, e.g. noise, blur, degradation, etc. In the digital world, image
inpainting (also known as interpolation image/video) refers to the application of
advanced algorithms to supersede lost or damaged data from an image portion. The aim
of inpainting is to blend the modification within the undegraded surrounding and
success is measured by how difficult the repair can be detected visibly or by image

analysis.

In recent years, the above two main approaches have been modified and improved in
various directions, and in general image inpainting approaches are classified into several
categories (Vadhel & Limbasiya 2016), (Nileshbhai Patel 2016), and (Suthar et al.
2014):
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PDE based Inpainting.
Texture Synthesis based Inpainting.
Exemplar-based Inpainting (EBI).

Semi-automatic and Fast Inpainting.

o > w npoRE

Hybrid Inpainting.

Each of these approaches recovers the damaged regions in accordance to certain
requirements of expectation of the repaired image content, and hence have own
limitations and shortcomings. Next, the main ideas in these approaches are briefly
explained. There are different inpainting techniques, the most prominent inpainting
techniques are variational/PDE-based inpainting and exemplar-based inpainting
techniques. The variational/PDE based approaches justified by the expectation that
image information flow along image features are interrupted through the missing region
and accordingly have been used to restore relatively small missing image regions, (Sc et
al. 2011). In this case, the small missing region is reconstructed pixel by pixel based on
propagating the information from the immediate boundary pixels of the missing area.
The larger the missing region is, the less likely image features flow
continuously/smoothly along their paths for long spatial periods. Moreover, image
features may not flow in the same directions of the way numerical solutions of PDE
propagate information. The exemplar-based inpainting approach, complements the idea
of using flow of information along image features with the idea that in most images
there are a lot of similarities between image blocks, and reconstruct the missing regions
block by block using block similarities in the surrounding regions (Criminisi et al.
2004). The exemplar-based techniques have been used for reconstructing relatively
large missing regions, and it fill-in the missing region with information in such a way
that isophote lines arriving at the regions’ boundaries are completed inside the region.
This technique does not require to specify where the new information comes from the
borders, but its success relies on compatibility of information between the missing

region and its surrounding regions in terms of simple textures and structures.

The texture synthesis approach recovers the missing texture region in the image by
searching for similar missing pixels neighbour around the missing region and copy its
pixel value to the missing pixel. This algorithm performs reasonably well, but it is very

slow due to the extensive searching (Efros & Leung 1999).
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Whereas, hybrid inpainting is combined of two inpainting methods which are texture-
based synthesis and PDE-based inpainting methods for filling the missing regions. The
first step of this approach is to divide the image into texture and structure regions. Then
these regions are reconstructed with corresponding methods which they need a

relatively long time (Rane et al. 2003).

The semi-automatic inpainting approach is a two-stage process. In the first stage, the
user provides essential missing information manually by sketching object boundaries
from the surrounding areas to the missing area. The patch-based texture synthesis
method is utilised to produce the texture (Telea 2018) in the second stage. This

approach takes a long time in proportion to the inpainting region size.

The challenges of applying these inpainting approaches to recover the missing regions
are the large size of the missing regions and the complexity of texture and structure in
the surrounding of the missing regions. The main premise of our optimism comes from
the fact that images convey significant amount of information that can be modelled in
much more sophisticated and well-understood ways than that exploited by the current
models of texture similarity and distribution as well as variational relation between
different channels of image colour spaces. Moreover, the wealth of innovative
techniques developed over the years in the field of image processing and image analysis
provide a rich source of mathematically based procedures that one can exploit in dealing
with these challenges. For example, the properties of variation in image information,
across different colour channels, captured by gradient, Laplacian and other
transformations can be used to propose new methods for adding colour to grayscale
images. The use of different order PDE-based inpainting techniques is an obvious
candidate approach for investigating inpainting missing regions of larger size than that
dealt with in the literature. Compression, or related, techniques provide another source
of methods to deal with the challenge of missing region size. For example, the concept
of seam carving that results in compressing/resizing images horizontally and/or
vertically with minimal loss of important image information is a natural approach to
improve the performance of existing inpainting schemes, such as the EBI, for
recovering large missing regions. Together, these various ideas will be investigated and

used to introduce more ways of building hybrid inpainting techniques.

In order to measure the success of any inpainting solutions, it is natural to simulate loss

of various types of image on publicly available image dataset and compare the quality
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of the inpainted images with those of the original images. Unfortunately, commonly
used image quality measures, such as MSE, PSNR, NCD, SSIM, MSSIM, CSQM and
Entropy are not adequately capable of assessing the success of various image inpainting
techniques. The recent work, conducted at Buckingham, on the extension/realisation of
the emerging new Topological Data Analysis (TDA) approach to image analysis seem
to provide an innovative image quality assessment tool. Indeed, the fact that the TDA
approach model image texture at different filtration/proximity thresholds is an obvious
mathematically rich candidate for incorporation into our assessment test of the success
of inpainting techniques. In particular, the performance of innovative techniques of
image inpainting is developed and tested to overcome their limitations and to
reconstruct the large missing regions in natural and face images that lead to
improvements in the accuracy. In addition, the topological data analysis approach could
help to refine block similarity concept used in the EBI-based inpainting technique, to

allow recovering large missing regions with complex texture and structure around them.

1.2 The Problem of Image Inpainting

This section is devoted to the mathematical definition of the problem under
investigation (image inpainting) and we shall highlight the need for this research by
giving an overview of the various modern applications that have expanded over the last
few years beyond the obvious image restoration. In order to describe the concept of
image inpainting, we shall first describe basic mathematics of digital images. This is
done for the benefit of readers who have little or no background in Image processing

and can be skipped by others.

1.2.1 Digital Image

A digital image is obtained from an analogue image (representing the photograph of a
scene, object or phenomena in the continuous world) by sampling and quantization.
Basically, this means that the digital camera superimposes a regular grid on an analogue
image and assigns a value to each grid element e.g. the mean brightness in this area
element. cf. (Aubert & Kornprobst 2006). Mathematically, a digital image f is a
rectangular array/matrix structure where each element at position (i, j) of the structure
function pixel is assigned an intensity values f (i, j).In grayscale images, the value f; ; is
a single number, a scalar value normally ranging between 0 (black) and 255 (white). For

colour images each f; ;is a vector of three colour values, e.g., (r, g, b), where each
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channel r, g and b represents the red, green, and blue component of the colour and

ranges, each f; ; is a vector of three values,
fij = (i, 91 bi j),

that denotes the intensity of red, green, and blue channels at the point(i, j). As in the
case of greyscale images, the values in these channels are also integers in the range from
0 to 255. A digital image can also be defined mathematically as a two-dimensional
image function defined on a flat rectangle called the image domain. This function is
single-valued in case of the grayscale image while it is 3-dimensional vector-valued in
the case of a colour image. The pixel value f(x, y) denotes the gray value, i.e., colour
value, of the image at the pixel position (x,y) of the image domain. Figure 1-1
describes the digital image and its image function (a matrix) for the case of a grey value

image.

FEIEIRENEL
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P

Figure 1-1: The digital grayscale image with a small red square in (a), a red region to the data
matrix in (b).

Now, an image function (a matrix) is known as a mathematical object on which a
variety of mathematical operations can act. These mathematical operations are often
used analyse or extract different types of information for image processing purposes,
including statistical methods, morphological operations, and other filtering. We are
especially concerned with operations that use PDE and variational methods image

inpainting and filling missing regions.

1.2.2 Image Inpainting

This section is devoted to the mathematical definition of the problem under
investigation (image inpainting) and we shall highlight the need for this research by
giving an overview of the various modern applications that have expanded over the last

few years beyond the obvious image restoration. Inpainting is the process of
6
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reconstructing the missing regions of the damaged images based on information which
that obtained from the surrounding regions, this process is called image inpainting, and

it considers an important task in image processing.

Let f represents a given image which that defined on an image domain 2. Generally
speaking, the task is to reconstruct the missing region of damaged image u in the

damaged domain D < £, called inpainting domain (or a gap/hole), see Figure 1-2.

u" is only available outside D

D
I 2 0=D+/

Figure 1-2: The inpainting task. It is taken from (Sc et al. 2011).

The task of reconstructing the missing region of the damaged image has been called
term inpainting by the art restoration workers, see in (Ekeland & Temam 1976). The
framework of digital restoration has introduced for the first time by Bertalmio et al. in
(Bertalmio et al. 2000). Therein the authors in (Bertalmio et al. 2000) introduced a new
PDE which intends to mimic the restoration work of museum artists. This equation will
be discussed in more detail in section 4.3.2. The next section gives some applications

for image inpainting.

1.2.3 Applications of Inpainting

There are several applications which use the concept of inpainting in image processing
for a variety of reasons. One important application of digital inpainting is automatic text
removal and object removal in images and films for special effects; different
mathematical models have been used to remove the objects and to recover the missing
regions based on the PDE methods described by (Bertalmio et al. 2000), (Chan & Shen
2002), and (Cocquerez et al. 2003). These PDE methods have been proposed based on
total variation, isophote, curvature driven diffusion and so on, and these methods
propagated the information in the missing regions based on the information in the
surrounding areas. Furthermore, these PDE methods can also be used to remove the
dates, texts, subtitles, or publicity from an image (Bertalmio et al. 2000), (Chan & Shen

2002), (Ballester et al. 2001), and (T. Chan and J.Shen 2001), by propagating
7



Chapter 1: Introduction

information from the surrounding areas into the missing regions. In addition, old or
damaged images and films can be restored by detecting missing regions and
reconstructing the information without causing distortion to those areas of the frames
(images) that are not affected. Different statistical detector models have been used and
then the detected missing regions have been reconstructed (Kokaram et al. 1995a) and
(Kokaram et al. 1995b). In lossy perceptual image coding and compression based on the
edge information, where the edge has played a crucial role in vision and image analysis,
in image coding, the performance of a scheme is very much determined by its reaction
to edges. The inpainting based PDE approach has been used for (lossy) image coding
and compression based on the edge information (Chan & Shen 2002) and(Saha &
Vemuri 2000). Moreover, PDE-based inpainting methods have been used for adding
colour to grayscale images; these methods have been proposed based on the geometric
relations between the channels in the colour space (Sapiro 2005). Furthermore,
disocclusion is required (using the variational model to reconstruct the missing region
based on the geometry of objects in the image), the numerical solutions of PDE methods
recovers the missing regions. (Nitzberg et al. 1993), and (Masnou & Morel 1998). In the
context of error control and concealment of it in video communication, where the
inpainting methods attempt to recover the lost information by estimation and
interpolation without depending on additional information from the encoder, these
inpainting methods are called interactive error concealment methods (interpolation and
statistical methods) (Yao Wang & Qin-Fan Zhu 1998). For image super-resolution, the
inpainting based PDE method have been used to reconstruct high-resolution images.
This method for super-resolution is based on a total variation prior and variational
distribution approximations (Babacan et al. 2008). For image zooming (Chan & Shen
2002), and (Malgouyres & Guichard 2001), digital zoom-in has wide applications in
digital image processing, image super-resolution, data compression, etc. Zoom- out is a
process entailing loss of detail, including in the framework of wavelets and multi-
resolution analysis. The inpainting method has been used to zoom-in which is the
inverse of zoom-out and thus belongs to the general category of image restoration
problems. A digital zoom-in model almost identical to the continuous TV inpainting
model is constructed based on the self-contained digitised PDE method developed by
authors in (Chan & Shen 2002). On the other hand, the inpainting methods can be used
for malicious purposes such as fake news and images. The development of the software
for use in phones and computers in recent years has facilitated dealing with digital
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images. This software is available to anyone who can use it. As a result the world has
become susceptible to fake news and so it is increasingly important for researchers to
acquire understanding of how these inpainting methods are working so that they can try
to reverse the inpainting process to detect the forged images, this field of work is now
called image forgery detection for object removal by image inpainting methods
(Muhammad et al. 2012), (Liang et al. 2015) and (Yang et al. 2017). These algorithms
have been used to detect forged images and identify the manipulated regions in them.

1.3 Research Questions

The main focus of this work is investigating the numerical solutions of certain PDEs
that have applications in image processing such as image inpainting. The questions
arising from this are:

1. Can high order PDE methods do better than second order PDE methods for

recovering missing region?

The high order PDE methods essentially expected to recover missing regions of
images better than second order PDE methods because they use relatively more
information from the borders during the recovery process. Therefore, it’s interesting
to know what the effect of the high order of PDE methods.

2. Can high order PDE methods be used to recover small missing regions with

complex texture in the surrounding areas?

PDE methods generally recover non-textured missing regions in an image, so the
effects of PDE order in recovering small missing regions with high texture in the
surrounding areas need to be investigated in terms of the connection of edges over

large distances (i.e. Connectivity Principle).

3. Can high order PDE methods be used to recover large missing regions with

simple texture and structure in the surrounding areas?

PDE methods usually recover small missing regions in an image, so the effects of
PDE order in recovering large missing regions in terms of the smooth propagation
of level lines into the damaged domain (i.e. Curvature Preservation) need to be

investigated and studied.



Chapter 1: Introduction

4.  Are the statistical measurements good for image quality measurement? If not,
are there other measurements which can be used to check the qualities of inpainted

images?

Some of these statistical measurements (MSE and PSNR) have limitations revealed
by their failures to gives results which correspond to visual quality assessments. An
application that test the change in the image structure needs to be investigated and

compared with the traditional image quality assessments methods.
5. Does the size of patch propagation in the EBI method affect the results?

The EBI method is propagated the information in the missing region with a typical
fixed size of patch propagation 9 x 9. Investigating the effects of changing the size

of patch propagation in the missing regions is needed to be tested.

1.4 Aims and Objectives of this Research project
This thesis primarily aims to investigate and develop mathematically inspired and
justified techniques that improve the treatment of the different missing regions in a

variety of images. In summary, the main objectives are:

e In partial missing regions, studying the geometric relations between the channels
in the colour spaces such as RGB, and seven other spaces and exploiting these
relations to propose a colourisation formula for adding colour to greyscale

images in both spatial and frequency domains.

e In total missing regions, analyses and evaluations the performances of
inpainting-based PDE methods of various orders in recovering the missing
regions in the image. This will help to choose the best PDE method that will be
used with other inpainting techniques to recover texture and structure in images

in both spatial and frequency domains.

e Carrying out theoretical and empirical analyses of current inpainting methods
(i.e. PDE methods), which aim to evaluate their performance in reconstructing
the contents of missing regions of various sizes and with various quantities of

texture and structure in the surrounding areas.

e Developing an innovative hybrid technique that uses high order-PDE and
Topological EBI methods to recover small missing regions with high texture and

structure in the surrounding areas.
10
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e Developing a novel technique to recover large missing regions with high texture

and structure in the surrounding areas using a seam-carving approach.

e Rigorous evaluation of the quality of image inpainting obtained using different
inpainting methods based on the proposed TDA approach that is used to check

the performances of these inpainting algorithms.

e Investigation of the performances of EBI method with different-size patch
propagations in recovering missing regions of different sizes. The TDA
approach is used to improve the EBI method, and is applied to adaptively
determine the patch size based on the quantity of texture in the surrounding

areas.

Our approaches to meet these objectives rely in many ways on the wealth of
mathematical techniques and concepts developed over the last few decades in the field

of image processing and analysis.

1.5 Thesis Main Contributions

Our extensive investigations and experimental work have led to a number of advances
in meeting the main objectives and modifying existing inpainting schemes with
improved capability in restoring missing image regions in different scenarios. Our
review of the different existing inpainting schemes revealed that their deployment under
different circumstances in various applications continues to entail many challenges.
Many studies have been conducted to handle textured large missing regions in natural
images of high quality. Three main shortcoming issues are identified that face these
algorithms, which arise when the missing region is large, when there is a high quantity
of texture around the missing region and when the surrounding areas of the missing
regions contain geometrically complex features. New algorithms are developed to
remedy the above shortcomings. The implementations of these new algorithms
reconstruct the textured large missing regions in natural images, based on the contents
of the areas surrounding missing regions. Therefore, this thesis claims the following

major contributions:

1. In (Sapiro 2005), G. Sapiro proposed a PDE-based colourisation technique that
deals with the loss of 2 specific colour channels in a region where the 3 channel is
available. The author has shown that the (scalar) luminance channel faithfully

represents the geometry of the whole (directional) colour image. The performance
11
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of this technique was good in adding colour to the greyscale image. However, it has

a problem at edges where the colours overlap with each other.

e To overcome this problem, new colourisation formulas are deduced to reduce
the effect of the colour overlapping at object edges, which are tested on non-
segmented images and pre-segmented images.

e These formulas are implemented on 8 different colour spaces, both in the spatial

and frequency image domains.

The performance of this technique was tested on 80 publicly available natural images,
and compared with those of three existing algorithms introduced in (Sapiro 2005),
(Levin et al. 2004), and (Popowicz & Smolka 2014). The evaluation was based on
statistical measurements such as MSE, PSNR, NCD, and SSIM. The results
confirmed that our technique successfully propagates the missing colours into the

greyscale regions of the images.

2. Our next contribution focused on the more general colourisation problem to the case
of missing all colour in a region, i.e. colour information is only available outside and
on the border of the region. Existing PDE-based inpainting algorithms can be divided
into two groups: inpainting algorithms based on energy function, and inpainting
algorithms based on PDEs directly. Inpainting-based PDE algorithms have first been
developed, in this thesis, for the reconstructions of small missing regions without
texture. Our contributions, in this respect, relate the overcoming these limitations

and can be summarised as follows:

e Several PDE algorithms of 2" and higher orders have been studied to

reconstruct the small missing regions.

e We propose to use PDE algorithms to recover missing regions in Y channel,
then PDE-based colourisation methods have been applied to reconstruct the

missing regions in Cb and Cr channels.

e The performance of inpainting-based PDE algorithms is evaluated by statistical

measurements and topological data analysis-based quality measure.

e The performance of 2" and higher order PDE methods have been tested on the
connection of edges over large distances (i.e. Connectivity Principle) and the
smooth propagation of level lines into the damaged domain (i.e. Curvature
Preservation).

12
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e The performance of these algorithms has been assessed by studying their

iterations and their convergence properties.

e Also, these PDE algorithms have been applied to natural and face images
datasets in the frequency domain, and their results are compared with the results
of the spatial domain. MSE, PSNR E, MSSIM and CSQM are used to evaluate
these techniques in both the spatial and frequency domains. TDA scheme is used
to check the quality of image inpainting and to check the efficacy of the PDE

algorithms.

e The PDE algorithms have tested on the natural images in both the spatial and
frequency domains. The results of these algorithms in the spatial domain have

compared the results of them in the frequency domain.

To sum up, these PDE algorithms have been applied to several natural images and
shown to successfully reconstruct small non-textured missing regions with edges
and corners, but there is still challenging existing with textured missing regions.

Therefore, we attempted to handle this challenge as our next contribution.

3. As mentioned before, inpainting-based PDE algorithms cannot reconstruct textured
missing regions. Our review of existing schemes to deal with this issue revealed two
interesting schemes: an EBI method (Jassim et al. 2018) and high order PDE
algorithm (Esedoglu & Shen 2002). A novel hybrid inpainting technique is
developed which is inspired by (Bertalmio et al. 2000). The basic idea is to divide the
image into texture and structure components. The missing regions of these

components are restored separately by EBI and PDE-based methods respectively.
The specific contributions of this work can be summarised as follows:

e Three types of decomposing methods have been tested to divide the image into

texture and structure components (Rudin et al. 1992).

o Different order PDE-based algorithms such as Mumford-Shah (Esedoglu &
Shen 2002), and Cahn-Hilliard (A. L. Bertozzi et al. 2007), have been used to

reconstruct missing regions in the structure component.

e An EBI method has been applied to reconstruct the missing regions in the
texture image component; the use of different block sizes, based on the

quantities of the texture in the surrounding of the missing regions is proposed.

13
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e The hybrid technique has been applied to natural dataset images in both the
spatial and frequency domains, its results in the spatial domain has compared

with its results in the frequency domain.

To conclude, the proposed technique has been applied to a sufficiently large dataset
of natural images, and their performances have been compared with those resulting
from the use of the algorithm in (Bertalmio et al. 2000). Statistical measurements
and TDA approach are used to evaluate the results of the mentioned techniques.
This technique successfully reconstructed the small textured missing regions with
edges and corners, but it still has the challenge to recover the large missing regions
with high structure and texture. Therefore, the next step will deal with this issue by

applying the EBI algorithm.

4. An EBI technique was proposed in (Criminisi et al. 2004) for reconstructing large
missing regions with simple textures and structures. It is somewhat limited to
recovering missing regions with rich textures and structures. To overcome this
drawback, an innovative topological exemplar-based inpainting (TEBI) technique is
developed whereby the assessment of the similarity of patches includes the
application of topological parameters gained by topological data analysis scheme
(Jassim et al. 2018). Furthermore, the ideas in (Anupam et al. 2010), (Hesabi &
Mahdavi-Amiri 2012), (Deng et al. 2015), and (Asaad & Jassim 2017) are
improved by using geometrical structure features of the images. Below are the main

achievements in this part:

e The size of the patch (a window to be searched for its match in the whole image)
is determined based on the quantity of the texture in the surrounding of the
missing region via Topological Data Analysis (TDA) scheme.

e The filling priority of the patch is determined by the geometrical properties of

curvature of isophotes.
e Introducing new patch-matching scheme, which can be divided into two stages;

1- Calculating the sum -of -squared distance (SSD) for Laplacian, gradient and

spatial domains of the image and selecting the nearest 30 patches.

2- Measuring the normalised cross-correlation coefficient of the 30 patches

defined in stage one to select the nearest patch.

14
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The proposed approach is implemented on 200 natural images that contain missing
regions of different sizes and random locations in the same images. The results have
been compared with the results of algorithms introduced in (Criminisi et al. 2004),
(Anupam et al. 2010), and (Abdollahifard & Kalantari 2016), and evaluated based on
statistical measurements such as MSE, PSNR and SSIM. Also, this proposed
approach has been applied to natural images in the frequency domain, and its result is
compared with the results of the spatial domain. MSE, PSNR E, MSSIM and CSQM
are used to evaluate these techniques in both the spatial and frequency domains. This
proposed approach successfully reconstructed the large missing regions with rich
texture and structure however it still has a shortcoming with the largest missing
regions which is solved in the next step.

5. All inpainting algorithms, including the above ones, have limitations with large
missing regions. A novel technique for reconstructing large missing regions in
images has been developed consisting of EBI and PDEs algorithms successively with

the seam carving approach (Avidan & Shamir 2007), as explained below:
e The seam carving approach helped to shrink the missing region in the image.
e A TEBI algorithm has been applied for reconstructing shrunken missing regions.

e The carved seams carving has been reinstated to restore the original missing

region size in the image.

e Three different high-order PDE algorithms have then been used for restoring

image information along the seams within the missing regions in the image.

Lastly, the performance of the proposed technique has been tested on different
natural images. The results have been compared with the results of the algorithm in
(Criminisi et al. 2004) by using statistical measurements and TDA approach. The
proposed technique achieved reconstructing the largest texture and structure missing

regions.

1.6 Publications and Presentations

1.6.1 Publications
1. A. Al-Jabari, S. Jassim, and N. Al-Jawad. <> Colourising monochrome images’’.
SPIE Commercial + Scientific Sensing and Imaging, 2018, Orlando, Florida,
United States. Proceedings Volume 10668, Mobile Multimedia/lmage
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Processing,  Security, and  Applications 2018; 1066806 (2018).
https://doi.org/10.1117/12.2309938.

2. A. Al-Jaberi, A. Asaad, S. Jassim, and N. Al-Jawad. > Topological data
analysis to improve exemplar-based inpainting’’. SPIE Commercial + Scientific
Sensing and Imaging, 2018, Orlando, Florida, United States. Proceedings
Volume 10668, Mobile Multimedia/lmage Processing, Security, and
Applications 2018; 1066805 (2018). https://doi.org/10.1117/12.2309931.

3. A. Al-Jabari, S. A. Jassim, and N. Al-Jawad. “’Inpainting Large Missing
Region-Based on Seam Carving Approach’’, Intelligent Systems with
Computer Vision and Data Analytics, EAI, ID 2280, November (2018).
http://dx.doi.org/10.4108/eai.29-11-2018.156000.

4. A. Asaad, A. Al-Jabari, N. Al-Jawad, S. A. Jassim. “’Topological Data Analysis
for evaluating PDE-based inpainting methods’” (will be submitted)

5. A. Al-Jaberi, A. Asaad, S. Jassim, and N. Al-Jawad. ‘’Topological data analysis

for forgery detection of image inpainting”’ (will be submitted)

1.6.2 Presentations
1. Presentation of (Colourising greyscale images based on PDE methods) in EGL
2017 Workshop on Applied and Numerical Mathematics, in University of
Greenwich, London, on 8th — 9th June 2017,

https://www.gre.ac.uk/ach/services/events/EGLmathsworkshop.

2. Presentation of (Inpainting monochrome images) in SPIE Commercial +
Scientific Sensing and Imaging Conference, Orlando, Florida, United States, on
15th — 19th April 2018,
https://www.spiedigitallibrary.org/conference-proceedings-of-
spie/10668/1066806/Colourising-monochrome-images/10.1117/12.2309938.

3. Presentation of (Inpainting Large Missing Region-Based on Seam Carving

Approach) in EGL 2018 Workshop on Optimisation, Applies and Numerical
Mathematics, in University of Essex, on 6th — 7th June 2018,

https://www.essex.ac.uk/events/2018/06/06/eql-2018-workshop-on-
optimisation,-applied-and-numerical-mathematics.
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1.7 Thesis Outline

The contents of this report are organised as follows:

Chapter 2 presents the mathematical preliminaries of inpainting algorithms
such as some definitions and theories which that consider important for the

understanding these algorithms.

Chapter 3 presents the process of converting grayscale images to a colour
image, the process of adding colour to the grayscale images, is called
colourisation term. There are several colourisation techniques, these
techniques divided into two groups. Also, this chapter reviews recently
devised colourisation techniques and then clarifies the differences between
them. Colourisation-based PDE algorithm is described, and an improvement
of this algorithm is introduced. The efficiency of this algorithm is checked
by comparing it with the other three colourisation algorithms. This
comparison is done by using statistical measurements. Conclusion and the

future work is introduced.

Chapter 4 provides a detailed review of existing PDEs algorithms in
inpainting and discusses relevant work on inpainting missing regions and
handling the edges and corners in missing regions in both the spatial and
frequency domains and evaluating the perceptual quality of these image
inpainting algorithms. The efficiency of high-order PDEs algorithms is

investigated in handling edges and corners in small missing regions.

Chapter 5 introduces a novel EBI algorithm for restoring textured missing
regions in the image. This algorithm removes an unwanted object and
recovers missing regions in the old images as well. It includes a new
mechanism to identify the size of a patch based on a quantity of texture in
missing regions, the filling priority definition based on the geometrical
properties of curvature of isophotes. Furthermore, the patch-matching
scheme uses two stages of selecting the nearest patch. Lastly the usefulness
of different missing regions EBI in structure and texture finish stage of

nature image inpainting algorithm with practical examples are demonstrated.

Chapter 6 presents previous studies on hybrid inpainting techniques and
describes the image decomposition into a texture and structure components

which that inpainting by EBI and PDEs algorithms respectively. Three kinds
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of PDEs algorithms are used for the inpainting of structure components.
Hybrid technique deals with textured missing regions, the results of this
technique have compared with each other. These techniques have been

applied on natural dataset images in both the spatial and frequency domains.

e Chapter 7 introduces a novel technique to handling for large missing
regions into images which that use EBI and PDEs algorithms successively.
Also, this technique has applied to images after reshaping large missing

region, where they use seam carving to reshape missing regions.

e Chapter 8 provides a general discussion of our contributions of this research
to summarize the conclusions, followed by a list of open directions for future

research issues.

The Appendices include some experimental results of each inpainting algorithm that

used in this thesis.
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Chapter 2 MATHEMATICAL
BACKGROUNDS

The field of image inpainting has evolved and expanded rapidly in the last two decades,
and it has become useful in different image processing and computer vision applications.
This chapter outlines mathematical definitions and theorems underpinning the current
dominantly PDE-based inpainting techniques (i.e. variational models of image
inpainting). The importance in image enhancements and restoration of missing
information is stressed, and the domains of inpainting are illustrated. Image quality

measures are introduced in assessing the success and limitations of such schemes.

The chapter is divided into seven main sections. Section 2.1 provides a brief overview
of inpainting methods and describes the various ways of classification of these methods.
Section 2.2 illustrates the domains used in this thesis. Section 2.3 describes the space of
functions of bounded variation which are commonly used in image analysis,
highlighting types of functions relevant to our research project. Section 2.4 presents the
minimisation formulas that model many problems in computer vision. We also outline
the process of solving these minimisation problems especially for restoring the
information in missing regions. In section 2.5, an overview of numerical methods is
provided for solving PDEs in order to restore missing information in images. Section
2.6 reviews the commonly used statistical-based image quality measures and introduces
the TDA approach for assessing the performances of inpainting schemes. Section 2.7

gives a brief summary of this chapter.

2.1 Classification of Inpainting Methods

Inpainting techniques can be categorised in many ways, for example, as mathematical
and statistical techniques in terms of their corresponding theoretical models,
mathematical inpainting methods used PDEs and variational methods for recovering
missing information in image regions (Chan & Shen 2005), (Rudin et al. 1992).
Statistical techniques are used in the context of image interpolation (Kokaram et al.
1995b), image replacement (lgehy & Pereira 1997), error concealment (Jung et al.
1994), and image coding(Le Floch & Labit 1996). More precisely, in statistical class,
the methods assume that the image consists of mainly homogeneous regions, separated
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by discontinuities, i.e., edges. Inpainting methods for (lossy) image coding and
compression based on the edge information (the geometric structure of the
discontinuities and the amplitudes at the edges) are introduced.

Inpainting techniques can also be classified in terms of the size of missing regions, the
EBI and hybrid methods (Jiying Wu & Qiugi Ruan 2008), (Bertalmio et al. 2003), (Kim
& Cai 2015), (Criminisi et al. 2004), (Cheng et al. 2005) are used to recover large
missing regions in the images, while the PDE inpainting methods (Recktenwald 2011),
(Wei Guo & Li-Hong Qiao 2007), (Shen & Chan 2002) are used to propagate
information into small missing regions (i.e. scribbles, texts and dates).

Another important base for classifying inpainting schemes is in terms of texture
quantity in the surrounding areas of missing region. Such schemes can be divided into
texture synthesis-based and PDE-based inpainting methods. The texture synthesis based
methods of (Efros & Leung 1999), (Wei & Levoy 2000) are used to recover highly-
textured missing regions, while PDE methods (Chan & Shen 2001), (Shen & Chan
2002), (Burger et al. 2009) are used to recover non-textured missing regions in the

image.

Guided by the stated aims of this research which is focused on mathematically-inspired
approaches, in this thesis, the classification of inpainting methods as being non-
Exemplar Based Inpainting (nEBI) and EBI based on information propagation process
is adopted. The first type, nEBI methods uses Partial Differential Equations (PDES) to
propagate the information pixel by pixel from the surrounding (or neighbouring areas of
the missing region) to the missing region, (e.g. see (Burger et al. 2009), (Esedoglu &
Shen 2002), (Schonlieb et al. 2010)). While the EBI methods have been proposed to
recover the large missing regions based on propagating the information block by block
from the rest of the image to the missing region (e.g. see (Criminisi et al. 2004), (Cheng
et al. 2005), (Jassim et al. 2018), (Sangeeth et al. 2011)).

The above terms of classifications are based on the underpinning theories, the actual
method of image propagation, the models of missing colour/texture information, and
the size of the missing regions. Since digital images can be represented in different
domains that can be derived from their intensity matrix by different discrete
mathematical transformation. Accordingly, one may classify inpainting methods in
terms of domain of operation. For some transforms, one may be able to implement
some or all the above-mentioned inpainting schemes in the corresponding domain. It is
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worth noting, that recently inpainting techniques have been proposed to deal with
situations where there are missing intensity data and/or missing transformed data, (see
e.g. (Chan et al. 2006) and (Tavakoli et al. 2018)). In this thesis, we only consider the
case where the only missing data are intensity in some regions but interested in using
properties of some transforms to deal with challenges like missing data in large

regions.

2.2 Inpainting Domains

The intensity matrix representation of a digital image is referred to as its spatial
domain, where each entry represents digitisation of the reflected light at the
corresponding position in the photographed space/scene, (see section 1.2.1). Discrete
Fourier transforms, and other wave-forms transforms provide other digital image
domains, referred to as frequency domains because these transforms analyse the

images into different frequency ranges.

Inpainting in the spatial domain, simply fills a missing region with intensity values
obtained from any of the schemes mentioned above. Whereas in the frequency domain,
inpainting requires the use of a discrete invertible frequency transform, as well as an
inpainting scheme in the frequency domain Figure 2-1, which is a block diagram

illustration of the way such schemes work.

Inpainting in the

- v ST —
Inputimage  @———» Frequency transform frequency domain

Inverse
Output image @ PR

Figure 2-1: Inpainting processing in the frequency domain.

2.2.1 Frequency Domain

The two most commonly used frequency transforms are the Fourier Transform (FT)
and the Wavelet Transform (WT). For digital images, their discrete versions DFT and
DWT are used to analyse any digital signal/image into different frequency ranges. In
both cases, transformed coefficients in the high-frequency range correspond to edges

and other image discontinuities in an image, while coefficients in low-frequency range
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are associated with smooth regions. Our interest in implementing inpainting schemes
in the frequency domain for the restoration of missing intensity data stems from the
importance of knowledge texture for inpainting. In this thesis, we shall confine our

work to prove this principle for the wavelet domain.

The DFT decomposes an image/signal by projecting it onto sine and cosine waveforms
of different frequencies over the entire image. At any frequency, the output Fourier
coefficient is a complex number whose value depends on every pixel in the image. In
contrast, Wavelet transform decomposes images/signals using other waveform functions
that have similar properties to circular functions, but whose energy is centrally
concentrated in a relatively small interval but decays away from it. Both DFT and DWT
are used in a wide range of applications, such as image analysis, image filtering, image
reconstruction and image compression. The finiteness of wavelet support implies that,
unlike the DFT, the DWT is capable of discovering localised features at various scales,
and its multi-resolution way of analysing images/signals is a very important
characteristic. This significantly benefits inpainting by providing an obvious way of
dealing with the challenge of restructuring large missing regions. It also helps to
provide a better global structure estimation of a damaged region in addition to its better
shape- and texture-preserving properties. The multi-resolution property is a
consequence of the fact that appropriately chosen wavelet functions, referred to as
mother wavelets, can be used to construct a nested sequence of subspaces of the Banach
space of all continuous bounded real-valued functions where the subspaces are
generated simply by scaling and shifting the mother wavelet function. This sequence
together with their dual subspaces facilitates the exact reconstruction of the original
images/signals.

The DWT of a 1D-signal is computed by convolution with the generated bases of the
nested sequence and their dual, and the output coefficients represent the projection of
the signal onto the chosen bases (i.e. the mother wavelets, its successive scaled and
shifted versions plus their corresponding dual vectors). This implies that the DWT acts
as a filtering procedure using a wavelet filter bank. Many filter banks have been
developed and used over the last few decades. The DWT is usually applied first on the
rows of an image and then on the resulting columns in accordance with a number of
decomposition schemes, the most common of which is the pyramid scheme. In the rest

of this section, this process is described by an example.
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A DWT decomposes a signal into low and high-frequency sub-bands, each of which can
be transformed repeatedly, providing multiple-resolution representations of the signal at
different spatial scales and different ranges of frequencies. The DWT of any signal is a
representation of the signal in terms of a family of orthonormal wavelet bases obtained
from a single wavelet function, called a mother wavelet, through repeated translation.
There are different wavelet transform filters that have been designed and used for
various signal- and image-processing applications. The famed wavelet filter is
Daubechies (db) (Daubechies 1990) and its family of filters including db2, db4, db6,
and db8 of length 2, 4, 6 and 8 respectively. The Daubechies 1 (dbl) filter, which is
simply the original Haar filter, is a piecewise constant function and can be defined as:

1 0<t<05
h(t) =3-1 05<t<1 (2.1)
0 otherwise

The separable property of the DWT makes the implementation of the 2-dimensional
wavelet transform (DWT) of images equivalent to a successful implementation of the 1-
dimensional DWT in two orthogonal directions. It is usual to apply the DWT firstly in
the horizontal direction across the rows of the input image into low and high-frequency
sub-bands. The low-frequency sub-band is commonly referred to as the approximation
sub-band which represents low-frequencies, while the high sub-band, called the details-
sub-band represents the high frequencies in the horizontal direction. Lastly, each one of
these sub-bands has been vertically decomposed into two low and high sub-bands.
Therefore, the image is decomposed into 4-subbands: low-frequency sub-band (LL) and
high-frequency sub-bands (LH, HL, and HH). The LL sub-band represents the low-
frequencies in both horizontal and vertical directions; LH, HL, and HH sub-bands
represent the high frequencies (indicating significant features such as edges) in the
vertical direction, in the horizontal direction and in the diagonal direction, respectively.

Figure 2-2 clarifies the analysis of the image by using the Haar wavelet transform.
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Wavelet image
representation (2V x 2V)

Input image (2V x 2V)

1
‘~(I'. Py 4 Py Py)

1
AP PPy

1
(Py v Py Py~ Py)

1
a(Pr+Pa—P3s—Py)
Detail coefficients

Figure 2-2: Process of the Haar wavelet transform for the 1% level.

In Figure 2-2, the Haar wavelet function decomposed the signal into an approximation
sub-band containing the low-frequencies by averaging the coefficient and a detail sub-
band containing the high frequencies by differencing the coefficients. As mentioned
above, when the DWT s applied on an image, it produces 4 sub-images with half the
resolution of the original image. The first output of the dwt2 transform is the
approximation coefficients where each output pixel is an average of a 2 x 2 window.
The other outputs (2", 3 and 4™") are detail windows that take two pixels within the
window and subtract their sum from that of two other pixels in the window.

The recursive decomposition is performed only on the approximation coefficients, and
Figure 2-3 is an example of level three of the pyramid decomposition scheme.
Numerous wavelet filter banks can implement in a variety of decomposition schemes.
The Haar wavelet filter has been selected for use throughout this thesis due to its
simplicity.
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LL1 HL1

LH1 HH1

1-Level DWT Resolution

LL2 HL2

HL1
LH2 HH2

LH1 HH1

2-Level DWT Resolution

HL1

LH1 HH1

3. Level DWT Resolution

1-Level DWT image

2-Level DWT image

3.Level DWT image

Figure 2-3: Pyramid of wavelet transform for 15,29 and 39|evels.

2.3 Functions of Bounded Variation (BV)

In most computer vision problems, the ability to model discontinuous image features is
significant importance and this particularly relevant to inpainting. Image inpainting is
fundamentally an ill-posed optimised interpolation problem, and missing data regions
can be predicted by modelling discontinuities
functions u(x, y). The space BV of functions of bounded variation endowed with the so-
called total variation norm is well adapted for this purpose. This norm is used to control
the regularisation term during the iterative solution of optimisation tasks. For the sake

of self-containment and clarity, the basic definitions in dealing with these issues are

given.
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2.3.1 Special Differential Operators

In this work, the following definitions and theorems are needed for functions of two
variables. Generalisations to functions of more variables are straightforward and can be
found in (W. Rudin 1976).

Definition 1 (Differentiable): A function f(x,y), is differentiable at the point (x,, y,) if
i flxoth, yO+k)_f(xOJyO)_h%(xOJYO)_k%(xO'YO) _
(h,k)lir%o,O) VhZ+k? -

0. (2.2)

This implies that the first partial derivatives of f exist and that f is continuous at (x,, y,).

Definition 2: The special differential operators for the function f(x,y) are defined as

follows:

e The gradient vector of f(x, y) is defined as Vf (x,y) = (a—f ﬂ).

ox’ dy
o The Laplacian of f(x, y) is defined as Af (x,y) = % + Ziy]zc-
e The divergence of f(x,y) is defined as V- f(x,y) = Z—ii + Z_;j-

and the perpendicular gradient vector 7+f by
af of
L — (2L 2L
Ve y) = ( ay'ax)
The relationship between the level curves of f and the gradient vector Vf is stated in the

theorem 3.

2.3.2 Spaces of functions with Bounded Total Variation
Let O < R™ be a bounded open set, u: O —» R™ (an image representation), is a function of
bounded variation in L1(Q) if the distributional derivative of u is representable by a

finite measure in Q, that is, if.

d

f 122 4y = f ddDu Vo € CE(Q), i=12, (2.3)
o 0% Q

in R2, Du = (D,u, D,u) in Q. The vector space of all functions of bounded variation in Q

is denoted by BV (Q). Further, the space BV (Q) can be characterised by the total

variation of Du. For this, the so-called variation V (u,2) of a function u € L*() Is

firstly defined.
Definition 4 (Variation): Let u € L' (), the variation V (u, 2) of u in 22 is defined by

V(u,2) = sup {fu dive dx: ¢ € CL(), |l < 1Vx € Q}. (2.4)
Q
A simple integration by parts proves that total variation defined on the L-norm of the

gradient in Q
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lullryy =V, 0) = f |Vuldx, VYue€Cci(n) (2.5)

if ue€ (). In (2.3) represents the bouﬁded space defined on the space of functions
with bounded total variation BV (Q). The definition of this space is

BV (Q) = {u € L'(Q): |lullyy < oo} (2.6)
BV (Q) is a Banach space endowed with the norm

lullgvia) = llullrq) + Nlullrv)- (2.7)
Thus BV -functions are the L! functions with bounded TV -norm, and discontinuous
functions are included in this space. The advantage of the TV-norm is that it allows for
discontinuities, while avoiding irregular oscillations, such as noise. Nevertheless, it is
used to remove the noise in an image whilst preserving important details such as edges
(Rudin et al. 1992).

In contrast, the L? norm of the bounded variation, the regularisation term of the
magnitude of the image gradient is used in the L? norm (i.e. the Tikhonov (TK)
regularisation method (Tikhonov 2014) which is defined on the L? norm). The norm of

BV (Q) is given as follows:

2 — 2 2
Il gy gy = Ml oy + ull? 2.8)
The TK regularisation technique successfully removes image noise but results in
blurring important image features/structures like edges and jumps in the denoised image

(Liu et al. 2014).

2.3.3 Calculus of Variations — A brief introduction

In this section, the mathematical background that leads to the variational-based
inpainting method is briefly reviewed. Calculus of variation is concerned with
functionals (i.e. functions whose codomains are functions).

A functional on a real vector space V, F is a mapping on V onto the set of real-valued
functions defined on V. The functional derivative is the derivative of a functional with
respect to a function and is a generalisation of the function derivative. It tells us how the
functional changes when the function changes by a small amount. In this work, the
space V can be restricted to be a Banach space. A functional on a Banach space is a
scalar-valued mapping which is continuous, but not necessarily linear.

Let V be a Banach space and let F: V —» R be a functional. The definition of the

functional derivative at x in the direction of y is then

Fx)y = (l;i_r)r(l)F (x +ey)— F(x) 2.9)

€
F is (Fréchet) differentiable at x if
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Flx + y)= Fx)+ F'(x)y + 0(lylly) aslylly >0 (2.10)
F’(x) is a bounded linear functional. Analogous to the ordinary calculus. x is a critical
point of F if F'(x) = 0, I.e.
F'(x)y = 0, vy € X (2.11)
where X c R™ is a nonempty set subset of the vector space R™. This critical point

condition is called the Euler-Lagrange equation for the functional F.

Calculus of variations is essentially a generalisation of ordinary calculus, (Hadamard
2003), It seeks to find the path, curve, surface, etc. of a functional that has a stationary
value. Therefore, calculus of variations is a field which deals with finding extrema’s (i.e.
usually in physical problems, a minimum or maximum). Mathematically, this involves

finding stationary values of an energy functional form:

b
I =f F(t,y(t),y'(t))dx, (2.12)

I has an extremum only if the Euler-Lagrange differential equation is satisfied.

2.4 Minimisation Problems
Before going deeper into the minimisation problems, a few more definitions are needed.
Definition 4 (Hadamard 2003): Let X and Y be a normed space, T: X - Y a (linear or
nonlinear) mapping. The equation

Tu=f (2.13)
is called well-posed if the following three conditions hold:

1. Existence: For every f € Y there is (at least one) u € X such that Tu = f.

2. Uniqueness: For every f €Y there is at most one u € Xwith Tu = f.

3. Stability: The solution u depends continuously on f; that is, for every sequence

(u,) = X with Tu,, = Tu(n — ), it follows that u,, = u(n - ).

If (at least) one of the previous conditions fails, that the problem (2.13) is called ill-
posed in the sense of Hadamard.
In image processing problems, ill-posedness leads to instability issues. The right-hand
side f to Y is never known exactly, but only up to an error &> 0, which is responsible
for instability, and the problem (2.13) is transformed to a perturbed one as follows:

f=Tu+6 (2.14)
Various digital processes can be applied to the digitised image f to generate a new

digital image u. The Euler-Lagrange differential equation has been applied to solve the

problem of finding the minimum or maximum values of the energy functional.

Theorem 1: Each problem in the calculus of variations can be stated in three equivalent

forms, which are
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Variational form:

MinimiseE (u) = ff F(uw)dQ
Q

‘;_i _ f f (Z ail) (Div)dQ =0 forall v
Q

RACE
i aDlu o

When F is a quadratic function of u and its derivatives, the expressions dF /dD;u are

Weak form:

Euler equation:

linear and so is the Euler equation.

2.4.1 Euler-Lagrange Equation

The Euler-Lagrange differential equation is the essential equation of the calculus of

variations. It stipulates that if I is defined by an integral of the form (2.14), wherey = %,

then | has a stationary value if the Euler-Lagrange differential equation
JdF o0 (OF)

ox  9x\dy

= 2.1
Ox Ox 0 (2.15)

is satisfied.
For two independent variables, formula (2.16) shows the double integral to be

minimised over a fixed domain D of the plane, with respect to functions y = y(t, h).

I =_[-[F(t,h,y,y’t,y’h)dx, (2.16)
D
The Euler Lagrange equation for the minimisation of (2.16) the equation is
OF 9 (OF\ 8 (09F\_, 217
dy 0oc\dy',) oh\dy',) (217)

Definition 5 (Local minimum values): A function f has a local minimum value f(x;)
at the point x; in its domain provided there exists a number A > 0 such that f(x) =
f(x;) whenever x is in the domain of fand |x — x;| < h. A function f can have many

local minima.

Definition 6 (Absolute minimum values): A function f has an absolute minimum
value f(x,) at the point x, in its domain, if f(x) = f(x;) holds for every x in the
domain. This means that a function can have at most one absolute maximum or
minimum value, though this value can be assumed at many points. When the global
minimum of a function f(x) is to be found, we need to find x such that f(x) has the
smallest possible value. The unconstrained minimisation problem is formulated as

mxin f(x), (2.18)
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where x € R™is a real vector with n > 1 components and f: R™ - R is a smooth
function. Sometimes a constraint must be fulfilled at the minimum. We can for example
look for the minimum only at points where another function g(x) = 0. The constrained
minimisation problem is formulated as

min f(x) subjectto g(x) = 0, (2.19)
where x and f are defined as a)l;ove and g : R™ - R is a smooth function. To find local

extrema values of the function f, the Lagrange multipliers method can be used.

2.4.1.1 Lagrange Multipliers (Bertsekas 2014)
The method of Lagrange multipliers is a strategy for finding local extrema of
minimisation function f(x;, ..., x,) subject to a constraint g(x, ..., x,) = 0, where f and
g must be functions with continuous first partial derivatives in the open set containing
g(x1,...,xp) =0and Vg # 0 atany point in the open set.
A new variable (A) called a Lagrange multiplier is introduced, and study the Lagrange
function that defined by

L(xq, e, Xpu A) = fOxq, e, %) + 2 g(xq, oo, X)), (2.20)
Where the Lagrange multiplier 1is a constant coefficient (i.e. 1 is the change in the
optimal value of the objective function f(x4,...,x,) due to the relaxation of a given

constraint g(xy, ..., x,).

If f(x;) is a maximum of f(x;) for the original constrained problem, then there
exists AOsuch that (x;,4,)is astationary point for the Lagrange function (stationary
points are those points where the first partial derivatives of L = 0). However, not all
stationary points yield a solution of the original problem, as the method of Lagrange
multipliers yields only a necessary condition for optimality in constrained problems.

This method of Lagrange multipliers is used to solve VL(xq,..,x,, 1) = 0. Note

that 7, L(x4, ..., x,, 4) = 0 implies g(xy, ..., x,,) = 0. To summarise

VE(x1, ey Xp) = —AVg(xq, ..., Xp)
VL(xq, ..., %, A ={ 2.21
(%1 ) glxq, ., %) =0 (221)
This Vf = —1 Vg implies that the extrema Vf and Vg are parallel.
Vf = llvgl + -+ /1n|7gn (222)

is required at the extrema. To solve equation (2.21), which amounts to solving n

equations in n unknowns.

To sum up, Lagrange multipliers method is just a strategy that finds the local maxima

and minima of the gradient of function points in the same direction as the gradients of
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its constraints, while also satisfying those constraints. The method of Lagrange

multipliers is used to solve the constraint optimisation problems

Similarly, if F(w): V > Rand G(u) : V - R are C*-functionals on a Banach space, we
can minimise F(u) on the constrained set ¢ = {u € V: G(u) = 0}. The Lagrange

functional is defined by

L(u, 1) = F(u) +f/16(u) dx, (2.23)
Q
where u: Q —» R and 2: Q - R are functions, then the solution of a minimisation problem

(2.23) is found by iterative algorithms.

2.4.2 The Method of Steepest Descent (Gradient Descent) (Kelley 1999)

The steepest descent method is an optimisation method for finding the local maximum
or minimum of the function f(x). The method of steepest descent is also called the
gradient descent method, this method starts at x° and, as many times as needed, moves
from x™ to x"*1by minimising along the line extending from x™in the direction
of —Vf(x™), the local downhill gradient. Formally, this can be done several times by
the algorithm

X"l = x™ + AtVF(x"); n = 0; 1; 2, (2.24),

where At is small enough, x™ gets closer to the minimum as n increases. At a minimum
x*the gradient Vf(x*) equals zero and the iterative algorithm has converged. A
drawback of the method is that many iterations may be needed before convergence. In
general, the convergence rate is only linear. The convergence can be improved by
calculating the optimal At in each step, as see in Figure 2-4. This will take more

computational time and the conjugate gradients method is often a better alternative.

Figure 2-4: The level curves of a poorly scaled problem. The vector points in the steepest
descent direction.

The steepest descent method is expressed via the diffusion equation. Numerical
methods can be used to solve the equation (2.23). The gradient descent is simply an

itertive method for finding the minimum of a function in an iterative way.
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2.4.2.1 Unique Solution (W. Rudin 1976)

A minimisation problem can have several local minima. The aim is in finding the global
minima which represents the best of all such local minima. Sometimes, the problem is
that even if the iterations have converged (i.e. each iteration represents the solution of
the problem), a global minimum solution is difficult to determine, so we will visually

determine it on the image.

Theorem 2: Any local minimiser x*is a global minimiser of differentiable f if function
f is convex. Then any stationary point x*is a global minimum. Therefore, the concept of

convex needs to be defined (W. Rudin 1976).

Definition 7 (Convex set) (W. Rudin 1976): A set S in a vector space over R™ is called
a convex set if the line segment connecting any pair of points of S lies entirely

in S. Formally, for any two points x € S and y € S, we have.

ax + (1—-a)y €S, Va € [0,1] (2.25)
This definition is illustrated in Figure 2-5.

—
‘\\ S —

Figure 2-5: A straight line segment connecting two points in a set. The left is a convex set. The
right is a non-convex set.

Definition 8 (Convex function) (W. Rudin 1976): A function f: M — R defined on a

nonempty subset M of R™ and taking real values is called convex, if
» the domain M of the function f is convex set;

« foranyx,y € Mandevery a € [0,1] one has
flax + A-ay) <af(x)+ A -a)f (), (2.26)
Then the graph of £ lies below the straight line connecting (x, f(x)) to (v, f(y)) in the

space R™. Figure 2-6 is clarified the definition of convex function.

]

Figure 2-6: A straight line segment connecting two points at a function. The left is a convex
function. The right is a non-convex function.
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The main point necessary to the proof of well-posedness, the convexity of the
regularisation functional, will also be necessary to establish the well-posedness of
different types of regularisation operators (Oman 1995).

The solution of the Euler-Lagrange equation which follows from the minimisation
problem leads to the PDE. Therefore, the numerical method has been applied to solve
the PDE. The next section shows the numerical methods which have been used to apply
the PDE-based inpainting models.

2.5 Numerical Methods of PDE-based Inpainting Models

Fast numerical methods for PDE-inpainting models continue to be an active research
area. Researchers from different fields have been bringing many fresh ideas to the
problem, which has led to many exciting results. Carola in (Schonlieb 2015) has studied
the numerical solution of PDE-based inpainting models and also discussed the
numerical solutions of high order PDE models. Some categories to be particularly
mentioned are the finite difference (Smith 1985), finite element (Schonlieb 2009), and
dual/primal-dual (Chambolle & Pock 2010) methods. Many of these methods have a
long history with a great deal of general theories developed. But when it comes to their
application to the PDE-based inpainting models, many further properties and specialised
refinements can be exploited to obtain even faster methods. The finite-Difference
Method (FDM) is one of the numerous numerical methods that used to solve linear and
nonlinear PDEs (Smith 1985). The FDM was published as early as 1910 by L. F.
Richardson. FDM is the dominant approach that is used to find the numerical solutions
of partial differential equations which that describe different problems because it is easy
to implement, and its solutions are easily verified as well. More recently, numerical
solutions to the heat equation have been proposed in (Recktenwald 2011) based on
using finite difference techniques which applied the explicit, and Crank-Nicolson
implicit methods to find the approximate solution. The solution entails a series of steps.
Firstly, the PDE is converted into a discrete difference equation by finite difference
derived from a Taylor series expansion. Secondly, the discrete mesh of the difference
equation is constructed using initial and boundary conditions. Finally, the discrete

difference equation is solved.

In this thesis, the finite difference method has been applied to implement the PDE-based
inpainting models. Therefore, the next section introduces the finite difference methods

with all details and with some examples.
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2.5.1 Finite Difference

(Smith 1985):

Let U(x) represent a function of one variable that, unless otherwise stated, will always
be assumed to be smooth, meaning that we can differentiate the function several times
and each derivative is a well-defined bounded function over an interval containing a
particular point of interest’x. Three forms are commonly considered, which are forward,

backward, and central differences. Then by Taylor’s theorem,

Ulx+h)= U()+hU'(x)+ %hZU”(x) + %h?’ U'"(x) + ... (2.28)
and
Ux—h) = Ux)—hU'(x) + %hz U (x) — %h?’ U’ +... (2.29)
Collecting equations (2.28) and (2.29) will give
U(x + h) + Ulx—h) = 2U(x) + h2U"(x) + O(h"), (2.30)

where 0(h*) denotes terms containing 4™ and higher powers of h. We are supposing
these terms 0 (h*) are trivial in comparison with lower powers of h; it follows that,
U"(x) = (EF—U> ~ L {(U(x + h) —2U(x) + U(x — h)}, (2.31)
d0x? e h?
with a leading error on the right-hand side of order h?. Figure 2-7 clarifies the following
formulas; the forward-difference formula clearly approximates the slope of the tangent

at P by the slope of the chord PB,
Ux) = %{U(x + h) - Ux)}, (2.32)
or the slope of the chord AP represents the backward-difference formula
U'(x) ~ %{U(x) —U(x — h)}, (2.33)

whilst the slope of the chord AB denotes the centred-difference formula

U'(x) = %{U(x + h) —U(x—h)}, (2.34)

u(x)

e

u(x —h) u{x) ui{x + h)

o x—h x x+h

Figure 2-7: Finite difference of U(x).
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The formulas (2.32) and (2.33) can be written instantly from equations (2.28) and (2.29)
respectively and assuming 2" and higher powers of h are trivial. Whereas, the formula
(2.34) can be obtained by subtracting equation (2.28) from equation (2.29) and ignoring
terms of order h3. This shows that O (h) denotes the error for forward and backward-
difference formulas, while the 0(h?) indicates the error for a centred-difference formula.
The finite difference of a function of more than one variable is illustrated in the

following definition.

Definition 8 (Smith 1985): Let U be a function of the independent variables x and t.
Partition the x — t plane into sets of equal rectangles of sides A x, At, by equally spaced
grid lines parallel to Oy, defined by xi = ih,i = 0,4+1,%2,...,, and equally spaced
grid lines parallel to Ox, defined by tj = jk, j = 0,%+1,%2,...,as clarified in the
Figure 2-8. Denote the value of U at the representative mesh point P(ih, jk) by

Up = U(lh,]k) = Ui,j'

Then by equation (2.31),
<82_U> B (62U> _U{(@ + Dh,jk} — 2U{iAx, jAt} + U{(i — Dh, jAt}
ij

0x? b — \ox? (h)?
OZU - Ui+1,j _ZUi,j + Ui—l,j
0x2 (h)?2 ’
with an error of order (Ax)?2. The forward-difference approximation for aa_ztz atPis
0U  Uijy1 — U
ot k ’
with an error of order O(At). Therefore, the backward-difference approximation for ';—Z
atPis

(2.35)

(2.36)

U Uiy — Uiy
0x h ’
with an error of order O (h).

(2.37)

A

ik

>
K
¥

*4-!1 -’i th x

Figure 2-8: The representative mesh point P(ih, jk).

35



Chapter 2: Backgrounds

2.5.2 Explicit Finite Difference Method

It is a numerical method for solving differential equations by approximating them with
difference equations, in which finite differences approximate the derivatives. FDM is
thus a discrete method. The first step is to replace each partial derivative by a finite
difference, leading to a differences formula. The second step will be to construct the
grid (i.e. discrete space (image)) of spatial and time variables of this equation. Note that,
the initial condition of this problem represents the initial state of the missing region in
the image (always zero), and the boundary conditions represent the values at the
boundary of the missing region. So, every value of the second row is determined from
the values in the first row by using the finite difference equation, and so on for the other
rows. Derivatives are replaced with difference formulas which only contain the discrete

values located on the grid. A general idea of this method is illustrated in Figure 2-9.

Approximate Uxs
Uy, Ut etc

Tayvlor expansion
of U

Approximate
Solution

Figure 2-9: General idea of the finite-difference method

In the next examples, the explicit finite-difference method is used to find the solution of

2-D heat equation.

Example.1: Solve the U, = U,, + U,,, on the 2-D domain case (black missing region),

the size of this missing region is 60 x 80.

U = Ugy + Uyy (2.38)
The numerical solution of equation (2.38) with Neumann boundary condition
reconstructs the missing region based on the information obtainable from the
surrounding region. The explicit finite difference method has been used to find the
numerical solution. The partial derivative in the equation (2.38) converts to a finite

difference formula:

n+l _

’ n n n
LJj

n n n n
Uij  Uinq; = 2U Uy Uijeg = 2U 5 U (2.39)
k h? h? )

The solutions of the heat equation are obtained via a stably-conditioned explicit finite

u

difference equation. To build the mesh, we need to determine the sizes of the spatial

grid and time steps. The spatial grid in an image is represented based on its height and
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width (M, N), and the spatial stepping size is 1, which represents the distance between
the any pixcl and its neighbours, which is h = 1.The time stepping size is chosen to

achieve the stability requirement of the finite difference solutions, which may be

expressed as % < 0.5. The time stepping size is determined as k = 0.1.
h

Equation (2.39) can be rewritten as follows:

k
1_
M=l + p((u{lﬂ,j tulgj—Aul Fuly + u?j_l)) (2.40)

where 2<i<M—-1and2 <j <N —1. The Neumann boundary condition can be

u

written as follows:
Uy (6, 1,8) = Upp — Up o U (O N, 8) = Uy_10 — Unpo U (LY, 1) = Uy p — Uy 1, Ux (M, 1)
=Uym-1— Uym
and the initial condition is u(x,y,0) = 0. The finite difference method can be used to

rewrite these boundary conditions, as follows

ull —ult. uy_—un . n_ul . no—ul
u—x(j: 1’ t) — 2,]h 1.], ux(j; N, t) — N 1,;1 N,j , uy(].,l, t) — ul,Zhul,l’ uy(M, i, t) — UiM—1 ul.,M,

h

The numerical solution of equation (2.38) with the Neumann boundary conditions

recovers the missing region in the image. Neumann boundary conditions give the
normal derivatives on a surface, du/dn, is prescribed on the boundary. Which means

govern information flux from a surface (i.e. through the edges of a surface). Neumann
boundary conditions are applied on all the boundaries in image inpainting problem
which encourage to recover the edges in the missing regions. After determining the
values of all pixels in the whole direction of the border, the equation (2.40) is used to
calculate the pixels' values and starts from the pixel in position (i=2, j=2) based on the
information on the border (i.e. row 1 and n and column 1 and m) for the whole image.
In the next stage, this process is repeated based on the border information and the
information from the first stage, until the last value of the time t=1000. The equation
(2.40) with Neumann boundary conditions are applied to each pixel in each (R, G, B)
channel of the image; in the end, it recovers the missing regions in the image. Figure

2-10 clarifies the filling in of a missing region based on the boundaries (Neumann).
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@ © ®
Figure 2-10: The finite-difference grid of heat equation.
Figure 2-10 is shown the procedures of using the finite-difference method to solve heat
equation. In Figure 2-10b, calculating the values of the border of missing region based
on the boundary condition and applying finite difference formula on the first pixels, and
solving finite difference formula on the first pixels and applying finite difference
formula on the second pixels in Figure 2-10c, then solving the finite difference formula
until last pixel in the first row in Figure 2-10d. Applying the same process for the other
rows from the missing region in Figure 2-10e. Finally, repeating the same process for

10000 times (i.e. until get to the convergenced solutions), as seen in Figure 2-10f.

Figure 2-11 clarifies how to the black missing region in the grayscale image by using
heat inpainting model. For more information about the heat model can be found in
Chapter 4.

@) (b) (©

Figure 2-11: Heat inpainting process: (a) original image, (b) masked image, (c) inpainted
image.

The next section shows the existing statistical quality measurements and explains all

their drawbacks. Therefore, to overcome the drawbacks of these statistical
measurements, a TDA approach is proposed to evaluate the quality of image inpainting.
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2.6 Image Inpainting Quality Assessments

The results of the proposed inpainting methods should be assessed in terms of the
performance and the quality. Therefore, different quality image measurements proposed
in the literature are studied. The most common methods are the statistical measurements

which are used to evaluate the results.

In this thesis, image inpainting methods are assessed both with and without use of
reference images. There are several studies in the literature on the quality of image
inpainting without using reference images; however, these studies are still a
complicated task. The next subsection presents the statistical quality measurements of

image inpainting.

2.6.1 Statistical Quality Measurements

Statistical quality measurements are computed directly from resulting images.
According to the availability of the original image the measurements can be classified
as Full Reference (FR), No Reference (NR) and Reduced Reference (RR) (Wang &
Bovik 2006). In this thesis, the quality assessment of image inpainting in case of FR and
NR is studied by using different statistical measurements. In the next section the well-
known methods of FR, and NR are explained.

e Full-Reference Image Quality Assessment
Full-reference (FR) measurements (see Figure 2-12) perform a direct comparison

between the image under test and a reference or “original” image in a properly defined

Original Inpainting Inpainted
Image processing Image

Full Reference Image
Quality Assessment

image space.

Figure 2-12: Image quality assessment approaches: Full Reference.

To check the quality of an inpainted image when a reference image exists, the
inpainting algorithms are applied on datasets of natural images, thereby adding different
missing regions (i.e. scratches, text, and object). The quality of the results and the
efficiency of these algorithms is checked by applying statistical measurements on the
inpainted image and original images.
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The MSE, PSNR, and SSIM measures are used to evaluate the image inpainting

qualities when a full set of reference images is available.

2.6.1.1 MSE and PSNR

The Mean Squared Error (MSE) and the Peak Signal to Noise Ratio (PSNR) are widely
used, as they are easy to implement and thus convenient to use for optimisation
purposes (Pedersen & Marius 2012). The MSE computes the cumulative squared error
between two images: one reference (i.e. original) image and a modified version of it.
The MSE (Popowicz & Smolka 2015) is calculated between colour original O and

inpainted images I as follows:

Q N M

1
MSE = mz Z Z [0g(n,m) — Iy(n,m)]* (2.41)

q=1n=1m=1
Where Q=3, the number of channels in a colour image, and N and M represent the size

of the image (i.e. the number of rows and columns in the channel image). A lower value
for the MSE indicates a lower error, and thus better quality of the inpainted image. The
PSNR computes the peak signal to noise ratio between two images and gives a value in
decibels (db) as a result. The first step in computing the PSNR is to obtain the MSE

value for the two images. Then, the PSNR is defined as:

2552

The higher the value obtained for PSNR, the better the quality of the inpainted image.

The relationship between PSNR and MSE is an inverse correlation.

2.6.1.2 Structural Similarity Index (SSIM)

The colour version of the Structural Similarity Index (SSIM) was proposed by Wang et
al. in (Wang et al. 2004). SSIM considers quality degradations in the images as
perceived changes in the variation of structural information between the original and
inpainted images. The idea behind this measurement is to perform separate comparisons
of the luminance (1), contrast (c) and structure (s) information between local windows in
the original and inpainted images and then combine the results of these comparisons to
obtain the value for the SSIM. The SSIM is a weighted combination of three
comparative measurements between the original and inpainted images:

SSIM(0,1) = [1(0,D)% ¢(0,F - s(0,1)7] (2.43)

Where [,c and s represents the luminance, contrast and structure comparison

measurements respectively. Where

40



Chapter 2: Backgrounds

200 01 tCo 20071 tC3

l(O, I) — M’ C(O, [) =

2 4,2
Ho TuptCe

where c; = c,/2,and a = f =y = 1, then the formula of SSIM (2.43) is simplified as

and s(0,1) =

0% +ot+cy’ 00 07 +C3

follows:

(2uo 1y +¢1)(200 | +¢3)
(03 +pf +c1)(0d + 02 +¢y)
where (no,00) and (y;,o;) denote the mean and standard deviation of patches

SSIM(0,1) = (2.44)

in the images O and I, respectively; oo : the covariance of 0 and I; ¢; = (k;h)?,¢c, =

(k,h)2such that h = 2bitsperpixel _ 1 1. = 0.01 and k, = 0.03.

In our work, SSIM is calculated on a window size of 8 x 8, and then the results from the
R, G, and B channels are averaged. The resultant of SSIM index is a decimal value
between -1 and 1. The value 1 is only reachable in the case of original and inpainted

identical images.

¢ No Reference Image Quality Assessment
No-reference (NR) measurements (see Figure 2-13) are also called blind measurements
and assume that 1Q can be determined without a direct comparison between the original

and the inpainted images.

Original Inpainting :> Inpainted
Image processing Image

\4 \ 4

No Reference Image No Reference Image
Quality Assessment Quality Assessment

Figure 2-13: Image quality assessment approaches: No-Reference.

Theoretically, it is possible to measure the quality of any visual contents. In practice,
some information about the application domain, requirements and users’ preferences are
required to contextualise the quality measurements. NR measurements are designed to
identify and quantify the presence of specific processing distortions that may exist in the
evaluated image. To estimate the presence of a defect or artefact produced by some
imaging processing on the image, we need to characterise the properties of the artefact
as well as the effects that it produces on the low-level components of the image (edges,
homogeneous areas, etc.). In the case not existing reference image, Entropy, MSSIM

and CSQM are used to check the quality of the inpainted image.
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2.6.1.3 Entropy
Entropy is defined as the quantitative measurements of disorder or randomness in the

image, the entropy of an inpainted image is defined as:

n m
E=-— z Z Py, 08, Py, (2.45)

i=1j=1
Where Py, - is the probability of pixel intensities (i.e. the distribution of element values),
and log, is the base 2 logarithm. In other words, high entropy refers to less information
about uncertainty in the image and in contrast low entropy means there is more
information about uncertainty in the image. This measurement is applied on the

inpainted regions that are obtained using different inpainting methods.

2.6.1.4 Mean of Structural Similarity (MSSIM)
The mean of structural similarity (MSSIM) is a function to measure an appropriateness
degree between the inpainted region 2 and the rest of image @ = I — 2, the size of

inpainted region {2 is n X m. The MSSIM is defined as follows:

n m
1
MSSIM = — Z Z max{SIM(¥p, ¥q)} (2.46)

i=1j=1
Wherep € 2 andV ¥q € ®. The idea of similarity measurement combining structure
and colour information (Shi et al. 2009) is used in this thesis. The similarity function is
then defined as follows:

SIM(Yp,¥q) = (1 —h) SS(Wp,¥q) + h HS(Wp,¥q) (2.47)
where, h is a positive constant within the range [0, 1] defining the relative importance
between structure similarity (SS)and hue similarity (HS), corresponding to the colour
information. The structure and hue similarity indexes are defined by equations (2.48)

and (2.49), respectively:

SS(Wp,¥q) = 20pq * ds 2.48

p’q_0p+0q+d1 (2.48)
2 +d

HS(Wp, Wq) = —pHa T 2 (2.49)

Mp +ug +dz
where (pp,,0,) and (uq,04) denote the mean and standard deviation set of patches

Yp and Wq, respectively; denotes the cross correlation between ¥p and ¥q. Where

Opq
d, and d, are small positive constant. In our experiments, constants are set as in (Shi et
al. 2009), i.e. h =0.1667; d; = d, = 6.5025. MSSIM is applied on the inpainted
regions in the image and identifying the coherence extent of the inpainted regions with
the rest of the image.
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2.6.1.5 Coherence and Structure Quality Measurement (CSQM)

The last image quality measurement has used to evaluate the image inpainting is
coherence and structure quality measurement (CSQM). The idea of CSQM introduced
in (A. DANG Thanh Trung, B. Azeddine BEGHDADI 2013) is exploited based on the
coherence of inpainted regions with the rest of image, and the salient features (i.e.
structures or contours) should be more associated to the rest of image. The inpainted
image quality index CSQM is defined as expressed as follows:
L2 C(0)*S ()P

121l
where C(p) and S(p) are respectively the coherence and structure terms defined below.

CSOM =

(2.50)

Two positive parameters o and f are associated with the aforementioned terms in order
to be able to adjust their influence on the quality index (in our implementation, are
setas in (A. DANG Thanh Trung, B. Azeddine BEGHDADI 2013), « = = 1). The
coherence term is an objective function to evaluate the similarity between two patches
that measurements an appropriateness degree between the inpainted patch and the rest

of image. Coherence term is a mean of structural similarity that introduced before,

C(p) = max{SIM(¥p,¥q)} (2.51)

While the structure term which interested with the contours and other relevant structures
in the inpainted regions attract more human gaze than the other components. For that
reason, the structure term that using the information provided by a saliency map
identified as follows:

SM(p)

Sp) = max;{SM}

(2.52)

For all p € @, where SM is the saliency map of inpainted image. There several
models have been proposed to find the saliency of image. A simple formulation of the
aforementioned saliency map SM, can be expressed as follows:

SM = ||, — Ig|| (2.53)

where I, and I; are the arithmetic mean pixel value and the Gaussian blurred version of
the inpainted image, respectively.
The high values of MSSIM and CSQM represents a better result. The comparison of the
results is applied by using Entropy, MSSIM and CSQM to evaluate the performance of
inpainting methods and assess their image quality results. These measurements are used
to study the quality of inpainted regions when the objects are removed from these
images and then recovered (cf. Chapter 7).
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In the next subsection, the Topological Data Analysis (TDA) approach is introduced

and proposed as a method for the evaluation of the image inpainting.

2.6.2 Topological Data Analysis for Image Quality Assessments

Machine learning and data analysis tasks such as classification and recognition require
distinct patterns/features that need to be extracted from the object of interest in any
domain. Traditional data analysis techniques rely on extracting features from data points
(objects) of interest then computing pairwise symmetries between them. Recent
challenges in Big Data applications revealed that nowadays data is more complex and
noisier than the past and classical approaches fail to extract understandable insights
from them. But more interestingly last decade has seen many attempts to show that data
has a shape (Carlsson 2009), (Lum et al. 2013) and (Edelsbrunner 2012). The branch of
mathematics studies shapes of data (objects) is known as topology. Once the shape of
the data (e.g. Images or data records) constructed, then topology has rich tools to study
the connectivity and closeness properties of that shape/object, using a finite
combinatorial process known as Simplicial Complex (SC). Roughly speaking simplicial
complexes are made up of zero-dimensional simplices (i.e. vertices), then building one-
dimensional simplices (i.e. edges between the vertices) from them, then 2" dimensional
simplices (i.e. triangles) from zero and one-dimensional simplices and then higher
dimensional simplices are constructed similarly. Finally, one gets a SC by gluing these
simplices ‘nicely’ together along their edges and faces. There are many types of SCs,
but here we are using what is known Vietoris-Rips (Rips) SCs as it is easy to construct
and compute in comparison with other types of SCs. Traditional construction of Rips
SCs are based on selecting a single distance threshold and calculating corresponding
topological invariants such as betti numbers ( 8,, forn = 0,1,2), Euler characteristics,
cliques and other topological invariants. Instead of a single threshold, recent paradigm
that relies on capturing the persistency of topological invariants across an increasing

sequence of distance thresholds is known as topological data analysis (TDA).

The popular mathematical theory used to characterise topological features is known as
homology theory. More precisely, the rank of the n-th homology group equals to what
is known as betti numbers 5, , where S, is equal to the number of connected
components (CCs), f; is the number of holes and S, is the number of cavities in the
constructed Rips SC. Instead of computing aforementioned topological invariants at a
single distance threshold, TDA depends on calculating the persistency of these

invariants across an increasing series of distance thresholds using what is known as
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persistent homology (Edelsbrunner 2012) and (Ghrist 2008). TDA applications in
growing fast and beyond the scope of this thesis to discuss it, but recent applications
include image tampering detection (Asaad & Jassim 2017), fingerprint classification
(Giansiracusa et al. 2017), steganalysis (Ahonen et al. 2006), brain artery (Bendich et al.
2016), classification of hepatic lesions(Adcock et al. 2014), gait recognition(Lamar-

Leon et al. 2012), and many more.

The first step in building a SC is to consider landmark points (i.e. zero-dimensional
simplices) in order to be able to build on them higher dimensional simplices such us
edges, triangles and tetrahedrons. For this task, the approach suggested by A. Asaad and
S. Jassim in (Asaad et al. 2017) is followed which is the use of uniform Local Binary
Patterns as a tool to systematically choose landmark points from images of interest to
build topological objects. The next section is dedicated to briefly describe local binary

patterns LBP as a landmark selection procedure in our SC construction.

2.6.2.1 Local Binary Patterns (LBP)

Ojala et al. in (Ojala et al. 1996) first introduced LBP as an image texture descriptor.
After that many versions of LBP have been proposed by other researchers for different
pattern recognition tasks. In this thesis, the original idea proposed by Ojala et al. in
(Ojala et al. 1996) is followed. Given any image, LBP replaces each pixel of the image
with an 8-bit binary code, which encapsulates texture and local structure, determined by
its 8 neighbouring pixels in a 3 x 3 window surrounding it in clockwise order, see
Figure 2-14. The process works as follow: starting from the top-left corner of the
window; subtract central pixel from its 8 neighbouring pixels, assign 0 if the result is

negative, and 1 otherwise. Mathematically this process can be written as follow:

7
LBP(x.,y,) = Z a(P; — P.)2! (2.54)

i=1

Where P; is the neighboring grey value pixels, P, is the center grey value pixel, and the
function a(x)is as follow:

1ifx =0

a(x) = . 2.55
) {0 if x <0 ( )
66 87 193 1 1 1

97 50 187 |———| 1 1

27 31 44 0 0 0 O I O

Figure 2-14: Local binary operator. Left matrix is a block of size 3 x 3 taken from an image.
The second matrix is the corresponding binary code.
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Uniform LBP (ULBP) refers to 8-bit circular bytes that have no more than 2 circular
transitions. For the sake of clarity, examples of ULBPs are 11110000 (2 transitions),
11111111 (O-transitions) and examples of non-uniform LBP are 10101010 (8-
transitions), 110011110 (4 transitions). This means that ULBP of any monochrome
image consists of 58 unique uniform geometries, see Figure 2-15. It has been shown
that ULBP codes constitute 90% of LBP codes in natural images (Ahonen et al. 2006).
From Figure 2-15, it is easy to see that there seven groups (of 8 binary codes) of ULBP
according to the number of 0’s and 1’s in their binary codes, excluding the cases
00000000 and 11111111. Each of these groups is related to certain types of image
textures. We shall refer to ULBP codes that have t consecutive 1’s as geometry-t. Our
experimental investigation contains the set of pixels in all geometries as potential
landmark candidates to build SC.

GO < : © Rotations of Binary code patterns

L= - (=3
- =3 o « s o

A
.
N
’
B
o*1%
)

v

LY

[}

LD
0.8(|0,0/i0,
0 e 0

L1
.O

]
.
-
Y
"o
0
0 00"
R |
o
b0 8c
0. 0l0 00,0 0,00
ROICA NN
ae 9
0 cllo"0l[o0|f0"0
o 1)
a0 O
_0lle.0
e os

00 0,0 00000
o 0lle"olla"0][0"0ll0”

0 00
ol|e"0fj0o"0ll0o"0ll0" 0|0 ¢
' 0
as an g
0 o 0
oF 0,00 00 e
e
e 00
0. 0(0.0
0 8

700700
I,
[ 0,
[ I O Il
[] ' 0.
6 070070
[ ’ M 1
70 0T 0T 070
0
' ' B ¢ ',
LR DL R DRE R RO R K R+
]

A
L
~
’
..l ... O'l *
]
'
e
]
[
"

Figure 2-15: The 58 different uniform patterns in (8, 1)

Regarding uniform LBP patterns classifications based on the number of ones included
in the pattern in the natural images database which described in (Ojala et al. 2002);

these geometries may be characterised as follows:

1- The patterns in GO describe the flat area in the image.

2- The patterns in G8 shows the spot area in the image.

3- The patterns in G2 and G4 represent the edges in the image.
4- The patterns in G3 and G5 describe the corners in the image.

5- The patterns in G6 describe the line ends in the image.

While the uniform LBP patterns classifications based on the number of ones included in
the pattern in the face images database which described in(Chan 2007); these
geometries are described as:
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1- Flat area: When there is GO (i.e. no ones) in the pattern.

2- Spot area: When G8 (i.e. 8 ones) is available.

3- Edges: When G5 (i.e. 5 ones) is available.

4- End Lines: When G1 or G7 (i.e. 1 or 7 ones) is or are available.

5- Corners: When G2, G3, G4, and G6 (i.e. 2, 3, 4 and 6 ones) are available.

After selecting the landmark points, a sequence of distance thresholds and a constructed
inclusion series of SCs are selected. These geometries are studied on the inpainted
images in the later chapters. Thus the next section is dedicated to explaining the process

of this construction.

2.6.2.2 Simplicial Complex Construction
For each class of geometry-t in ULBP, its corresponding positions are extracted in the
inpainted region of the given image. As a result, we end up with a set of image pixel
positions of the 8 sets of t-ones ULBP codes. First, the known Euclidean distance is
calculated between all pairs of points in the set, and then an increasing 8 sequence of T-
dependent Rips complexes is constructed, one for each rotation of the geometry-t codes.
For T =0, only O-dimensional simplices are obtained, i.e. the points. Then T is
gradually increased and computed S, at each T.
Robert Ghrist in (Ghrist 2008) illustrated that there is no optimal method to select the
best threshold that best captures the topology of data sets. A fixed number of distance
thresholds are used, as follows:

T, =0T, =57T; =10,T, = 15,T5 = 20,Ts = 25.
The reason behind using a fixed number of distance thresholds is that beyond certain
distance thresholds, the computed number of CC will lose its power to discriminate
inpainted regions with non-inpainted ones or even different types of images inpainted
through PDE-based inpainting algorithms (see Chapter 4). The diagram Figure 2-16
below summarises the process of selecting Landmarks from images of interest and

consequently building SCs.
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Figure 2-16: Simplicial complex construction for the quality of image inpainting.

Aforementioned procedure of building topological shapes from images are used in the
rest of the thesis as an image quality assessment tool. This approach is motivated by the
work of A. Asaad and S. Jassim in (Asaad et al. 2017), as they used the TDA approach
to assess the quality of degraded images. In particular, they focused on discriminating
face images degraded by shadows and blurring. The topological invariant which is used
across this thesis is the zero homology groups, which correspond to the number of CC
this is due to its ease of computation. More specifically, the number of CC is calculated
for both the inpainted and original regions. The closer the number of CC of the
inpainted region to the number of CC of original region, the better is the quality of the
inpainted region, and consequently the better inpainting algorithm. The TDA is used to

evaluate the image inpainting quality in the case full reference is available.

2.7 Summary and Conclusion

The task of inpainting can be described as a minimisation problem; the total variation
has been used in the minimisation problem. A PDE method is produced by solving the
minimisation problem via the Euler-Lagrange equation. The numerical solutions of
PDEs are used to reconstruct the missing regions in images. In this chapter,
mathematical definitions and theories are introduced for variational formulas used for
adding colour to grayscale images and recovering missing regions in colour images. The
numerical method which has been used to solve these PDE-based inpainting methods in
both spatial and frequency domains is also introduced. The statistical and topological
measurements for image quality assessments and for checking the performance of

inpainting methods are also introduced.
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Chapter 3 PDE BASED PARTIAL
INPAINTING METHODS (COLOURISATION)

Colourisation, in general, is a process to convert grayscale images/videos to colour
images/videos. The missing colour information may be restricted to a region of the
image. There are many research fields in which colourisation algorithms are employed,
such as biology, astronomy, medicine, and other disciplines. Several colourisation
techniques have been developed in recent years that are either automatic or semi-
automatic. Here, we first review recently devised colourisation techniques and
highlighted their advantages and disadvantages. We shall then consider PDE-based
semi-automatic colourisation techniques, designed to restore colour to a region over
which greyscale information is known, and then extends its applicability to the case
when one colour channel is known for any colour space including RGB. Statistical-
based image quality measures are used to evaluate the quality of coloured images, as an
indicator of the performances of PDE techniques. We shall demonstrate experimentally
that the PDE algorithms compare well with other algorithms in terms of these

measurements.

3.1 General Colourisation Concepts

A colour image consists of three-dimensional information about the colours in the
image, usually expressed by three colour channels (e.g. Red, Green and Blue channels).
A grayscale image consists of one channel (i.e. luminance or intensity) which means it
is one-dimensional information. A colour image contains more useful information than
a grayscale image; it is lively and visually appealing to viewers. Colourisation is the
process of adding missing colours to grayscale images by a computer algorithm. Its
applications range from old black and white images and movies to scientific
illustrations (Levin et al. 2004), (Popowicz & Smolka 2014), (Yatziv & Sapiro 2006),
and (Zhang et al. 2009). Additionally, colourisation has been shown to be useful in
image compression (Takamichi Miyata et al. 2009), (Sukho Lee et al. 2013) and
medical images such as MRI, X-ray and CT images, where the indications of some
crucial regions within medical images may be of special interest to physicians (Shah et
al. 2013), (Popowicz & Smolka 2017).
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The 3-dimensional image colour space can be represented by many other 3 channels and
the most common ones that can be obtained from RGB by affine/linear transformation.
Converting a colour image to grey entails a reduction of information and is quite easy,
but the reverse process is not. This is because there can be numerous colours which lead
to one grey level, meaning that RGB-based colours are underdetermined by greyscale
values (Sapiro 2005).

The colourisation problem lies in the restoration of the missing colour information in
image regions or in the colouration of an entire grayscale image. The first case can be
divided into 2 categories: (1) The colourisation region problem where the missing
region has texture (i.e. grayscale) information or (2) the total inpainting problem when
no information is known in the missing region. Note that, G. Sapiro, (Sapiro 2005),
refers to the first category as inpainting the colours, and it is, therefore, reasonable to
consider the first category as partial inpainting which will be the focus of this chapter.
The other cases, including the colouring of entire grayscale images which is the extreme
case of colourisation category when the missing region is the entire image, is discussed
in the rest of this thesis.

The colourisation problem, as well as the total inpainting problem, has no exact
solutions because there is no deterministic relation between the luminance of a
greyscale image and exact colours at the image pixels. The solution of this problem
aims to restore RGB colours or equivalently restoring any other 3-colour channels.
Hence, it can be considered as an optimisation (or approximation) problem in terms of
some subjective/automatic quality measures. Existing colourisation techniques are
generally divided into semi-automatic and automatic techniques. In the case of semi-
automatic techniques, a user should insert colour scribbles within the missing grayscale
region. These scribbles enable the algorithms deciding which colours have to be used
for in corresponding parts of the image. This procedure may be visualised as mimicking
artist painters through colour spilling over the missing areas starting from the inserted
scribbles (Levin et al. 2004), (Popowicz & Smolka 2014), (Yatziv & Sapiro 2006), and
(Lagodzinski & Smolka 2014).

Automatic colourisation techniques, use a source image to produce the colours and
works by transferring colour from a colour image to a target greyscale image, (Xiang et
al. 2009). These automatic techniques do not require the user to select and apply
individual colours to the target image. Several automatic techniques for adding colours

to the greyscale image have been developed, and the Welsh et al., (Zhang et al. 2009),
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that use statistical properties is a typical example. In some applications, designing
automatic techniques is challenging because of the need for a source image(s) close
enough in content to the target image to provide the subset sample patches.

It is difficult to objectively evaluate the definitive colourisation results. The evaluations
and comparisons of the colourisation algorithms are done by using standard quality
measures only if the colour version of the image (i.e. original image) is available. Some
quality measures are used to evaluate the colourisation algorithms such as Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity (SSIM), and Normalised Colour
Difference(NCD).

In this chapter, we are interested in semi-automatic colourisation techniques and aim to
develop an extension to the PDE algorithm developed by Sapiro in (Sapiro 2005) to a
range of colour channels. The rest of the chapter is organised as follows: Section 3.2
reviews the literature on both semi-automatic and automatic algorithms. While section
3.3 shows the basics of semi-automatic grayscale image colourisation. Our proposed
algorithms are illustrated in detail in section 3.4. The results and evaluations of existing
colourisation methods in comparison to our proposed algorithm are presented in
sections 3.5 and 3.6. Finally, section 3.7 summarises the work done and identify the

next set of challenges.

3.2 Literature Overview

The literature provides many semi-automatic colourisation approaches, and this area has
continued to be active in recent years. In 1970, Wilson Markle introduced the term of
colourisation to describe adding colour to black and white movies assisted by computer
processing (Levin et al. 2004). A well-known commercial semi-automatic software
package is given in(Neuraltek 2004), for image colourisation. The main drawback of
this work is that it requires a manual segmentation of the image, but automatic

segmentation is more desirable, and we shall adopt in this thesis.

Our review revealed two main approaches to adding colour either transferring colour
from another similar image or using colour information from other parts of the image
itself. Reinhard et al., in (Reinhard et al. 2001), described a theoretically sound
approach for the colour manipulation, whereby the target image may take on another
image’s look and meaning, and for this purpose, it used statistical concepts that describe
correlations that may exist between different colour channels. This pioneering work
argues that a colour space basis vectors with de-correlated axes is ideal for manipulating
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colour images. Noting that RGB images can be transferred by an affine transformation
to £ap which is an orthogonal colour space, (i.e. de-correlated axes), the authors of
(Reinhard et al. 2001) and (Ruderman et al. 1998) then introduced an automatic
colourisation scheme that is based on the idea of colour manipulation only in the
chrominance channel, without changing the luminance level. Such a method uses the
similarities between a reference colour image and a grayscale one. They then applied
simple statistical transformations in each separate, de-correlated colour channel of the
target image so that the source and the target have a similar look. This algorithm has
succeeded in transferring colour from one image to another image. The concept of using
de-correlated colour channels has been used in other algorithms such as in automatic

image colourisation algorithm.

Zhao et al., in (Zhao et al. 2007) introduce a similar automatic approach, to the above
approach, for colouring biomedical images. The authors converted the RGB into de-
correlated 2ap space for both the reference and the target images (i.e. grayscale image).
Then they calculated the mean and standard deviation of the luminance channel in a
moving square 7x7 window. Finally, by comparing these two statistical features in each
window, the colours are transferred from parts of the reference image into the

corresponding parts of the grayscale image.

Another automatic colourisation method is presented in (Zhen et al. 2012) which uses
pattern continuity and spatial consistency in a grayscale image, instead of considering
the luminance properties. First, the reference image is converted to YUV colour space
and segment it. The Gabor wavelet filter used to extract a 10-dimensional texture
feature vectors from each 7x 7 block in the Y channel from the reference image and use
them as the training set. Finally, the K nearest-neighbour method is used for classifying
pixels based on closest training examples in the feature space. This method is used for

colouring cartoon images and videos.

The above approaches to automatic colourisation work well for images containing
distinguishable features, like in the biomedical image, (see section Error! Reference
ource not found., below). The drawback is that it is difficult to find matching reference
colour images. Therefore the applications of such algorithms are usually limited. The
alternative is provided by semi-automatic algorithms. These algorithms are very popular
for adding colour to grayscale images or movies. Instead of searching for matching the
reference image, the user is asked to add colour scribbles into the colour missing image

regions.
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Popowicz and Smolka in (Popowicz & Smolka 2014) have introduced a semi-automatic
colourisation algorithm using distance maps for each scribble indicated by a user. The
distance map function has utilised the concept of isolines (also referred to as contour
lines), as in geographical maps, consisting pixels of the same intensity level, or other
property visualised on the maps. Isolines are imaginary lines representing elevation on a
map by connecting points of equal elevation, to provide a good visual representation of
the terrain. An isoline is determined in terms of the grayscale intensity difference
between the pixels and the nearest seed pixel (the one within a scribble). For each pixel,
the computed difference represents the maximum intensity deviation encountered on its
shortest path to the seed pixel and ending in a current point. Finally, the colour of a
pixel is set to the weighted average of each colour is calculated from the seeds.

Levin et al., in (Levin et al. 2004) proposed a semi-automatic approach for adding
colours to the grayscale image by defining a quadratic optimisation formula based on
the assumption that the neighbouring pixels in space-time with similar intensities should
have similar colours. When the distance between pixels of similar intensities are
modelled by a Gaussian weighting function, a quadratic cost function is obtained, and
the optimisation problem can be solved efficiently by standard techniques. This has
been used in a segmentation procedure in (Arbelaez et al. 2011). This algorithm has
given a high-quality colourisation but it is time-consuming, and more importantly, it is
sensitive to changes in that it requires the colourisation to be re-computed from scratch
after the slightest change to the initially marked pixels. Such an algorithm was also
applied in biomedical imaging (Shah et al. 2013), and also for video colourisation
(Veeravasarapu & Sivaswamy 2012). The drawbacks of this algorithm are that it is time
consuming and uses a large number of colour scribble pixels because it applies
weighted pixel distances. To avoid these limitations, a similar but modified optimisation
formula with gradient geometry of channel colours is used, but without using the

weighted pixel distances.

On the other hand, Ding and Deng in (Ding et al. 2012) use automatic scribble
generation. The authors propose the selection of proper colours for automatic insertion
by reduced operator interaction only. Their algorithm starts by segmenting the image
through graph-based image segmentation (Felzenszwalb & Huttenlocher 2004). Next,
an automatic scribble generation algorithm has been proposed based on spatial
distribution entropy, placing scribbles within the regions of high information density.

Finally, colour is added to the scribbles by computing quaternion wavelet phases to
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conduct colourisation along equal-phase lines. They reconstruct colour image patches as
vector elements using polar representations in quaternion algebra, by which the

interrelationships between colour channels are well preserved.

Konushin and Vezhnevets in (Konushin & Vezhnevets 2006) focus on treating the
computational burden in semi-automatic colourisation, as these methods are time-
consuming. The authors use the idea of coupled map lattices, the evolutionary nature of
which allows for fast re-colourisation. This method can be applied for the changing of

colours in some regions within colour images.

Sapiro and Yatziv in (Yatziv & Sapiro 2006) propose an algorithm which uses the
Dijkstra algorithm (Dijkstra 1959) to find the cost of the shortest path between two
image pixels by integrating the squared difference of intensities between pixels on the
path. Colour is added to the grayscale image by calculating a weighted average of
scribbled colours, where the shortest path analysis provides the weights. Therefore, the
authors suggested reducing the number of colours during the final blending. Hence their

algorithm does not entail a high computational burden.

Yingge Qu et al., in (Qu et al. 2006) adopted a similar manga colourisation which is
based on pattern continuity. In manga drawing, they use hatching and screening
techniques to show different effects like structures, shading or reflectance. Then the
required regions of the same textures should also have similar colours. The Gabor
wavelet transform is utilised to obtain the structure features. This method is mainly
limited to a very specific application.

The above algorithms add colour either using reference similar images or propagating
colour by inserting colour scribbles, and little consideration is giving to the available
information in the actual image and in particular, the areas surrounding the missing
region (s). The alternative approaches are based on the natural expectation that image
information flow along image features only to be interrupted in the missing region.

These are categorised as the variational/PDE based approaches (Chan et al. 2006).

Tony et al., in (Chan et al. 2006) describe the relevance of total variation to
colourisation and derive a its numerical solutions, proposed two models of the total
variation in wavelet-based inpainting, to deal with challenges which include that the
resulting inpainting regions in the pixel domain are usually not geometrically well

defined, as well as that degradation is often spatially inhomogeneous and creates

54



Chapter 3: Colourising Greyscale Images Based on PDE Algorithms

problems with sharp edges. This work and we have used it to build a scheme that

minimises the directional derivative of the gradient in the coloured channels.

A similar approach was followed by Jacobson et al., in (Jacobson & Sorkine-Hornung
2012) but uses a minimised Dirichlet energy over an image surface where it becomes a
(discrete energy) minimisation problem and produces a 2"-order PDE with a discrete
Laplacian operator. Again, in our work, we benefited by following the same steps to
obtain the minimisation problem that been used in (Jacobson & Sorkine-Hornung 2012)
and to solve the resulting nonlinear 2"%-order PDE.

Sapiro in (Sapiro 2005) inspired by (Levin et al. 2004) proposed the use of the
optimisation formula which leads to pragmatic colourisation results. The general idea of
adding colours to the greyscale image based on the solution of PDE, which is derived
from the assumption, that the difference between the gradient of luminance and
chrominance should be minimal. As the PDE is of Poisson type and can be solved by
any Poisson solver. The advantages of the algorithm are its simplicity and efficiency.
The core idea is thinking of colourisation as an inpainting problem (Sapiro 2005).
Chung and Sapiro (Do Hyun Chung & Sapiro 2000) have shown that the (scalar)
luminance channel faithfully represents the geometry of the whole (vectorial) colour

image (Edges).

The Laplacian operator has also been used in different colourisation methods. The
weighted p-Laplacian operator has been introduced for image colourisation in (Lezoray
et al. 2008) which relies on graph regularisation; we have used the minimised Laplacian
operator of the coloured channels, the nonlinear 4" order PDE, achieved by applying the
Euler-Lagrange equation with Fréchet derivative to Laplacian minimisation (Peiying
Chen & Yuandi Wang 2008). To define colour constraints, Sapiro used Cb and Cr
components in YCbCr colour space. However, the main problem is that Sapiro’s
method produces significant colour bleeding near the strong edges which are visually
disturbing, so applying this algorithm was suggested in the wavelet domain for handling
this shortcoming with sharp edges, but the result was not satisfactory. Where this work

with all details is introduced in section 3.4.2.

The authors in (Lagodzinski & Smolka 2014) introduce the morphological distance
transformation as a possible way to obtain the distance between seed and any other
image pixel. They use the double-scan algorithm, which can cover all the pixels paths
and obtains a very good estimation of the Euclidean distance between the image points.

The distance is modified by making it as the combination of intensity differences and
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topographic distance. Finally, the authors calculated the colour as a weighted average of

all scribbled colours.

Jacob and Gupta in (Jacob & Gupta 2009) propose a different design based on the
Image segmentation and clustering the parts of the image into regions that have the
same colours. This segmentation method is called the rainwater simulation, then adding
colour scribbles to each segment. Finally, all the pixels in the segment are colourised

based on the value of indicated colour scribbles.

Luan et al., in (Luan et al. 2007) enable the incorporation of two similarity measures
based on the intensity continuity and the texture features. Instead of using scribbles, the
user is required to indicate exemplary regions together with their appropriate colour.
This works well with complex natural images where both, smooth regions and

complicated, textured regions, are present.

Recently developed colourisation schemes follow the current evolving trend of using
Machine Learning for image analysis. These algorithms need an initial learning stage
that utilises an auxiliary dataset (also called dictionary) of exemplary colour source
images to train a classifier, such as support vector machine (SVM), to discriminate
between grayscale patches in terms of some texture feature vectors. Such schemes
predict the missing colour from the trained model and the known colour channel in the

image. A number of these algorithms are discussed in (Charpiat et al. 2010).

Deep learning techniques have also been used to predict the colour (e.g. see (Zhang et al.
2016), (Cheng et al. 2015) and (Varga & Sziranyi 2017)). These algorithms avoid
adding scribbles or using colour from reference images and output a high-quality fully-
automatic colourisation method using a perfect patch matching technique. These
algorithms use an extremely large reference database (that contains sufficient colour
images), and colours are added (to the Cb and Cr channels) by a patch matching process
that uses similarity between the weights in the greyscale inpainted image and the Y
channel of the database colour. However, the performance of these techniques is not
always acceptable, as it may add one colour to two regions because the different colour
regions have the same weights. Also, these techniques consume a long time to complete
the colourisation process. Finally, the authors are trying to make these algorithms
available for all applications based on using a large number of different images in the

training database.
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To know these algorithms, in the next section, the basics of the automatic colourisation

algorithm are introduced with examples.

3.3 Basics of Semi-Automatic Greyscale Image Colourisation

Most semi-automatic image colourisation algorithms employ similar steps, as seen in
Figure 3-1 which describes a general schema of these algorithms. Several actions in this
schema are conducted by a user and a computer system. In the first step, a user selects
colour scribbles suitable for the inside of different image objects, where paint, see the
screenshot of a colourisation software in Figure 3-2. Note that the palettes of standard
colours are not enough to produce natural variation in colour intensity such as the case
with the colour of human skin. For this, it will be sensible to use colour blocks from
other images.

There are two scenarios for using segmentation algorithms. In the first scenario,
grayscale images are manually segmented by using colour scribbles to determine the
borders of the objects in the image. In the second scenario, automatic segmentation
algorithms are used when dealing with the same kinds of images. This step handles the
shortcomings in border definitions, but it is time-consuming. Although the next step of
the colourisation differs from method to method, the general idea remains the same. The
idea is to propagate colour based on the colour scribbles by calculating distances
between the neighbourhood pixels of colour scribbles in the luminance channel.

The selection of the colour for a given pixel is performed using different approaches. In
one of them, the weighted average of all indicated colours is calculated, where the
distances are used as weights; otherwise, the numerical solution of PDE or optimisation
formulas is used to propagate the colour. The final step entails avoiding the leakage of
colours from distant scribbles by modifying the weights, so that the smallest distances

are promoted, or by modifying the colour scribbles.

Figure 3-1: Schema of semiautomatic colourisation steps.
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Figure 3-2: Example of a colourisation software layout. Grayscale image with indicated colour
scribbles.

3.3.1 Image Colour Models

The literature review reveals that most existing automatic colouring schemes apply
inpainting schemes in de-correlated colour channels (e.g. see (Reinhard et al. 2001),
(Ruderman et al. 1998), (Zhao et al. 2007), and (Zhen et al. 2012)), and an interesting
question arises as to whether these schemes can or cannot be extended to other non-de-
correlated colour such as RGB schemes. The structures of image colour space is first
briefly reviewed with a focus on the choice of meaningful 3-dimensional colour vectors
that generate the entire colour space. It is well known that 3 colours are sufficient to
generate all shades of visible colour, and due to the structure of human vision, RGB
(Red, Green, and Blue) is the most natural colour model for displaying colour images
on electronic devices. In terms of digital image processing, the RGB model is
commonly used for colour monitors and a broad class of colour video cameras. The
additive nature of the RGB colour image representation means that the obvious
correlation exists between the values in the 3 channels. There are several other 3-
dimensional additive colour models that use other primary colours can be obtained from
the RGB model by linear/affine transformations. This implies that the different channels

of such colour models are again correlated.

Besides RGB, colour models in use today are oriented either toward hardware (such as
for colour monitors and printers) or toward applications where colour manipulation is a
goal (such as in the creation of colour graphics for animation); the additive 3 primary
colour CMY (Cyan, Magenta, and Yellow) and CMYK (Cyan, Magenta, Yellow, and
Black) models have been used for colour printing; while the HIS (Hue, Intensity, and
Saturation) and HSV (Hue, Saturation, and Value) models, which corresponds closely
with the way humans describe and interpret colours, so artists prefer to use these colour
models.
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The colour spaces YCbCr, YUV, NTSC, and YIQ are represented as (luminance,
chrominance, and chrominance) channels, which are called De-correlated colour spaces
(i.e. seperate chrominance from luminance in these spaces). The Y channel represent the
grayscale version of the image. The YCbCr model is used widely in digital
video and image compression schemes. The YUV model was formerly used in
(Australia, Europe, except France) television broadcasts. While, the YIQ model was
formerly used in (North America, Japan and elsewhere) television broadcasts. The XYZ
(chrominance, luminance, and chrominance) model, which is widely used in scientific
work, and colour descriptions in other colour spaces are often related to their

representation in this space.

For image inpainting investigation one needs to consider these different colour models
in terms of their properties as two categories. In the first category, each colour channel
represents all image information (i.e. texture and structure in image beside colour). For
example, in RGB, R represents all information and red colour, and the same thing with
G and B channels which represent all information for green and blue colours
respectively. So, the most common colour spaces in the first group are RGB, CMY and
CMYK. While, in the second group of colour spaces, colour information is represented
in two channels (i.e. chrominance) and another channel (i.e. luminance) has all texture
and structure information, as seen in the colour spaces YCbCr, YUV, NTSC, HSV, HIS,
and XYZ. The work in (Sapiro 2005), applied its algorithm on YCbCr colour space,
where the idea of this paper built on when having all information in luminance (i.e. Y
channel) and they adding colour scribbles to this channel image then trying to propagate
this colour in chrominance (i.e. Cb and Cr) channels. In this work, we consider 8

different colour spaces illustrated in Figure 3-3.
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Figure 3-3: Illustration of colour spaces.

The next section describes the PDE based colourising algorithm. There follows

applying it in the eight-colour space in both spatial and frequency domains.

3.4 Geometric Consideration of the Colourisation Problem

Understanding the propagation of colour along geometric shapes in images is of great
benefit to colourisation. Inspired by work in (Levin et al. 2004), Sapiro in (Sapiro 2005)
developed a semi-automatic colourisation technique for YCbCr coloured images based
on the fact that the appropriate colour information optimally minimises the total
variation between the gradient of the Y channel and the gradient of each of the Cb and
Cr channels. Sapiro, used the Euler-Langrage process to derive a linear 2" order PDE
(Poisson equation), the numerical solutions of which was shown to succeed in adding

colour to greyscale images/movies.

Here, we shall first prove that Sapiro’s scheme is extendible to other 3-dimensional

colour channels, as a result of a modified version of the Poisson PDE. Furthermore,
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inspired by the PDE inpainting algorithms proposed in (Bertalmio et al. 2000) and
(Peiying Chen & Yuandi Wang 2008) that smoothly propagate information from the
surrounding areas in the isophotes direction, two functional formulas are investigated,
other than the gradient functional, defined in terms of the directional derivative of (1)
the gradient and (2) the Laplacian of two colour channels. The Euler-Langrage process
applied to these two functional produces nonlinear 2" order as well as a nonlinear 4"
order PDE’s that can be solved numerically to restore colours in a missing region of
interest. The effectiveness of the corresponding image inpainting schemes are
established, in both the spatial and wavelet domains for 8 different colour spaces. The
successes of both schemes for a large number of natural images is demonstrated,
showing that they outperform the Poisson formula.

3.4.1 The Mathematics of Sapiro’s Colourisation Scheme

For the sake of self-contentment, the mathematical concepts are first described that
underpin the colourisation scheme Sapiro, in (Sapiro 2005), in the non-correlated YCbCr
image colour space. Let Y(x,y): Q@ - R*,Cb(x,y): Q » R*,and Cr(x,y): @ —» R* be
the functions defining the image Q in the YCbCr colour space. Assume that Cb and Cr,

but not Y, values are missing in a region (., which is s proper subset of (.

The following minimisation in the region problem has been introduced for the
reconstructions of the Cb (and Cr) missing colours in Q., from the available Y

luminance image channel.

rré}i)nf o|VY — VCb| dQ, (3.1)
Q
WhereV: = (%,a%)is the gradient operator, and 6(-): R — R, this function works to

determine the type of space that used for the proposed formula, for example, L norm or

L2 norm space.

The basic idea is to force the directional gradient (and therefore the geometry) of Cb to
be as the geometry of the given greyscale image Y while preserving the given values of
Cb at Q.. Note here that though, these given values are considered as hard constraints.
This can be particularly useful for editing applications where the user only provides
colour hints instead of colour constraints. For ease of the presentation, we continue with
the assumption of hard constraints. In (Black et al. 1998), a number of robust selections

for o were discussed for image de-noising, while (Ballester et al. 2001) set o as the L!
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norm, i.e. o(-) = |-|. These choices are based on the work done on total variation in
(Rudin et al. 1992), and (Jiying Wu & Qiugi Ruan 2008). Naturally, the most common,
though not strong, chosen is the L? norm, o(-) =- which leads via simple calculus of
variation (Euler-Lagrange equation) to the following Proposition on the necessary

condition to minimise (3.1):

Proposition 3.1: Given a YCbCr colour image f, then in any sub-image of f:

AY = ACb = ACr (3.2)

2 2
where A is defined as the Laplacian operator given by A: = (% + ;—yz).

Proof (Sapiro 2005): To prove this, one can rewrite equation (3.1) as follow:
(W) = minf f|||7W||2 dQ, where W =Y — Cb
Cb
Q

Since

oW oWy OW oW OWN2  1OWN2
) (Gr5y)=Gx) +(55)
dx * dy
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then one we need to find the Euler- Lagrange equation for the following functional
X2 Y2
o =min [ [ [+ (2] e
w=nin | | |(G5) +(55) | e

X1 Y1

For simplicity, write the Integrand quantity as G = W,? + W,2. Thus,

aG_O aG_ZW_ZGW a(aa)_ 2w

ow 7 ow, “F  Toax’'  ox\ow,) ~ ax?’
aG _ZW_ZGW 0 (0G\ _0*W
ow, TV Tay’ oay\aw,) " ay?

Therefore, the Euler-Lagrange equation for this functional is (Tang 2007),

ac ad (OG) g (0G\ 0
ow ax\aw,/ ay\aw,)
which yields the Laplace equation is

a*w N ’*w
ax2 = dy?

0.

The proof of the Proposition is complete by the fact that:

AW = 0,= A(Y — Cb) = 0 = AY = ACb.
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Similarly, one can prove that AY = ACr.

Numerical Solution of Equation (3.2).

Equation (3.2) is a linear elliptic equation which known as Poisson’s equation. The

boundary conditions will be on Q., and the equation (3.2) is written as follows:
ViCb="F (3.3)
Where F = AY, is the Laplacian of the Y channel data (i.e. luminance, and this data is
known). In Cartesian space, equation (3.3) can be written as:
(5 +2) cbeey) = Fxy) (3.4)
To discretise equation (3.4), the five-point finite difference method is used, as follows:

1. Rewrites (3.4) in discrete space by a finite difference as follows:

2 Wit1j — Ui FUig o Wijeg — Ui Ui
V*u = 2 + 2 = gi,j (35)
Ax Ay

Where2 <i<m-1and2 <j<n-1,Ax*=Ay?=1and V?u=V3Cb, g;; = F(x,y).

2. Now, the matrix representation of Poisson’s equation is [A][U] = [b],

where [U] = [ug1, Upg, s oo Uty Uiz Uz eoes Umnzs ooos U] s

rD -1 0 0 0 - 01 r4 -1 0 0 0o - 0

-1 D -1 0 o - 0 -1 4 -1 0 0o - 0

0 -1 D -—I 0o - 0 0O -1 4 -1 0o - 0

A = E .. .. .. ., . E , D = : .. . ., . . :
0« 0 -1 D -1 0 0 0 -1 4 -1 0
0 - 0 -1 D -—I 0 « . 0 -1 4 -1

L0 e e e 0 -1 Ddpmn L 0 ... e e 0 -1 41

U=A"1b (3.6)

The scribbles are outside of missing colour regions. The Gaussian elimination method
can be used to solve the system (3.6) with Dirichlet boundary conditions. Also, there is
a vast field of available literature on numerical implementations of these equations
leading to accurately efficient solutions (Recktenwald 2011), (Markle, Wilson 1988)
and (Arbeléez et al. 2011).

Generalising Sapiro colourisation Algorithm

Proposition 3.1 is extended to cover different colour spaces as one of our initial
objectives. This should help apply the Sapiro-like algorithm on any colour space and

determine the colour space more effective for adding colour. In particular, Sapiro’s
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algorithm, (Sapiro 2005) on RGB, CMY, and CMYK and as we mentioned before all

these colour spaces have been derived from RGB colour space.

The RGB components can be obtained according to equation (3.2):

R] [1.164 0.000 1.596 Y] 16
G|=]1.164 0.392 —-0.813|‘|Cb|—]128 (3.7)
Bl 11.164 2.017 0.000 Crl 128
Differentiation of this formula yields the following relation on the Laplacian
AR] [1.164 0.000 1.5967 [AY
AG|=|1.164 0.392 —-0.813|-|ACbh (3.8)a
AB1 11.164 2.017 0.000 LACT
Since, ACb = AY and ACr = AY, then we get the following generalised proposition:
Proposition 3.2: Given a RGB colour image f, then in any sub-image of f:
AR = K;AG and AR = K,AB, (3.8)b

where K; and K, are constant values obtained from the columns of (3.8), i.e.

K, = 0.175 and K, = 1.1525

The numerical method used to solve Equation (3.2) can be followed exactly to solve
Equation (3.8)b for colourisation in the RGB model. The same steps have been followed
to apply the algorithm in (Sapiro 2005) on CMY colour space. Also, this algorithm has
applied to eight colour spaces (RGB, CMY, YCbCr, YUV, NTSC, XYZ, HIS, HSV) in
both spatial and frequency domains. Table 3-1 shows the values of conversion
parameters (i.e. K;and K,) from different colour spaces to RGB space, when using G as

the channel that has the most the texture information in the image.

Colour space | YCbCr | YUV | NTSC | XYZ HSV HIS CMY
K, value 1.27402 | 1.57569 | 1.34973 | 1.06514 | 1.54346 | 1.57621 | 0.98643
K value 1.77342 | 1.23276 | 0.83926 | 1.30553 | 1.65432 | 1.63345 | 0.75564

Table 3-1: Values of conversion parameters from different colour spaces to RGB space.

Figure 3-4 shows the result of applying Sapiro algorithm at RGB colour space, and

comparison its performance with the YCbCr Sapiro algorithm.
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ROGE lmage with YOLCOr Image with Tupainted YOLCO v lnage Tupainted RGE image
missing coloar reglon missing colour region

RGEH Imagoe with Tnpainted RGE image
wmissing colour region

Figure 3-4: Sapiro colourisation algorithm. Row (1) Sapiro colourisation process in the YCbCr
colour space, Row (2) Sapiro colourisation process in the RGB colour space.

The colourised image obtained using the Sapiro algorithm in RGB has good assessed
quality (i.e. it is visually acceptable), and its result corresponds to the result of the same
algorithm in YCbCr, but the quality measurement values of these images are different.
The Sapiro algorithm has successfully added colour to the missing colour regions.
However, this algorithm has limitations with the high texture regions, and the edges that
have different colours in the large missing colour region. Figure 3-5, reveals the
shortcomings of both algorithms when dealing with the reasonably large missing area or

when there are many textures in the missing area.

b5 am G A LS.
SATENENE TRNSHE eSS TRAS ST RN

(O] (b)

Figure 3-5: Sapiro colourisation algorithm. (a) Original image, (b) masked colour image, (c)
coloured image.

The coloured image in the first row shows the bad effect of adding colour to the missing
colour region that has high texture, especially in the edges, while the coloured image in
the second row shows the effect of adding colour to the regions that have edges with
different colours between them. This triggers our next investigations into other

geometric-based minimisation problems that may result in improved colourisation.
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3.4.2 Further Variation -based Formulation of Image Colourisation

This section aims to consider the potential improvement of the previous two
colourisation algorithms using 2 other geometric-based functional minimisations and
their Euler-Lagrange solutions. Here, assume that the user adds colour scribbles to the
missing region by any image editing applications, and these greyscale images with
colour scribbles are converted to YCbCr colour space. The choice of working in the
YCbCr colour model is meant to simplify the discussion. The image segmentation
algorithm (Arbelaez et al. 2011) allows the addition of different colours for different

objects in the image at the same time.

3.4.2.1 Minimisation of Directional Derivative of Gradient in Colour Channels
We first investigate the minimisation of the direction derivatives of gradients in YCbCr

coloured channels, i.e.

VY  VCb
f [ ——)- VCb] dQ, (3.9)

min | o[(——
I7YIl  [IvCb]]

Cb

From calculus of variations, the corresponding Euler-Lagrange equation is (for L? norm)

is used below to prove the following new colourisation algorithm:
Proposition 3.3: Given a YCbCr colour image f, then in any sub-image of f:

v (||Z€E||> =V (u%n)' (3.10)

Where V - is the divergence operator given by V -:= (%+ ) and 7 - (”VY”) is called

the curvature operator defined on the luminance channel Y

Proof: We shall deduce equation (3.10) from equation (3.9) using the Euler-Lagrange

equation. Firstly, equation (3.9) can be rewritten as follows:

(W) = f f VY veb ) VCh 2 do (3.11)
= m1n . .
vyl [Ivch]|
a1 ow
where [(W) = I(Y, Cb). Since =yt E’ then
0 al i I1(Y + hv) = (V) i 1(Ch + hv) — I(Ch)
“aw U T a5 h T n -
VCb H .
By setting N = W M= ||l7Cb||'and m, = VCb, equation (3.11) becomes:

. 2
I(W)=‘rrclznf§[((N - M)-my)"dQ, (3.12)
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ow

1 ¥z (Y2
aw = ﬁil’éﬁf f (@ +hv) — ) 'm1)2 — (V= M) - m;) dxdy (3.13)
X1 N1

1 ¥z (Y2 2 2
= lim—J J ((N = hv) - my)" = 2(N — hv)Mmy + (M - my)? — (N — M) - my) dxdy
h-0h X1 N1
X2

1 Y2
= }lm(l)ﬁ f (N? = 2Nhv — h*v?) - my? — 2NMm,; — 2hvMm, + M? - m,?
X1 YY1

— (N%?-m;? — 2NM + M? - m,?) dxdy

1 Y2
= }zméﬁf h(=2Nv — hv?) - m,? — 2vMm, dxdy
X

Using the Dominated Convergence theorem, it is possible to move the limit inside the

integral.

oW fxzj;vzl_ < , Y h( 4% )2> SPRPILA 4, B
== im| | — - : — 27— ' x
oY Jy Jy, o0 7Yl vl VIl IVCbl| g

1 1

Where h = 0 in the limitation, then

— -VCb% =2 ——— - VCb dxd 3.13a
RO VI TI7Co] y (3.13a)

W_f’CnyZ vy VUv Vv VCb

The same steps are followed to the derivative for Cb:

o f N f P A LA A S A S LA LA I M T
g _ : —_opy- : X _
7Yl ivvll YNVl (vl 7Cb]] Y
Where ;—VL =— + E equations (3.13a) and (3.13b) are substituted in equation (3.13):
f f P T T pent -2 2 T peh e
_ : M
aw ” IIwyIiivvll I7vilIvCbl| Y
+J‘ J‘yz vy vv VCb? — 277y vy vv +a Vv VCb VCh dod
: _opy- : X
x 7Yl Vvl WeYlvyll vyl [[VCb| Y

1

This long expression can be simplified as follows:

yZ V
-VCb —2VY - —dxd 3.14
w J j Izl ||||\7Cb|| T el 4 (314

Applying integration by parts twice to equation (3.14) leads to the partial differential

equation,
B (VCb)—V (VY)
|IVCbl| vyl

I.e. equation (3.10), and the proof is complete.

Numerical Solution of Equation (3.10). Equation (3.10) is a nonlinear elliptic equation

with Dirichlet boundary conditions. Therefore, equations (3.9) and (3.10) can be solved
very efficiently by a number of well-developed curvature formula solvers (Osher &
Sethian 1988), (Lai et al. 2009) and (Ibraheem et al. 2012). In Cartesian space, equation

(3.10) can be written as
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(HZEE”) F (3.15)

Where,

( 4' ) Yir V2 — 2V Y, Yy, + Y, Y2

Fxy) =V
) =7 oy

3
(Y2 +Y2)?
A fixed point finite differences scheme has been used to solve equation (3.15). A

discrete form of equation (3.15) is:

1 |[ 1 A’+‘Cb”1| 1 |[ 1 A’+‘Cbij1|
—AX =1+ =AY ~1=0;;
e A*Cb; AY Cb; AR AXCh; A’ Ch; e
ll €2 + (= ”)2 + (=2 ”)2 Jl ll €2 + (= ”)2 +(— ”)2 Jl
i Cbit1,j—Cb;j _ i Cb;j—Cbi_4,j +
h2 Cb;,, i—Cb; ; Cb; 1+,-Ch; i_ h?
Jere i Lty P i, &u“ R )
i Cbi']'+1—Cbi']' _ i Cbl"]'—Cbi‘]'_l _ gi’j (316)

h? 2 h? b chb 2 /Cb; i—Cb; 2
24 Cbiyq,j=Cbi_yq,j + Cbl]+1_Cbl] 24 Cbiyq,j—1=Cbi_q,j—1 +(Pi=CPij-1
2h h 2h h

Where the above notations are:

Ch;; = Cb(x1,¥;), 9ij = 9(x0,¥;), AXCb;j = +(Cbiyqj — Cbyj),AYCh;
= i(Cbi,j+1 - Cbl'])

A fixed-point Gauss-Seidel iterative method for the equation (3.16), and so the
following linearized equation is introduced:

1 Cb1+1} - Cbn+1 1 bn+1 - Cb;n 1,j
ﬁ\/ 2 4 (s = iy, Cbiyn — Cbiyny, G by, — Cby \* | (CBy iy — CBy i\
€ 3 2 i-1,j i—1,j+1 i-1,j-1
R 7 e+ ( . ) + ( — )
1 Cb?jn - Cb'n'H
+ﬁ 2 Cbﬁl—l} bl 1,j 2 Cbln]+1 Cbln] 2
€2+ ( R )2+ ( I )
1 bn+1 - Cb;n/ 1
12 = 9ij
h? ChY.,, . — Cb, _ Ch, — CbY !
Jez + ( i+1,j 12h i-1,j 1)2 ( o Lj— 1)2

And solving for Cb7'f*, we obtain:

1 1
Chyjt = 1 -[gi,j +ﬁ(C1Cbin+1,j +¢Chiy j + ¢3Cbj 44
ﬁ(c1 +c;+c3tcy)
+ c4Cbl-’fj_1)] (3.17)

Where the introduced notations are;

1 _ 1
€2 = 2 2

n . _cph. n.. _cpn, cb™.—cp?t . . chb™ . . . —CbhT .
\/62+(Cbl+1,] Cbl,])2+(Cbl,]+1 Cbl,]—l)z J62+< ij - 1—1,1) +< i—-1,j+1 L—1,]—1>
h 2h

2h
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1
€3 = 1 Ca
2 2
JEZ . (Cbinﬂ,jz_thln_ 1.1') . <Cbgfj+1h— Cbg}j)
Cb;r’l]-'.l - CblT’L]_l
B Chiy,1—Chiy 1 CBT, — Ch_
\/62+( i+1,j 12h i—1,j 1)2+( i,j - ij 1)2

The boundary condition can be implemented in the following way:

Cng == Cb{l'], CbITle,] = CbI\T,lI_l,j y CblT’lo = Cb;ll, Cbz:lN = Cbg:lN_l and Cbg'lo = Cbrllll, Cbg,N =

Cbrll,N—l’ Cbzrvll,o = CbI\T/lI—l,lj Cb]\,‘,,N = Cbzrvll—1,1v—1-

Where,1<i<M-11<j<N-1,and (M,N) is the size of the image.

The numerical solution of equation (3.17) with Dirichlet boundary conditions can be

used to add colour to the missing-colour region in an image.

Equation (3.10) is once again solved using standard efficient numerical implementations
(Peiying Chen & Yuandi Wang 2008), and (Lai et al. 2009). The numerical solution of
equation (3.10) that we have found represents the colour of the region of the interest in
the Cb channel. The same procedure is followed to find the numerical solution of the Cr

channel.

3.4.2.2 Minimisation of the Laplacian in Colour Channels
The second formula proposed is based on the Laplacian operator in coloured channels.

In this case, the variational formula becomes

né%nf p([JAY — ACb |DdQ, (3.18)

Q
The nonlinear 4™ order PDE achieved by applying Euler-Lagrange equation with a

Fréchet derivative of Laplacian minimisation formula (Peiying Chen & Yuandi Wang
2008) is (for an L2 norm):

Proposition 3.4: Given a YCbCr colour image f, then in any sub-image of f:

d*Cbh N <62Cb> N (E)ZCb) N 0*Cb _ 0*Y N < 62Y> N ( 62Y> N 'Y (3.19)
dx* dxdy Jx dyox Xy dy*  0x*  \0dxdy Jx dyodx Xy dy*

Proof:

Equation (3.19) is a nonlinear 4™ order PDE; this equation can write as follows:

2*Ch N (62Cb> N (E)ZCb) N 0*Ch _z (3.20)
4 4 = :

dx dxdy x Jdydx Xy dy
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Now, we will explain how we obtained equation (3.20) from equation (3.18) by using

the Euler-Lagrange equation. Firstly, equation (3.18) can be rewritten as follows:
(W) = minf fllAWlIz dQ, where W =Y — Cb
Cb 3
Now, this notation is used

[|AW]|? = AW. AW = oW + oW (W + oW
S “\ox2 ' ay? 0x%2 = 0y?

2
_ 02W2+ o2W 2+ 2w 2+ 2w
~\ ox2 0xdy 0ydx oy2 )’

So that, to find the corresponding Euler- Lagrange equation for the following functional

=g | ]

then the derivative W of the equation (3.21) are calculated and then set equal to zero.

2 2

2w 2w |?

+ dyox

azw
axay

92 l dxdy, (3.21)

By using the definition of the derivative:

0o ol | (W + hv) — [(W)
“aw VTR h
v2 [ (102w azvz 2w e |t |otw 9% |
=1 — h h
6W Y hl—rghf f ax2 ax2 + 6x6y+ dxdy + 0y6x+ dyox
+62W+ a2v|° 62W2+ 62W2+ 62W2+62W2 iedv (3.2
0y? 0y? 0x2 0x0y dyox dy? xdy (3.22)
The difference between the two terms will simplify to:
2w haz L |otw hazv [ |o*w hazu [ 2w o%v’
( 0x? + ox? +|6x6y+ 6x6y| +|6y6x-+ ayaxl ay? >

2 2

+ 2w
dy?

2w/
*layox

+ a*w
0xdy

2w
dx?

( )
W, (7 2+262W o0’v (9 2+262W 0%v (9% ?
- 0x? 0x? dx? 0x0y 0x0y 0x0y dydx dyox dyox
P*Worv  (9%v\
t2 gt il g (3.23)

Using the Dominated Convergence theorem, it is possible to move the limit inside the

integral.

i fxzfyzl' LWy (0PN OW oty (0%
ow "~ %1y noo\ “ 9x? 9x2 dx? 0xdy dxdy 0xdy

A L WP LY LA R 3.24
0ydx dydx 0yox 0y? dy? d0y? xey (3:24)

Where h = 0 in the limitation, then
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01 _f"zj'yz 262W62v
ow V) 9x? ax?2
1 YY1
0%W 92%v 0%W 9%v 0%W 9%v

2 0xdy d0xdy 2 dydx dydx + 9y?2 a_yz> dxdy (3.25)

By using integration by parts twice for the equation (3.25), the following partial

differential equation is produced:

2 oW +2 o°W +2 o°W +2 oW =0 (3.26
dx2 0x0y 0yox dy? B 26)
where W =Y — Cb, then
(626b> + (62Cb> 4 ((3sz> + (626b>
dx? o \0xdy Jx dydx Xy dy? Vy
(), Gw), )+ (53), o
0x? o \0xdy x dyox xy dy? Yy
Similarly, one can prove that
do%Cr do%Cr d0%Cr o%Cr
dx? xx+ dxdy yx+ 0yox xy+ dy? Yy
(0% 9%y 9%y 9%y 228
- Wxx-i- dxdy yx+ dyox xy+ 6_yzyy (3:28)

While in an L' norm, the Euler Lagrange equation of (3.18) by followed the same

previous steps which that used to find the Euler Lagrange equation in an L? norm.

<Cbxx> +< bex) +< Cbxy> +< bey>
Jiacol?) - \Jiacbl?/ - \Jiacwz/ . \Jiacbl?/
() () (520, ()
ave), \Jave/,, \Jiave/,,  \Jiave/,,

Numerical Solution of Equation (3.19).

The same procedure as described in the Poisson formula is followed. The explicit time
marching scheme has been used to solve equation (3.27). We now detail the spatial

discretisation,

[Cbxx(Cbxx(ui,j)) + Cbxy(bex(ui,j)) + bex(Cbxy(ui’j)) + bey(bey(ui_j))]
=g@,j) (3.29)

Where Chy,(u; ;) = Uiy + Uim1,j — 2uij, Chyy (Ui ;) = U jpr + Ui jg — 2U;

Chyy(Uij) = Upprj = Uij = Upgrjor +Ugjor o AN Chyy(ug)) = wyjeq — u; —wmg j +
Ui—1,j-1

and the upwind finite difference scheme of Osher and Sethian (Osher & Sethian 1988),
with Neumann boundary conditions is used. For more details about the numerical
solution of the equation of (3.29) with boundary condition (3.18), see (Peiying Chen &

Yuandi Wang 2008) and (Osher & Sethian 1988). The numerical solution of equations
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(3.19) that adds information to the region of the interest in the Cb channel. The same
procedure is followed to find the numerical solution for the Cr channel. The below
Figure 3-6 shows the performance of both proposed methods when dealing with

different quantity textures in the missing area.

Figure 3-6: PDE colourisation algorithms. Column (a) masked colour image, column (b) and (c)
colourised images using curvature and 4™ order PDE methods, respectively.

3.4.2.3 Summary of the above colourisation algorithms

After the numerical solutions for Cb and Cr channels have been found, they are merged
with channel Y, and leads to a YCbCr image. The conversion of YCbCr to RGB
displays the colours that added to the region of interest. Also, these proposed formulas
are applied on eight colours spaces which are YCbCr, YUV, NTSC, HIS, HSV, CMY,
RGB, and XYZ in both spatial and frequency domains. The above algorithm is shown

simplified in Figure 3-7.

Monochrome image Color scribbles TImage automatic

downloadi — P —l segmentation el Domain selection

Final result Colorizati Choosing colo. ¢ ‘ Lo
res ¢ rzaton ¢ osing color
(colored image) formula selection space

Frequency domain

Figure 3-7: Flowchart of an algorithm for inpainting the colours

In the following section, the standard quality measures are introduced to check the
quality of colourisation results, and this allows for comparison between the results of

our algorithms with different existing colourisation methods.

3.5 Experimental Results
In this section, the results of the proposed algorithm are presented and compared with

the results obtained from (Sapiro 2005). As mentioned in section 3.4.2, the aim was to
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introduce two methods for adding colours into the greyscale images. The proposed
approach has implemented on two domains, spatial domain and Frequency domain
tested on 8 colour spaces. The colours are added to the images in two cases, the first
case where the colour is partially missing from the certain region where the other
regions of the image are already coloured. The second case the image is in greyscale

and we try to add the colours to the different objects of the image.

In the first case, the proposed algorithms are applied to add colouration based on the
colour information on the border of the un-coloured region. Figure 3-8 illustrates adding
the colour to the un-coloured region which contains information about structure and
texture, the numerical solution of equations 3.5, 3.17, and 3.28 above with boundary
condition managed to add the colour, the results were visually acceptable, and still there
is problem with edges of missing colour region. However, there is the un-noticeable
difference on the edges of the recovered area, based on the PDE order (the higher, the
better) as shown in Figure 3-8d (indicated by the arrows).

Figure 3-8: Colourising missing colour regions. (a) Original image with missing colour region,
(0), (c), and (d) colourised image by Poisson, curvature, and 4" order PDE methods,
respectively.

In the second case, the curvature approach is used for adding the colour to the whole
grayscale image, but this needs to add colour hints to the image as scrabbles, but this
approach produces edge issue where the colours pass over the edges of a certain object
and mix with the neighbouring objects in the image, see the third image in Figure 3-9.

Figure 3-9: Colourising whole grayscale image. (a) Grayscale image, (b) grayscale image with
added scrabbles, (c) colourised image using curvature model.

To solve this problem, the borders of objects within the image are determined by
highlighting manually or using an automated object segmentation method (not
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discussed in this chapter) and then adding colour scribbles (indicated by the arrows in
the third image of Figure 3-9) to the image’s objects to assess the colourisation
algorithm. Our approach has been tested on two groups of images by using a large
number of natural images. The first group of the images has not been segmented, and
the second group is containing images which are already pre-segmented, where these
images are obtained from the Berkeley database(Pablo Arbelaez 2007). In the next two
sub-sections, the pros and cons of applying the proposed algorithm to non-segmented

images and pre-segmented images respectively are discussed.

3.5.1 Using Non-Segmented Images

If the image is not segmented before colorisation, and we try to make the colouring
more precise compared with to the added colour hints in Figure 3-9 above, more colour
hints around the important objects are added that need to have more colour prissiness,
see Figure 3-10, and if the algorithm is applied in the same way, as seen in Figure 3-9,
the colours are distributed in a better way. However, this way of adding the colour hints

IS very time consuming and not recommended for mass image colouring.

©

Figure 3-10: Adding colour to non-segmented images. (a) Grayscale image, (b) segmented
image by colour scribbles, (c) colourised images using curvature model.

3.5.2 Using Pre-Segmented Images

To apply the image segmentation, many algorithms can be used to segment the image as
seen in (Markle, Wilson 1988), and (Arbeléez et al. 2011), but this work uses pre-
segmented images in(Deng Cai, Xiaofei He, Yuxiao Hu 2005). In this case, we need to
label the segmented objects then apply our colourisation algorithm on each labelled
object separately after adding the colour scribbles to these labelled objects, as it is

shown in Figure 3-11.
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(a) (h) (©)

Figure 3-11: An image has segmented. (a) Grayscale image, (b) segmented image with colour
scribbles, (c) colourised image using curvature method.

Therefore, Figure 3-11 is representing the result of our algorithm when applied on the
segmented image; we found the result more controlling the propagation of the colours
inside the border of image objects (see the difference between Figure 3-10 and 3-9).
Figure 3-12 and 3-13 shows the results of our algorithm when it is applied to the same

image on spatial and frequency domain (wavelet) respectively.

Figure 3-12: Colourising segmented image in the spatial domain. (a) Original colour image, (b)
grayscale image, (c) segmented grayscale image with colour scribbles, (d) colourised image
using 4™ order PDE method.

Furthermore, the proposed algorithms were applied to the image which has used in
Figure 3-12 on the frequency domain where the wavelet Haar filter (Chan et al. 2006)
has been used to convert every channel in the greyscale image with colour scribbles
added to 4 sub-bands image in the frequency domain. The proposed algorithm must run
eight times for each image sub-band in the frequency domain. We noted that the
colourised images in Figure 3-12 and 3-13 are visually almost identical to the original
image. Also, this point is discussed in the next section. So, Figure 3-13 shows the use of
the proposed algorithm in the frequency domain.

() (b) (c) ()

Figure 3-13: Colourising segmented image in frequency domain. (a) Grayscale image, (b)
segmented grayscale image with colour scribbles, (c) greyscale image with colour scribbles to
the frequency domain, (d) colourised image using 4" order PDE method.
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Finally, for the sake of clarity, the proposed algorithm has been applied to several pre-

segmented images to check its effectiveness.

Figure 3-14 presents some additional examples of greyscale images. The first column
represents the input greyscale images and the second column shows the input images
with the colour strokes that want to spread on them. The result of our algorithm is
provided in the third column. Note that as in image inpainting, the original image is not

available, and therefore every “reasonable” and the visually pleasant result should be

& &
-
—

Figure 3-14: Examples of colourising grayscale images. (a) Greyscale images, (b) scribbled
grayscale images, (c) colourised images by 4" order PDE method.

considered acceptable.

ME
e

The next section presents the quality assessment of coloured images by using traditional

statistical measurements.

3.6 Image Quality Assessments

This section describes the effectiveness of the proposed algorithms for adding colour to
the greyscale image. The algorithms have been introduced in previous sections, and
their results illustrated by visual examples. The quality evaluation of colourised image
is carried out using standard quality measures as explained in section 2.6.1; these
standard quality measures are used to check the quality our proposed algorithm and
compare it with the algorithm in (Sapiro 2005). An accurate evaluation method which
simultaneously assesses inpainted image qualitatively and quantitatively is not an easy
task. Therefore, we depended on visual analysis to assess the qualitative tests. However,
for quantitative evaluation, Peak Signal-to-Noise Ratio (PSNR), and Structural
Similarity (SSIM) are computed, for more information about these measurements, (cf.
Section 2.6.1). Also, there is another way to compare the colour images which is
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Normalised Colour Distance (NCD). This measurement is focused on the distances

between the colours in a given colour space (Russo 2014):

T Zhen T2 [0g(mm) — 1(m, )]
NCD =

(2.30)

ST (22 [0g(mm]

The lower NCD, is the better the image quality. The NCD measurement is applied on the
colourised images to evaluate the performance of colourisation methods and assess their

colourised image quality results. The next subsection shows the natural images database.

3.6.1 Database Description

This subsection gives a brief description of a publicly available database; a natural
image database that is used in our experiments to evaluate the suitability of the different
PDE-based colourisation algorithms. Statistical measurement methods have been used
to evaluate the efficacy of these PDE algorithms. The Berkeley segmentation dataset
and Benchmark database in(Pablo Arbelaez 2007)which consists of 300 natural images
of size 321x481, 25 for each of 12 individuals, this database is used for segmentation
application in both grayscale and colour images. Figure3-15 illustrates examples of

natural images from the Berkeley segmentation and Benchmark database.

Figure3-15: Example of eight out of 300 training natural images.
The purpose of using the Berkeley natural images database is that these images have
different quantity of texture and structure in the image; and also, there are précised pre-
segmented objects in the grayscale images of the database which helped to speed up
applying PDE based colourisation methods on natural images with a reasonable
accuracy. The original images of the Berkeley database were used as the reference by
which to measure the quality of colourised images. The aim of these experiments is to
study the effect of these methods on adding the colour to the simple structure missing
colour regions in the natural images.
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3.6.2 Experiment 1: Results of Berkeley Segmentation Database

We conducted experiments to measure and compare image quality in the colourised
images concerning the original images in the spatial and frequency domain, using PSNR,
SSIM and NCD quality measures. The test images were colourised using Poisson,
curvature and 4th order PDE algorithms. The original images of the Berkeley database
were used as the reference by which to measure the quality of colourised images. In this
section, 80 different natural images are selected from this database which have different
content images; the experiments have been applied on these images. The aim of these
experiments is to study the effect of these algorithms on the colourisation of missing
colour region in the natural images. In general, the missing colour region (damaged
colour region) have been created in the images by removing the colour information in
two channels and meanwhile left the other information (i.e. whole structure and texture)
in the main channel. The next equation represents how we remove only the colours from

the regions in the original images,

foamagea (indx(K,), indy(K,),1) = f(indx(K,), indy(K))

foamagea(indx(Ky), indy(K,),2) = fi(indx(K,), indy(K5)) (3.31)

foamagea(indx(Ky), indy (K3),3) = fi(indx(Ky), indy(Ky))
Where f is the original image, fpamageqis the original image with missing colour
region f; is the channel one from the original image, and K; and K, represents the
height and width of the missing colour region. Figure 3-16 represents a masked colour
image in RGB space, the size of this miss colour region is 100x100, then this mask has
been applied to the database images to study the effect of colour propagation on
different types of texture in the missing regions and to study the efficiency of these PDE
methods. The PDE methods are applied on the masked green channel and masked blue

channel separately based on the information in Red channel.

To apply this mask on other colour spaces, the original image convert to other colour
spaces and then will apply the mask of missing colour region (i.e. formula 3-31), after
that the PDE methods are used to recover the colour in this space then will back convert
to RGB space to show the results, as see below in Figure 3-17. The PDE methods are
applied on masked Cb channel and masked Cr channel separately based on the

information in Y channel.
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WL

Original image Red channed Masked grees Channdd Masked blue Channel Masked Image

Figure 3-16: Masked colour natural image in the RGB colour space.

Orginst RGH image Origlnnl YOCr lmsage Y chamnel

Mapsked € Channed Maskied Cr Channdd Musked YOBCOr Image

Figure 3-17: Masked colour natural image in the YCbCr colour space.

The Poisson, curvature, and 4"-order PDE algorithms have applied on 80 natural
images to recover the missing colour block in eight colour spaces in both spatial and
frequency domains. In these sets of experiments, the Haar wavelet transform is used to

convert the image from spatial to the frequency domain (Chan et al. 2006).

Figure 3-18 shows examples of five out of 80 colourisation results of block missing
colour in the natural images, where these examples selected from different colour

spaces.

Figure 3-18: Examples of five out of 80 colourisation results of block missing colour in the
natural images. (a) Original images, (b) masked colour images, (c), (d), and (e) colourised
images using Poisson, curvature and 4"-order PDE colourisation algorithms, respectively.
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As mentioned before, in Figure 3-18 these colourisation algorithms have been
successfully recovered the colour in the block missing colour with smooth areas
surrounding it, as seen in the first and second rows. However, these algorithms have
been faced difficulties to recover block with high texture areas surrounding it (i.e. a lot
of edges and corners with different colours), as seen in the 3 4" and 5" rows. The
results of these algorithms are as follows: the results of using 4th-order PDE algorithm
are better than the results of the other two algorithms which show the effect of the order

clearly. It follows by curvature and Poisson, respectively.

Now a comparison of the curvature and 4th-order PDE methods with Poisson method
(Sapiro 2005) is presented. The difference in the results occurred while dealing with
numerical methods. Therefore we will always end up with some errors due to truncation
error and rounding off error of the mathematical model. PSNR, SSIM, and NCD have
been calculated between the original image and the inpainted images in 8 different
colour spaces in both Spatial and Frequency domains by Poisson, Curvature and 4th-
order PDE methods. These methods applied to 80 natural images, the results are

summarised below in Table 3-2 and 3-3.

Errors Spatial Domain

Space Poisson method Curvature method 4™-order PDE method
Name I pSNR | sSIM | NCD | PSNR | ssim | NCD | PSNR | ssim | NCD
RGB | 20.13 | 0.891 | 0.395 | 26.21 | 0.928 | 0.293 | 29.76 | 0.936 | 0.291
CMY ] 1754 | 0.814 | 0.375 ]| 19.54 | 0.874 | 0.372 | 30.99 | 0.914 | 0.296
YCbCr | 24.82 | 0.906 | 0.299 | 24.91 | 0.813 | 0.395 | 39.88 | 0.964 | 0.128
YUV | 29.54 | 0.934 ] 0.20W | 41.74 ] 0.964 | 0.12% | 4254 | 0.974 | 0.11¥
HSI 26.21 | 0.929 | 0.245 ] 28.37 | 0.939 | 0.242 | 31.85 | 0.938 | 0.255
HSV ] 26.88 | 0.927 | 0.248 | 29.39 | 0.939 | 0.248 | 29.96 | 0.931 | 0.257
NTSC | 30.6#4 | 0.934 [ 0.20% | 42.84 | 0.974 | 0.20¥ | 4754 | 0.974 | 0.21¥
XYZ | 27.82 | 0.928 | 0.248 | 30.58 | 0.939 | 0.263 | 30.99 | 0.92 | 0.279

Table 3-2: The average of PSNR, SSIM and NCD values from original and inpainted images in
the spatial domain for 8 different colour spaces. Poisson, Curvature and 4"-order methods have
been used to obtain these error values.
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Errors Frequency Domain

Space Poisson method Curvature method 4"-order PDE method
Name | PSNR | sSIM | NCD | PSNR | ssiIM | NCD | PSNR | ssiM | NCD
RGB | 18.65 | 0.816 | 0.986 | 23.76 | 0.845 ]0.765 | 26.54 | 0.875 | 0.594
CMY ]16.77 | 0.764 | 0.785 | 18.97 | 0.806 | 0.596 | 27.67 | 0.897 | 0.436
YCbCr | 20.18 | 0.916 | 0.634 | 21.34 | 0.921 |0.457 | 36.21 ] 0.933 | 0.405
YUV | 3334 | 0.934 | 0.78W | 39.54 | 0.944 | 0.50% | 41.64 | 0.954 | 0.32¥
HSI ]23.95 ] 0.902 | 0.987 |26.82 | 0.913 ]0.767 ] 29.54 | 0.922 | 0.565
HSV 12457 |0.904 | 0.845 | 25.39 | 0.910 | 0.643 | 27.87 | 0.924 | 0.336
NTSC [ 29.84 | 0.944 [ 0.57¥ | 40.64 | 0.944 | 0.35% | 44.74 | 0.954 | 0.23¥
XYZ | 2496 |0.905 | 0.876 | 27.65 ]0.914 | 0.63 28.54 | 0.919 |0.372

Table 3-3: The average of PSNR, SSIM and NCD values from original and inpainted images, in
the frequency domain for 8 different colour spaces. Poisson, Curvature and 4"-order PDE
methods have used to obtain these values.

3.6.3 Results Analysis

Table 3-2 and 3-3 illustrate the average values of PSNR, SSIM and NCD obtained from
original and inpainted images, in both the spatial and frequency domains for 8 different
colour spaces; these results have been obtained by Poisson, curvature, and 4th-order
PDE methods. The values of PSNR, SSIM and NCD in spatial domain better than in the
frequency domain for all colour spaces. YUV and NTSC are better than other colour
spaces based on the values of PSNR, SSIM, and NCD. The components of the NTSC
colour space are YIQ, Y’ (the luminance component), ‘I’ (the cyan-orange component),
and ‘Q’ (the green-purple component), where | and Q represent a chrominance
component in the image. NTSC has a property of complete separation between the
luminance and the chrominance information (lbraheem et al. 2012) and (Yao_Wang,
Jorn. Ostermann 2001). This separation explains the good performance for NTSC space

in the colouring inpainting.

While in YUV colour space, YUV encoding used in some digital video based on MPEG
compression. Where, the YUV model defines a colour space in terms of one luminance
(Y) and two chrominance (UV) components. The luminance (Y) and two chrominance
(UV) was semi-separated because the colour information (U and V) are added
separately via a sub-carrier so that a black-and-white receiver would still be able to
receive and display a colour picture transmission in the receiver's native black-and-
white format (Ibraheem et al. 2012) and(Yao_Wang, Jorn. Ostermann 2001). NTSC and
YUV better than other colour space in the colourisation process because the luminance

and chrominance information are not well separated in other colour spaces.
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Also, the proposed algorithm is faster when it is applied on the non-segmented image,
whereas for pre-segmented image consumes relatively long time because the algorithm
has to run for each object (i.e. segment) of the image. The results of a spatial domain are
better than the results in Frequency domain for all PDE methods because it is clear that,
these methods are worked eight times in each image which accumulates more numerical
computation errors, thus will produce more error and consuming time in the Frequency
domain. Therefore, the 4th-order PDE method is better than of other methods for all
colour space in spatial and frequency domain based on the values of PSNR, SSIM, and
NCD. “PDE property”. Finally, the results used in (Sapiro 2005) were not that
promising whereas our technique achieved better results.

In the following sections, the results of our proposed algorithm with three colourisation
methods by using the standard quality measures are compared for a number of examples.
Subsequently, examples of important applications of semi-automatic colourisation are

also illustrated.

3.6.4 Experiment 2: Examples of Semi-Automatic Image Colourisation
Algorithms

Semi-automatic colourisation has several important applications such as old black and
white photographic images, biomedical imaging, night vision colourisation, and
astronomical image colourisation. Here, Figure 3-19 presents some sample results that
obtained with the four aforementioned algorithms: isoline-based image colourisation
(Popowicz & Smolka 2014), colourisation using optimisation (Levin et al. 2004),
colourisation-based PDE (Sapiro 2005), and the proposed colourisation method.
Although the methods differ from each other, we have to note that all the algorithms

provide very realistic and high-quality colour images.
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Figure 3-19: A comparison of colourisation quality achieved by different methods. Row (a)
Original images, row (b) Scribbled grayscale images, rows (c) (d), (e), and (f) colourised images
by Isoline algorithm (Popowicz & Smolka 2014), optimisation (Levin et al. 2004), PDE (Sapiro
2005), and the proposed colourisation methods.

In Figure 3-19, the colourised images are examined by using each quality measure
which was introduced in section 2.6.1. A comparison of PDE colourisation technique
with three techniques which introduced in (Levin et al. 2004), (Popowicz & Smolka
2014) and (Sapiro 2005) is presented. PSNR, SSIM, and NCD have been calculated
between the original image and the inpainted images in RGB colour space in the spatial
domain. These techniques applied to 40 natural images, the results are summarised
below in Table 3-4.

Images in column 1 Images in column 2 Images in column 3 Images in column 4
PSNR | SSIM § NCD PSNR § SSIM | NCD PSNR | SSIM | NCD PSNR | SSIM | NCD

Methods

Method
in

(Popowicz | 23.77 | 0.886 | 0.146 | 26.06 § 0.922 § 0.119 | 32.14 | 0.946 | 0.372 | 27.96 | 0.898 | 0.135
& Smolka
2014)

Method
in (Levin
et al.
2004)

Method
in (Sapiro | 21.91 ] 0.831 | 0.169 | 25.75 | 0.939 | 0.146 | 28.93 | 0.878 | 0.735 | 25.89 | 0.802 ] 0.194
2005)
Our
method

Table 3-4: Results of colourisation quality for all three algorithms, PSNR, SSIM, and NCD.

19.32 | 0.817 | 0.188 | 24.97 | 0.948 | 0.194 ] 28.70 | 0.810 | 0.791 | 24.65 | 0.787 ] 0.198

23.34 | 0.885 | 0.149 | 26.85 | 0.928 | 0.109 | 30.87 | 0.909 | 0.592 | 27.04 | 0.818 | 0.176

Moreover, Table 3-4 summarises the corresponding results of each quality measure for
the results which are some of them presented in Figure 3-19; all four methods are
assessed quantitatively. The results of the improved PDE technique is close enough to
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the results obtained with the technique in (Popowicz & Smolka 2014), while, they are
better than the results obtained by other methods (Levin et al. 2004) and (Sapiro 2005).
The errors of the technique occur owing to numerical conditioning issues. Therefore we
will always end up with some errors due to truncation error and rounding off errors in

the implementation of the mathematical model.

3.7 Summary and Conclusion

In this chapter, a survey of grayscale image colourisation algorithms is introduced.
Colourisation algorithms are divided into two groups, which are automatic and semi-
automatic. The literature on these two colourisation groups' algorithms is reviewed.
However, we are mainly interested in semi-automatic algorithms, as they seem to be
more applicable. A PDE-based colourisation algorithm is presented, then an improved
algorithm is proposed, in the outcomes of which the luminance channel represents the
geometry of the whole (directional) colour image more faithfully than in the images
obtained from the algorithm in (Sapiro 2005). Our colourisation algorithm has been
compared with three semiautomatic colourisation algorithms which are given in (Levin
et al. 2004), (Popowicz & Smolka 2014), and (Sapiro 2005). The algorithms referred to
in this chapter differ, and they have one aim which is adding colour to grayscale image;
however, all of them are able to provide high-quality outcomes. Finally, a methodology
is provided for the assessment of colourisation results, based on several well-known
statistical quality measures. The results of the improved colourisation-based PDE
technique turn out to be better than those obtained using the techniques in (Levin et al.
2004), and (Sapiro 2005), while being close to those obtained using the technique in
(Popowicz & Smolka 2014). The ideal colourisation results are also presented; they
effectively and efficiently to meet most of the user’s requirements in adding colour to
the grayscale images in different applications such as biology, astronomy, medicine,

and old images.

As mentioned before, a missing colour region is defined in RGB colour space, for two
different cases. When the missing region has information in it, such as a “missing
colour region” problem it is called colourisation problem, but when the missing region
doesn't has information in it, it is an “inpainting” problem. Hence, there are several
image inpainting algorithms that can be used to reconstruct missing regions, such as
PDE based inpainting, exemplar-based inpainting, hybrid algorithms, and so on. The

PDE inpainting algorithms are discussed in the next chapter.
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Chapter 4 pPDE BASED FULL
INPAINTING METHODS

In Chapter 3, our investigations focused on restoring missing colour in an image region
where texture information is available via one colour channel. The use of total variation
minimisation has been shown to lead to different order Partial Differential Equation
(PDE) models of colour restoration in those regions that are based on the numerical
solutions of these PDEs. The aim of the investigation in this chapter is the restoration of

information in a missing region where all channel information is missing.

Unsurprisingly, research over the years has shown that this full image inpainting
problem can equally be solved by PDEs of different orders. Indeed, PDEs have
repeatedly been shown to provide the natural model of diffusion, and the transport
method was first used to describe and model the corresponding process. We shall refer
to all of these methods as PDE-based Image Inpainting (PDE-BI) methods. These
methods are implemented separately in all colour channels. In this chapter, the
approaches taken in the last chapter are used to provide alternative efficient
implementations of PDE-BI methods. The extensive comparison of the performances of
higher and 2"-order PDE-based inpainting methods is studied in terms of the qualities
of inpainted images. The evaluation will not be confined to traditional statistical image
quality measures but will also apply a recently developed image quality measure based
on topological data analysis (TDA) scheme. Also, the efficacy of these PDE methods is
checked based on the TDA scheme. The 2"- and high-order PDE methods have been
applied to reconstruct deliberately removed colour information from randomly chosen
regions (to be counted as missing regions) in a large dataset of the face and natural

images, in both spatial and frequency domains.

This chapter consists of seven sections, the first 4 of which give an overview of existing
PDE-BI schemes with experimental work to test their performances. The proposed
modification is described in the spatial domain (section 4.5) and in the frequency
domain (section 4.6). The qualities of inpainted images assessed by statistical measures
and the TDA approach s are presented in section 4.7. Lastly, section 4.8 presents a

summary of the chapter with a list of challenges to be considered further.
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4.1 General Concepts and Mathematics of PDE-BI Methods

Let 2 < R2denotes the entire image domain f. The basic idea then is to propagate
information from the border of the missing region into it, in such a way that the border
of the missing region is no longer visible to the human eye. The border of missing-

region is dD; Figure4-1 illustrates the inpainting based PDE steps.

O\D

Figure4-1: Steps of inpainting based PDE method.

The missing areas represent sets of pixels, often referred to as holes, scratches, and
opening objects or simply as the unknown areas. All inpainting methods, use
information in the rest of the image to fill in the gaps. Mathematically, these methods
have been classified as variational (Energy) methods and direct non-variation based
PDE-BI methods. Variational methods compute the inpainted image as a minimiser of
an objective functional. The Euler-Lagrange equation of minimisation of an objective
functional produces a PDE, as described in the previous chapter. On the other hand,
PDE-BI methods applied directly on images can be obtained from the use of rich and
well-established mathematical approximation theory in bounded functions of 2-
variables. All these methods, termed as PDE-BI methods, use diffusion to reconstruct
missing regions and benefit from geometric characteristics of textured and smooth

Image areas.

4.1.1 Variational Methods

The variational methods can be best explained from the point of view of inverse
problems. The goal is to restore/recover an original image u from the degraded imagef.
Inpainting-based variational methods can also be formulated within this framework.
More precisely, let @ c R? be an open and bounded domain, the given image fis defined
over Q, and the missing domain D < Q. In mathematical terms, this means to solve an
inverse problem T,, = f, where T models the process through which the image u went
before observation. For the sake of clarity, the well-known method of solving this

problem and recovering digital image u is described. A general variational approach in
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image inpainting is formulated as a minimisation problem defined by formula 4.1,

below:

min||T, - fllg (4.1)
It is almost impossible to avoid the ill-posedness of the solutions of (4.1); especially
when the operator T has an unbounded inverse. To overcome this issue, it is customary
to use a regularisation approach that simply adds terms to represent smoothness-related
properties such as total variation, (Mumford 1994). Such modifications (4.1) change the

behaviour of the model to that of a regularised and well-posed model, as described here:

E(w) = Té'g{aje(x, u, Du, ..., D*u) + 1T, — FII3}, (4.2)

(A if x€ Q\D
Alx) = { 0 if x€D,
where ¢ > 0 and 4, are two regularisation/tuning parameters. The image of prior data

term R(u)is known as a regularising term whereas ||T,, — f||3 may be referred to as the
fidelity term. The concept of the regularising term has been proposed in (Mumford
1994), and formula (4.2) plays the main role of filling the missing image domain D, e.g.,

by diffusion and/or transport.

Under certain regularity assumptions on a minimiser u of the functional operator E, the
minimiser fulfils a so-called optimality condition on (4.2), i.e., the corresponding Euler-
Lagrange equation. In other words, for a minimiser u the first variation, i.e., the Fréchet

derivative of E, has to be zero. In mathematical terms, this reads
—VR(x,u,Du, ..., D*u) + 1,(T, — f) =0, inQ (4.3)

This is a partial differential equation with certain boundary conditions on Q). Here VR
denotes the Fréchet derivative of R. The dynamic version of (4.3) is the so-called
steepest descent or gradient flow approach. More precisely, a minimiser u of (4.2) is
embedded in an evolution process, denoted by u(-,t). Attimet = 0,u(-,t = 0) = f

is the original image. It is then transformed through an iterative process characterised by
diu = —VR(x, u, Du, ...,Dku) + Ao(Ty, — ), inQ, and d,u=0 onadf, (4.4)

Given a variational formulation (4.2), the steepest-descent approach is used to
numerically compute a minimiser of E, whereby (4.4) is iteratively solved until one is
close enough to a minimiser of E. The model (4.4) is defined as a numerical solution of
a PDE over the space of functions of bounded variation BV () which includes digital
images. A numerical solution of (4.4) for noise removal or missing- region

reconstruction, (see (Aubert & Kornprobst 2006)).
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4.1.2 Non-Variational Methods
Alternative non-variational approaches for developing a class of PDE-BI models.

Inpainting approaches in this class, are directly defined by PDE of the form:
d,u = F(x,u, Du, ..., D*u),

where F: 2 X R x R? x R? x...R¥ - R is a k™-order differential operator, and 2 is an
image domain. The underpinning mathematics of these approaches are based the fact
that inpainting is a problem of interpolation of functions of 2 variables, defined on the
domain of the input image, which can be approximated by F using Taylor polynomials
of any order. In this case, the added term is an estimate of the error term of

approximation.

Examples of such inpainting schemes that have been proposed in the literature include:
the CDD inpainting (T. Chan and J.Shen 2001), Bertalmio (Bertalmio et al. 2000),
modified Cahn-Hilliard (A. L. Bertozzi et al. 2007), and TV — H~! (Burger et al. 2009).

These inpainting schemes are described briefly in section 4.3.

4.1.3 Literature Overview

PDE-BI methods are well covered in the literature. The term inpainting was invented by
art restoration workers, (Emile-Male 1976) and (Walden 1985), and first appeared in the
framework of digital restoration in the work of Bertalmio et al. (Bertalmio et al. 2000),
therein they designed a discrete 3'-order nonlinear PDE intended to imitate the
restoration work of museum artists, (see section 4.3.2). Filling-in of the missing region
Q is done automatically based on the information surrounding Q via consideration of

isophote lines connected to the boundaries of Q (see Figure4-1).

The pioneering works of (Bertalmio et al. 2000), (Chan & Shen 2002), (Caselles et al.
1999), (D. Mumford 1993) and (Masnou & Morel 1998) in image restoration using
PDEs and variational methods, in the last two decades, are reviewed, in order to define a
starting position. Total Variation (TV) and Curvature Driven Diffusion (CDD) models
have been introduced by Chan and Shen (Chan & Shen 2002), (T. Chan and J.Shen
2001) respectively. The inpainting results using the TV model generate 2"-order
nonlinear PDE which works by anisotropic diffusion inside the inpainting domain (i.e.
preserving edges and diffusing homogeneous regions and small oscillations like noise).
While the CDD model improves on the TV model by enabling the recovery of large

areas and connecting the lines/features across large distances. The improvement is
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possibly due to the use of 3™-order nonlinear PDE at the expense of inefficiency while
TV methods that use 2"-order (linear and non-linear) PDEs can only reconstruct small
regions, and struggle with edges and corners, (Schonlieb 2009). The authors in (Xu et al.
2008), proposed Quick Curvature-Driven Diffusions (QCDD) to for improved

efficiency.

A variational technique for image segmentation has been proposed in (D. Mumford
1993), by removing occlusions of objects by connecting T-junctions at the occluding
boundaries of objects with Euler elastic minimising curves. The minimisation of a
discrete version of a constrained Euler elastic energy for all level lines was used to
extend the idea of length and curvature minimisation from edges to all the level lines of
the image function (Mumford 1994). This approach is contrasted invariant. The Euler
elastic energy was used for inpainting later by Mumford in (Esedoglu & Shen 2002) and
by Chan et al. in (T.F. Chan, S.H. Kang 2002). The model proposed in (Esedoglu &
Shen 2002) is a 4th-order PDE, called the Mumford-Shah-Euler model (MESm),
succeeded in recovering edges and corners and overcome the limitations intrinsic to 2"-
order PDEs. Also, 4th-order of total variation flow was suggested in (Burger et al. 2009),
to remedy the shortcoming of TV inpainting which has been successful when to binary
structures with large holes. On the other hand, a TV model to minimise the Laplacian
norm was proposed in (Peiying Chen & Yuandi Wang 2008) as an alternative to the 4th
order TV model.

The authors in (Chen & Wang 2009) have improved the Non-TV technique in
(Bertalmio et al. 2000) that is based on the anisotropic diffusion principle and the
connectivity principle of human visual perception; they proposed forward a novel
nonlinear PDE inpainting model. The procedure allows for the transporting and
diffusing of image information simultaneously. More recently, the authors in (A. L.
Bertozzi et al. 2007) proposed a modified Cahn-Hilliard (mCH) equation for the
inpainting of binary images. A generalisation of Cahn-Hilliard inpainting for grey value
images, called TV — H~1 inpainting, was also proposed in (Burger et al. 2009). These
are the non-TV based inpainting scheme, and details are given in section 4.3.2. In the
next sections, some important inpainting models of 2" and high order PDE are

described in more details.
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4.2 Second-Order PDE-BI methods

Even though 2"-order PDEs have been extensively studied theoretically, well
established and not difficult to solve numerically, in inpainting they do not perform well
when the size of the region of interest is substantial. The main disadvantage occurs
when there are discontinuities of lines (edges) over a large distance in the image of
interest and where features like corners, curvatures and edges need to be reconstructed.
Next, four existing 2"%-order PDE-BI models are introduced and applied. A detailed
introduction to these models is not given; for this, the interested reader needs to consult
(Shen & Chan 2002), (Rudin et al. 1992), (Tsai et al. 2001), (Perona & Malik 1990),
and (Haar Romeny 1994).

4.2.1 Isotropic Diffusion (Tikhonov Regularisation Technique)

The isotropic equation is simple and is the most investigated in image processing,
specifically in image inpainting (Aubert & Kornprobst 2006). Initially, it was used to
recover blurred images(Weickert & Stuttgart 1998), (Weickert 1996), and (Guillemot &
Le Meur 2014). The heat equation is presented in two ways:

Let f € L2(2) be the given image, and D c Q is a missing-information region in an

image, the inpainted image w is calculated as the solution of the heat equation as below:

{atu =Au, t=0, (45)
u(0,x,y) = 0.
Also, the solution of equation (4.5) can be understood as the solution of the
minimisation functional of squared total variation (4.6):
min {jJIVuIdedy suchthat u=f in!)\D} (4.6)
uel?(0) D
The gradient descent process with the Euler-Lagrange equation has been used on
minimisation functional (4.7):
ur = Au (4.7)
The isotropic model for image denoising is applied by adding a fidelity term as

proposed in (Weickert & Stuttgart 1998). This leads to the following formula:

min F(w) = jf (||7u|2 +Aa- f)Z)dxdy (4.8)
ueL?(2) 0 2 '
Applying the Euler-Lagrange equation on (4.8) leads to

ou=Au+1(u—-f) ..(4.9)
To remove the noise from the image, the equation u =%f+Au with Neumann

boundary condition is solved by using a finite difference method, as shown in
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Figure4-3.For reconstructing a missing region in an image, Equation 4.7 with Neumann
boundary condition is solved based the information around the missing region. The
explicit finite difference method was used to find the numerical solution, as explained in
section 2.5.2. The numerical solution of equation (4.7) with Neumann boundary
conditions is found at each pixel in each (R, G, B) channel of the image to recover the

missing regions.

The above solution of equation (4.5) mimics that of a heat equation over the image
domain. The heat equation models the propagation of a temperature field over a time
interval in all directions given the boundary conditions, and its solution is smooth.
Equation (4.5) is meant to model a discrete process of filling missing regions, and
therefore its solution may fail to reconstruct edges and corners. The Gaussian filtering
and averaging of images is equivalent to diffusion of the pixel values all across the
image. Figure4-3 clarifies how the image gets blurred under isotropic smoothing,
because of the numerical mixing of pixels from different regions by solving model (4.9),

especially in image b.

@ (b) (©)

Figure4-2: Inpainting based isotropic model, (a) original image, (b) masked image, (c)
inpainted image.

The results were blurry because of the edges, the averaging of pixels across edges, and
letting these pixel values across edges be mainly mixed up, which is why obtained
blurring, as seen in Figure4-2. The process was isotropic smoothing; it didn’t matter
whether or not boundaries were present. The performance of model (4.5) is done well
when surrounding areas of the missing region are homogeneous; otherwise, the sharp
edges are lost when the surrounding area is non-homogeneous, as seen in Figure4-2. To
overcome the smoothness propagation information's, harmonic image inpainting has
been proposed to solve this defect. Also, Figure4-5b clarifies the performance of heat

model at the missing edges. In summary, both the connectivity principle and the
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curvature preservation are not fulfilled through applying this model to recover small

missing region.

4.2.2 Harmonic Extension Equation

Harmonic image inpainting represents a simple example through which to understand
the image interpolation process. The inpainted image can be defined as the solution of
the Laplace equation, or as the result of the minimisation of the Dirichlet energy over
the inpainting domain.

Let f € L2(2) be the given image with inpainting domain D c Q. The authors in (Shen
& Chan 2002) have used the idea of a denoising formula, where the inpainted image u

can be defined as the minimiser of energy

. 2 _ 2 — . —
ug%gz)f jﬂ (qul + Au fle(ﬂ)) dxdy =0, inD, u=f ondD (4.10)
Where A is a large constant. Minimising (4.12) over H!(£2), a minimiser is equivalently

characterised as the solution to the corresponding Euler-Lagrange equation

—Au =0, inD,

—Au = A(f —uw), in Q\D,
{ u=0, on 0Q. (4.11)
where 1 > 1 is a tuning parameter of the technique, the second term of the functional is
called the fidelity term of the inpainting technique, which forces the minimiser u to stay

close to the given image f outside the inpainting domain, based on the value of A.

The five-point finite difference method has been used to solve equation (4.11). The first
step rewrites the equation (4.11) in discrete space by using a finite difference series
(Euler series) as follows:

n n n n n n
1 Wik1y T 2Up Uy Uy — 20 T U

i 2 2 + Al - fi)) (4.12)
1 2

where h; = 1,h, = 1,and At = 0.1, equation (4.12) can be rewritten as follows:

u

1

u{‘j’l = ﬁ((u?ﬂ,j tuly;—4ul Huly, + u{fj_l) + A(u{fj - fl-,j)) (4.13)
1

Where 2<i<M-1and 2<j<N-1. The equation (4.13) with Neumann

boundary condition is calculated the pixel value in each channel of the image.

Figure 4-7 to 4-10, demonstrate that the harmonic model is a good candidate for
inpainting smooth images. However, the harmonic equation does not deal adequately
with edges and large missing regions (see in Figure 4-8, 4-9 and 4-21). The

performance of the harmonic model has been a smooth reconstruction of the large
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region. In general, the harmonic model outperforms the isotropic model in propagating
the information in the large missing region. However, it doesn't reconstruct well the
edges and corners. In summary, the curvature preservation is not fulfilled, but the
harmonic model successfully recovered small missing region (the connectivity principle
is fulfilled). To reconstruct the edges successfully, the total variation has been used in

the proposed anisotropic model.

4.2.3 Anisotropic Diffusion (TV Regularisation Technique)

Anisotropic diffusion equation has been proposed to remove the noise from an image
while preserving the edges in the image (Perona & Malik 1990). This equation is
modelled on the dependence of the diffusivity constant on the size of the image gradient,
to reduce the amount of diffusion that occurs near edges. Anisotropic diffusion is a
nonlinear 2"%-order equation, which addresses the shortcomings that face isotropic

diffusion and harmonic extension models. The model formula is introduced in two ways:

[Vul
u(0,x,y) = up(x,y).
With initial conditions u(t = 0) and u(t =T). The model 4.14 with Neumann

{atu = div (ﬂ), t=0, (4.14)

boundary conditions and initial conditions is applied to the same image in Figure4-5a
Figure4-5c¢. Also, this equation can be obtained through minimisation of total variation

as follows:

min {f [Vu| d2 suchthatu = f in Q\D} (4.15)
D

ueLl(9)
The Euler Lagrange equation with has been used for functional minimisation 4.15 then

the gradient descent process has been used on it:

. = di (V”) 416
U =div T2 (4.16)

The anisotropic model for image denoising is applied by adding a fidelity term as

proposed in (Rudin et al. 1992). This leads to the following formula:

min F(u) =fj (||7u| +%(u—f)2) dxdy (4.17)
Q

UeL(2)
Applying the Euler-Lagrange equation on (4.17) with the gradient descent method leads
to

ay
d,u = div (W) A= f) (4.18)

The Neumann boundary condition has been used with equation (4.18).
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While, the Dirichlet boundary condition has been used with equationu=%f+

div (“Z—Zl) The right-side term of this equation represents the curvature of the level lines
of the image u. Anisotropic diffusion is going to try to average pixels values only on the
right side of the object, on the right side of the edges on the correct object. Figure4-3
clarifies the application of anisotropic diffusion on the image. Image c represents the
result of it; we see that this equation only mixes the pixels on the side of the boundary
without going in all directions because then sharper edges are obtained, while it also
removes noise inside the objects, and the image(c) of the brain is much smoother, and

the boundaries are preserved very nicely.

Figure4-3: Isotropic and anisotropic process: (a) original image. (b) Image by using isotropic
equation. (c) Image by applying anisotropic diffusion.

For reconstructing the missing regions in an image, equation (4.14) with Neumann
boundary condition is solved to reconstruct the missing region based the information

around it. Equation (4.14) can be rewritten as follows:

0 Uy d Uy

up = — | = |+ | ===,
©oox 2 2 dy 2 2
ug +uj ug +uj

The explicit finite difference method was used to find the numerical solution, the partial

vVt > 0,x,y € (4.19)

derivative in the equation (4.19) converts to the finite difference formula:

k| 1 AXul'; | 1 Ay ||
Wt =l +— | A T4 Ay B
h A*un\? Aur )\ h Axym\ Aum\? h
€2+ () + (5 €2+ (L) +(
| R R | h R R JJ
4 Ul — Upj _ it — Ul
YR ut =yt 2 ut. . —ut. 2 ul. —ut .. 2 ut o —ut . 2
[ 62 + < L+1,]h L,]) + ( L,}+12h l,]—1> 62 + ( i,j h L—1,]> + ( 1—1,j+12h 1—1,]—1) J
+ { Uijar ~ U _ Ul U h
I u?‘l.—u?ll.z u?‘,l—un,z u?ll.l—u?ll.lz u?l.—u_?‘.lzi
i+ 2] 1—1,j l,]+ L] i+ 2] = 1—1,]— L] L,]—
A e I e e I e e e
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We use a fixed-point Gauss-Seidel iteration method for the above equation, and solving

n+1

for u;;/", we obtain:

1
upt = k
1+F(C1+C2+C3+C4)

k
. [u{}j + ﬁ(clu;;u + Coulty; + Caulyyq + c4ug}j_1)] (4.20)

2 2

2
Where €, = J (B (e’ ] () (et
h 2h h 2h
2 2 2 2
Co= lez+ uzn+1,j - uln—1,j + ulfm - u‘l(}]‘ c= lez+ uzn+1,j—1 - uzn—1,j—1 + u?j - uzr,lj—l
3 2h h e 2h h

Finally, we mention that one can perform inpainting across larger regions by

2

considering a two-step method. The inpainting is done first and its results in the
topological reconnection of shapes with edges smeared by diffusion. The second step
then uses the results of the first step and continues with a much smaller value of € in
order to sharpen the edge after reconnection. In practice, such a two-stage process can
result in inpainting of a stripe across a region that is over ten times the width of the
stripe, without any a priori knowledge of the location of the stripe, as see in the
Figure4-6b.

The equation (4.20) recovers the sharp geometric structures and promotes
discontinuities. The shortcomings of this model are that it is unable to recover large
missing regions and it also has a problem with the edges because it does not preserve
their directions in the direction of the boundary of the damaged parts. Equation (4.18)
has also been applied for denoising and for decomposing images into structure and
texture components which that use in Chapter 6, (see Figures6.3 and 6.4 respectively).

In summary, both the connectivity principle and the curvature preservation are not
fulfilled by applying this model to recover the large missing region. Nevertheless, this
model successfully propagates the smooth information in the small missing region (the

connectivity principle).

4.2.4 Mumford-Shah Model (MSM)

The model of MS originally designed and proposed for segmentation problem (Tsai et
al. 2001) based on the idea of decomposing an image into piecewise smooth parts that
are separated by an edge set I'. Afterwards, the MSm has proposed (Esedoglu & Shen
2002) for image inpainting problems. This model is a nonlinear 2"%-order PDE, the

following of the minimising energy functional:
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E[u,I'l =minF(u) =% (u—f)2dx +J[u,r]. (4.21)
u 2\D
with
Y 292 1
J[u,I] = —f \Vul2dE + BH1(I). (4.22)
2Jo\r

Where ¥ = (x,y), y and B, are non-negative constant, and ! indicates to the one-
dimensional Hausdorff measure, which computes the length of curves in the region and
I" indicates the collection of edges. H'1(I') is conveniently substituted by length (I'),
under the assumption that I belongs to the Lipschitz class. Formula (4.21) aims to
recover a damaged region into its piecewise smooth area u in the H* norm and its edge
set I in one-dimensional Hausdorff H1(I"). So, the authors in (Ambrosio & Tortorelli
1990) proposed the use the Ambrosio—Tortorelli approximation (i.e. convergence of I')
(Esedoglu & Shen 2002) for finding the numerical solution of Formula (4.22) to address

the problem of non-differentiability and discretisation of the unknown edge set I

There a sequence of regular functionals J, is considered which approximates J and
solves the minimisation problem for J,, 0 < 1. LetZ,:Q — [0,1] which represents

function of the edge set instead of I in (4.22); that is nearly 1 almost everywhere in Q

except on an I around I', where it is close to 0. Then ill —Zs|?, p=1,is an

approximation of the Dirac delta measure of I'— 6I' (x):

- |1 - Za'lp -
Length(I') = f&r(x)dx = const.f ——dx.
Q Q o

In fact, in (Ambrosio & Tortorelli 1990) approximation, Z, is computed for a given
image u, is designed to the minimiser of

1-7Z)*

I, (W) = Zf 72|Vu|?d + Bof <0||7u|2 + g)df (4.23)
2 Jq q 4o

In summary, they propose to carry out inpainting by minimising the I'-convergence
approximation of the exact model (4.21), namely

(1-7)*
40

1
J-[wZ|f,D] = gLZZIVuIZdic’ + B0L<cr|\7u|2 + )da? +EL/1(u - )i (4.24)

Taking variations on u and Z separately yields the Euler—Lagrange system,

Au—f)—yV-(2*Vvu) = 0, inQ, (4.25)
Z-1

yIVul>Z + B, (—ZUAZ + T) =0, inQ, (4.26)

ou_ 9L _ 0 in 98 427

on on tn oL (4-27)
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where 7 is the outward-pointing normal to dQ. For solving this nonlinear system of
equations is to approximate it iteratively by sequence of linear equations as follows:

u® = 0and Z® = 0, and solve for k = 1,2, ...

A k
ngk)u(k) = )—/ f, Mu(k—1)Z(a ) = 1 (4.28)
with elliptic operators
Lp=—-V-(Z2V)+ Ay, My =(1+(3%)|vul?) - 402A.
2 (Z2V) + A/y w=(1+ () Ivul?) — 40

Given a pair of the current estimation u and Z, both L; and M,, are positive definite
elliptic operators. In the beginning, the solution of M, for Z is found, then using Z in
solving Ly for u in equation (4.28). So the solution of equation (4.28) can be also
parallelised by solving the linear equations (4.25) and (4.26) for u and Z simultaneously.
The numerical solution of the MSm formula (4.21) using the Ambrosio-Tortorelli
approximation (4.28), for more information about numerical solution, we refer the
readers to (Schonlieb 2015). Figure 4-7 to 4-10 show the inpainted image u and its
edges set Z in the Ambrosio-Tortorelli approximation. The previous iterate Z™~Vrather
than the current iterate Z™ is used in the computation of L;. However, this model
suffers when the size of the missing region is big, or there is/are edges need to be

propagated. As a 2"%-order model, it is then unable to reconstruct curved objects.

In summary, both the connectivity principle and the curvature preservation are not
fulfilled by applying this model to recover the large missing region. Nevertheless, this

model successfully propagates the edges and curvature in the small missing regions.

4.3 Higher-Order PDE-BI methods

As previously mentioned the 2"-order PDEs have some limitations which led to
investigating methods that higher-order PDEs ideally for better performance. Higher-
order PDEs can recover/reconstruct edges, corners, and curvature as well as larger
regions in comparison with 2"%-order PDEs. Next, a summary introduction to the
higher-order PDEs-based inpainting methods is given. The interested reader can find
more details about higher-order PDEs in (Esedoglu & Shen 2002), (Cahn & Hilliard
1958), (A. L. Bertozzi et al. 2007), (Bertalmio et al. 2000), and (Burger et al. 2009).

4.3.1 Mumford-Shah-Euler Model (MESM)
The MESm is proposed to overcome the shortcomings of the MSm by improving its
embedded curve model with Euler’s Elastic curve model (Esedoglu & Shen 2002). The
formula of the MESm can be expressed as follow:
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E(u, I =minF,I) ==
u

(w—f)2d%+JwI) (4.29)
2 2\D

with

JT) = gL\FIVuIZdEE + fr(a + BKk?)ds (4.30)
where a and S are regularisation parameters, k denotes the curvature, ds the length
element. The first and second integral represents the MSm, while the second integral in
(4.30) is the Euler elastic model which is based on the mechanical properties of a thin
and torsion-free rod (Love 2013). For numerical purposes, the same numerical method
that is used for solving MSm is followed; the authors in (Schonlieb 2015) consider an
elliptic approximation De Giorgi of Euler’s elastic energy in the second integral in

(4.30), can be written as follows:

_ W)\ ., B W'(Z)
]U(Z) —(XL('VZ'Z-F?)CZX-F;J‘ (2 AZ—?> x. (431)
As explained before, Z is an g-approximation of the edge set I', and W is the symmetric

double potential W(Z) = (1 — Z*)? = (1 — Z)*(1 + Z)?.

The latter replace the regularisation energy (4.29) in the inpainting scheme, which

writes as follows:

yl
E,(u,Z) =EL(u—f)2d£+gLZZIVu|2d£ +1,(Z) (4.32)
Taking variations on u and Z separately yields the Euler—Lagrange system,
Au—f)—yV-((Z* + h(o)) Vu) = 0, (4.33)
5 II( )
yYIVul?Z — af — By | —4Af + ——— P fl1=0, (4.34)
20AZ W@ = 4.35

Now the steepest-descent method is used for solving J, in Z, that is,

BoW" (Z)

Z; = —y|Vul|?*Z —4B,A
e = —YIVUPPZ + af = 4BoAf +=——

f=0,
Then to discretise in time, the semi-implicit scheme is used as

(14 AtA)Z™MT = 7™ + Atg(Z™), (4.36)
where

= y|Vu|?Z — 2acA + 86,0472,

and g(Z) collects all the non-linear terms in Z, that is
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“ wm+ P
= ()+ﬁ @f +

9@ = - LIVEE

The numerical solution of this model recovers the missing regions in a digital image.
More details about this model can be found in (Esedoglu & Shen 2002); it succeeded in
recovering the lines, and corners in the small non-textured missing regions in the
processed images. The MESm has been used to deal with large-scale image-inpainting
problems, where this model uses the curvature to overcome the issue of large missing
regions and accurately recovers the borders of missing regions. As a result, in (Esedoglu
& Shen 2002), the researchers proposed the MESm to improve the shortcomings of the
MSm. The minimisation of (4.29) leads to a 4"-order PDE via the Euler-Lagrange

Equation. Implementations of this model are illustrated in Figure 4-8 and 4-9.

In summary, both the connectivity principle and the curvature preservation are fulfilled
through applying this model to recover large missing region in the non-texture images.
Nevertheless, this model failed to propagate the more edges and curvature in the large

missing regions.

4.3.2 Bertalmio Approach (Transport Model)

The underlying mechanism of the previous equations was diffusion. In this section,
PDE-BI methods that are solely based on transport dynamics are introduced. Bertalmio
et al. in (Bertalmio et al. 2000), paved the way for modern digital image inpainting
based PDE. Their discrete PDE model was motivated by the work of art conservators,
borrowing heavily from the idea of manual inpainting. The changed of

information's L™ due to smoothing propagation equals zero when projected onto the

propagation direction N™:
SL"-N™ =0 (4.37)

In other words, the gradient of information is propagated to be perpendicular to the
direction in which are propagating. This information needs to be perpendicular in the
sense that we want to propagate information L™*such a way that it is not changed in the
direction of the propagation by being moved in that direction. The equation (4.37)
basically describes how the L™propagation of information along with directions N™.To

make the image change in time, information propagation is governed by the condition:

ul(i,j) = L0, j) - N™(i.)) (4.38)
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where §L™ (i, j) is a measure of the change in the information L"(i, j). With this equation,
the information L™(i,j) is estimated and its change along the ﬁ“(i,j) direction is
computed. When the change of the image via propagation approaches zero, the steady
state has been attained (4.37). The propagation of information should be smooth to
avoid big jumps inside the missing region. The Laplacian is the better operator for
describing smooth information. If there is an edge, the gradient of the image is
perpendicular to the edge, where N™(i, j) = V+u™(i, j). In order to implement this, we
must first define what a direction N™ for the 2D information propagation will be. One
possibility is to define N™ as the normal to the signed distance to a2, i.e., at each point
(i,j) in 2 the vector N™will be normal to the “shrank version" of 82 to which (i, j)

belongs, see Figure4-4.

(@ (b)

Figure4-4: Explanation of Bertalmio module. (a) Propagation direction by perpendicular
normal operator to the edge, (b) Propagation direction in missing region.

This iterative process propagates linear structures (edges) of the surrounding area (i.e.

isophotes) into the missing region; it is denoted by using a diffusion process given by
At ul(i,j) = u™1(, ) —u(G,)), V(@G j)EN (4.39)

where n is the iteration number, (i, j) are pixel co-ordinates, At is the rate of the change

of inpainting and u}* (i, j)is the update factor on the image u™(i, j).

uy (i,j) = <5L"(i.j) M) [Vu™ (@, ), (4.40)
IN™ (i, )
Where
SLM(Lj) = ("G + 1)) —L"G—1,),L"U,j+ 1) —L"(,j— 1)) (4.41)
L") = ul e (i,)) + u"yy (0, )), (4.42)
Ay (Fun D))

(4.43)

DL Janwny + (w,p)
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B, j) = 6L"(L)) M (4.44)
IN™ (i, )
and
(\/(u"xbm)2 + (u"fo)z + (u"ybm)z + (u"ny)Z , whenf™ >0
[Vu"(@, )| = (4.45)
i\/(u”be)z + (u”xfm)z + (u"be)Z + (u”yfm)z , whenp™ <0

We first compute the 2D smoothness estimation L in (4.42) and the isophote direction
N /|N|in (4.43). Then in (4.44), we compute ", the projection of L onto the

(normalised) vector N, that is, the change of L is computed along the direction of N .
Finally, B™is multiplied by a slope-limited version of the norm of the gradient of the
image,|Vu |, in (4.45). A central differences realisation would turn the scheme unstable,
and that is the reason for using slope-limiters. The sub-indexes b and fdenote backward
and forward differences respectively, while the subindexes m and M denote the
minimum or maximum, respectively, between the derivative and zero (we have omitted

the space coordinates (i,j) for simplicity), see (Osher & Sethian 1988) for details.

Finally, let us note that the choice of a non-normalised field N instead of a normalised
version of it allows for a simpler and more stable numerical scheme, see (Rudin et al.
1992) and (Osher & Sethian 1988).

Note once again that when the inpainting method arrives at steady state, that is, u; = 0,
Viu = 0, is geometrically solved, meaning that the “smoothness” is constant along the
isophotes. When applying equations (4.39)-(4.45) to the pixels in the border 0L of the
region Q to be inpainted, known pixels from outside this region are used. That is,
conceptually, equations (4.39)-(4.45) are computed in the region, although only the
values inside ( are updated (that is, (4.39) is applied only inside Q). One of the main
drawbacks of this technique is that it underperforms in the replication of large textured
regions due to blurring artefacts created by the diffusion process and the lack of explicit
treatment of the pixels on edges. The transport model considers one of the pioneering
works within PDE-BI approaches in (Bertalmio et al. 2000) which the result of
multiplying the directional propagation by the change of the rate of the smoothness
operator. This model succeeded in reconstructing edges. It is a 3rd-order PDE, and it is
applied as shown in Figure 4-7 to 4-10. In summary, the curvature preservation is not
fulfilled in the large missing regions, but the transport model successfully recovered

large missing region (the connectivity principle is fulfilled).
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4.3.3 Modified Cahn-Hilliard Model (mCH)

The mCH equation is a semi-linear 4"-order PDE which is proposed for binary image
inpainting (A. L. Bertozzi et al. 2007). Also, this equation uses in material sciences
(Cahn & Hilliard 1958). Let f(x) be a given image in domain £2, where’x = (x,y), and
suppose that D c 2 is that the inpainting domain. The formula of this equation

introduced as follows:

1
deu=A (—EAu — EF’(u)) + 1) (f —w), in (4.46)
L. (0 if €D
Where A(x) = {/10 if ¥ € O\D
Equation (4.46) is called the mCH equation, due to the added fidelity term A (X)(f —
u),where F(u) is called a double-well potential, andF (u) = (1 — u?)?/4, where € is
a positive parameter that is intended to go to zero. To solve equation (4.50), it is enough
to solve the energy functional (4.47):
€ 1 . 5
f —|Vul? + =F(u)dx + 4, (f —u)?dx (4.47)
02 € O\D
where the left term represents the energy of a gradient flow using an H~'the norm
which will produce the mCH equation (4.47), and the second term is the fidelity term in

(4.47) which can be derived from a gradient flow under an L? norm for the energy.

Similar to the convexity splitting for the anisotropic diffusion inpainting, the following
splitting leads to the 4"-order total variation equation. The fitting term is a gradient flow
in H~1(0) and L?(2) of the energy respectively. Where H~1() is the dual Sobolev
space of H} (£2) with corresponding norm ||-||_;. For f € H~1(Q), the norm is defined

as follows:

IFI2, = 198 fI12, = [ 087 p)2ds
0
Where A~1denotes the inverse of Laplacian operator, such that u = A~1f is the unique

solution to

—Au=f, in2, whereu=0, onadf
Let

1
R, = f E|Vu|2 +-F)dx¥ and R, =1, (f —w)? dx (4.48)
02 € 0\D

A convexity splitting is applied for both R, and R, separately; R, is splitted as R, =

Rll - R127 Where

€ 2 C1 2 55 1 Cl 2 3>
Rll = Elvul +7|u| dx and R12 = _EF(u) +?|u| dx (449)
0 N
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Likewise, R, = R,; — R,, can be writtenas follows:

C2 2 - CZ -
Ry = f —|u|?’d¥ and R,, = f —Ao(f —w)? +—=|u|?dx (4.50)
O\D 2 2\D 2
Analogous to the above the resulting time stepping scheme is
un+1 —un

- + 6|74’u”+1 _ Cl|72un+1 + Czun+1

= 72 (%F ’(u”>) +HAD (@) —u™) = O " + Cou” (451)

The success of this model is that it can recover large missing gaps without producing
artefacts (A. L. Bertozzi et al. 2007), as seen in Figure4-6¢. The results of this model
and MESm have outperformed on other inpainting models; introduced in (A. L.
Bertozzi et al. 2007).

In summary, both the connectivity principle and the curvature preservation are fulfilled

through applying this model to recover large missing region.

4.3.4 Fourth-Order Total Variation Model

The 4™-order version of the total variation flow model corresponds to a generalisation of

the mCH equation on grey-value images (Burger et al. 2009). Higher-order PDEs treat

the shortcomings of the TV flow approach. The formula of this model is as follows:

dou=—n <div (ﬂ» FA@)(f - w) (4.52)

[Vul

Similar again to the convexity splitting for anisotropic diffusion inpainting, the

following splitting leads to the 4"-order total variation equation. The fitting term is a

gradient flow in H~! and L?of the energy respectively.

1
R, = f [Vuld¥ and R, ==| Ao(f —u)?dx (4.53)
0 2 O\D
We split R{in Ry; — R;,, Where
Cl - Cl -
Ry = j — |Vu|?dx and R;, =f —|Vu| + = |Vu|?dx (4.54)
0N 2 0 2
Likewise, R, = R,; — R,, can be written as follows
C 292 1 2 292
Ryy = | = |ul*dX and Ry, == | —Ao(f —w)* + C,|ul*dx (4.55)
0N 2 2 0
Analogous to the above, the resulting time stepping scheme is
un+1 _an
r + C,V4u™t + Cuntt?t
vu" o
=C,Vtu"-V?(V- T + Cu™ + A (f(X) —u™) (4.56)
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To make the scheme unconditionally stable, the constants C; and C, have to be chosen
so that R,;,R;5,R,;, and R,, are convex. The choice of C; depends on the

regularisation of the total variation that is used. Using the square regularisation, |Vu| is
replaced by /|Vu|? + &2 the conditions turn out to be C; > %and C, > Ay. This model

with two boundary conditions gives improved results, especially on edges. It is applied
to reconstruct the edges even within large holes (See Figure4-6d). In summary, both the
connectivity principle and the curvature preservation are fulfilled through applying this

model to recover large missing regions.

4.4 Examples of PDE-BI Methods in Spatial Domain

This section introduces examples of recovering missing regions in natural RGB colour
images by using PDE-BI methods. The selected 2"- and high-order PDE methods will
be applied to recover the missing regions separately in each colour channel. To compare
the performance of the 2"%- and high-order PDEs, two sets of experiments have been
conducted. The first experiment was a study of the effect of the choice of order in PDE
methods on the reconstruction of edges in missing regions of different sizes in the
natural images. The second experiment was a study of the abilities of the 2"%- and high
order PDE methods to remove texts in the natural images. Isotropic diffusion,
anisotropic diffusion, 4"-order total variation and the mCH equation have been studied:;
these represent linear 2"%-order, nonlinear 2"-order and nonlinear 4"-order PDEs
respectively. These models are discussed in the following Figures: Figure4-5b shows
the recovery of a missing region through the use of isotropic diffusion (i.e. via heat
equation) where the result was not good because these results spread in four directions

which causes restoration blur in the missing region.

Meanwhile, anisotropic diffusion (i.e. TV model) solved the problem which was faced
as shown in Figure4-5a by propagating the restoration information in the missing region

in two directions, as seen in Figure4-5c.

(a) (b)

(©)
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Figure4-5: Recovering hole in an image. (a) Masked image, (b) inpainted image using isotropic
method, (c) inpainted image using anisotropic method.

Although the anisotropic diffusion equation performed better than the heat equation, it
failed to build the sharp edges over large missing areas in an image because it is a 2"9-
order PDE, as seen in Figure4-6b.

The deficiencies of the anisotropic diffusion equation have been addressed by higher-
order PDEs. Higher-order PDEs satisfy the connectivity principle because of their
ability to recover large missing regions. In the same vein, they also succeeded in
reconstructing edges and corners inside missing patches. There are many higher-order
PDEs which may be used to solve the inpainting problem, such as 4™-order total

variation and the mCH equation, as can be seen in Figure4-6¢ and Figure4-6d.

(b)

() (d)

Figure4-6: Recovering large hole in an image. (a) Masked image, (b) inpainted image using
anisotropic method, (c) inpainted image using mCH method, (d) inpainted image using 4" order
TV method.

The second experiment is focused on removing texts and dates from images by using,
which are harmonic, MS, transport, MES and mCH methods. Figure 4-7 to 4-10
represent examples of the removal of texts in different-sized images. The Figure 4-8 and
4-10 show the removal of texts that have small- size fonts and large size, respectively;
all these models have succeeded in reconstructing the image after removing the texts.
The harmonic equation is faster than MS, and transport, equations in removing the texts
and repairing images. The harmonic equation has a simple computation because it is a
2"-order PDE. On the other hand, the MS and transport models utilise huge and time-

consuming computation in repairing an image.
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.t'-- Ty

Figure4-7: Removing text using a PDE inpainting method. (a) Masked image, (b), (c), and (d)
inpainted image using Harmonic, MS and Transport models, respectively.

Figure 4-8 and 4-9 display the scratches and texts removal that has a thick size font,
where the performance of the harmonic model was not good, while other models have
succeeded in removing texts from the images. The results using the harmonic model

were not that promising, whereas the MES and transport models achieved better results.

e Lt the process

.’rmr')r-n\ur,\ of [,
Ing L

(c )
Figure4-8: Removing scratches PDEs inpainting methods. (a) Masked image, (b), (c), and (d)
inpainted image using Harmonic, MES and Transport models, respectively.

(c) (d)

Figure4-9: Removing bold text using PDEs inpainting methods. (a) Masked image, (b), (c), and
(d) inpainted image using Harmonic, MES and Transport models, respectively.
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Figure4-10: Removing bold text by PDEs inpainting methods. (a) Masked image, (b), (c), and
(d) inpainted image using Harmonic, MS and Transport models, respectively.

For image inpainting problems, the inpainting domain could be determined depending
on the particular applications scenarios. So for text, scratch, and object removal, the
inpainting domain is spatial, while the wavelet domain is used to recover the missing
information which that especially lost through the image compression process (Chan et
al. 2006). So, the linear and nonlinear 2"-order PDEs techniques cannot preserve
discontinuous image features such as edges that span large holes in an image and not

good in the connection and holistic principle.

High-order PDE methods have been managed to address the shortcoming of the
connection and holistic principle in the 2"-order PDEs techniques, the researchers have
found the higher-order PDEs able to repair this shortcoming. Where these techniques
have utilised much of information from the source region that used to propagate the
information in the missing region into an image. These techniques managed to fix edges
problem in the damaged region, and their results were better than 2"-order results, but
these techniques still not have able to restoration large missing region in an image. To
overcome this issue, the results of those 4"-order PDEs when they are used to recover
the damaged regions of a structured (geometry) part in hybrid technique are analysed;

see Chapter 5.

On the other hand, unlike most classical inpainting problems briefly reviewed above,
the available image information is often given on complicated transform-based (spatial
or frequency domain) sets instead of finite discrete ones (i.e. the given images). These
complicated sets could contain 2-D sub-domains. An ideal inpainting scheme should be
able to simultaneously benefit from all these different types of available information, to

reconstruct the original images as faithfully as possible.
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4.4.1 Second-Versus Higher-Order PDE Methods in Inpainting

In this section, the differences between the performances of 2"- and higher-order
models in inpainting are highlighted in order to analyse their impact on image quality.
First of all, the order of TV inpainting methods is determined by the derivatives of the
highest order in the corresponding Euler-Lagrange equation, while the order of PDE-BI

methods is determined by the derivatives of the highest order in the equation formula.

C.-B. Schénlieb in (Schénlieb 2009) emphasised the difference between 2"- and
higher-order PDE-BI models in inpainting, and the author clarified their preference for
using higher-order models instead of 2"-order models in inpainting. For example, the
TV model in (Chan & Shen 2002) has drawbacks when it comes to the connection of
edges over large distances (i.e. Connectivity Principle) and the smooth propagation of
level lines into the damaged domain (i.e. Curvature Preservation), because of the
minimising process with 2"d-order derivatives in connecting level lines from the
boundary of the inpainting domain via the shortest distance (linear interpolation), and

this process has limitation with the length of the level lines.

The higher-order variational inpainting methods usually use two boundary conditions,
whereby the second boundary condition is necessary for the well-posedness of the
corresponding Euler-Lagrange equation of 4"-order. For example, the Dirichletu = f
and Neumann Vu = Vf conditions are defined on dD of given image f; these
conditions are used with the mCH inpainting model; the performance of this model
supports the continuation of the image gradient into the inpainting domain. More
precisely, the authors in (A. Bertozzi et al. 2007) proved the performance of mCH
inpainting equation fulfils a stationary solution through recovering missing region; this
means the information that wants to propagate in the inpainting domain will not only
specified on the boundary of the missing region but also the gradient of the given

image (i.e. on the directions of the level lines).

Also, there are drawbacks with the variational 3"-order method to image inpainting, for
example, the CDD model in (T. Chan and J.Shen 2001) successfully propagate the
smooth information in missing regions (i.e. solving the problem of connecting level
lines over large distances) but it failed to preserve the edges and curvature because the

level lines are still interpolated linearly.

Finally, it is worth mentioning that high-order PDE-BI methods are time-consuming
and not easy to compute. Also, when the missing region has a large and rich-textured
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neighbourhood, PDE methods, in general, will produce blurring artefacts. In the next
section, the proposed new approach is presented. The PDE-BI methods are used for the
recovery of missing regions based on the concepts of the colourisation process.

4.5 Inpainting based on PDE and Colourisation Methods in Spatial
Domain

The above PDE methods recover missing image regions by applying the adopted
methods in each colour channel separately. A new class of PDE-BI methods is
proposed, that benefits from the colourisation methods of section 3.4.2. Below, the steps

of this proposed approach are presented:

1. Converting the masked image into YCbCr colour space.

2. Recovering the missing regions in the Y channel by applying PDE-BI
methods,

3. Adding the colour to missing colour regions in Cb and Cr channels by using

PDE colourisation methods.

4. Converting the inpainted YCbCr image back to the RGB colour space.
In particular, after converting the masked RGB image to YCbCr space, the MES and the
mCH methods are applied to recover the missing regions in the Y channel, then the
Poisson and 4th order PDE colourisation methods as developed in Chapter 3 are used, ,
to add colours to missing Cb and Cr colour channels. Finally, the inpainted images in
the YCDbCr space have been converted to RGB image space. The proposed scheme has
been applied on a set of natural in the database images, and its results are compared

with results of applying only PDE-BI methods, as shown in Figure 4-11 and Figure 4-12.

- > " o
-l " - w

Figure 4-11: Recovering missing regions using PDE-based inpainting and colourisation
methods in the spatial domain. (a) Original image, (b) masked image, (c), (€), and (g) inpainted
image using harmonic, MESm, and mCH models, respectively, (d), (f), and (h) inpainted image
using harmonic, MESm, and mCH models with colourisation method, respectively.
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Figure 4-12: Recovering missing regions using PDE-based inpainting and colourisation
methods in the spatial domain. (a) Original image, (b) masked image, (c), (e), and (g) inpainted
image using harmonic, MESm, and mCH maodels, respectively, (d), (f), and (h) inpainted image
using harmonic, MESm, and mCH maodels with colourisation method, respectively.

We note our combined colourisation and PDE methods slightly improve visual quality
compared to only using PDE methods (Figure 4-11 & Figure 4-12). However, the
proposed method has the same limitations, of the original methods, when used with
large size missing regions and with the high texture surrounding areas. A more detailed
study of the performance of the various methods was conducted to recover two
inpainting domains on 100 natural images, the traditional statistical measurements have

applied to assess the quality of inpainted regions, as can be seen in section 4.7.2.

4.6 PDE-BI Method in the Frequency Domain

In this section, the PDE-BI method is applied in a frequency domain whereby the image
is first converted from the spatial domain into the frequency domain using mathematical
transforms, there are many kinds of transformation, but we confine our discussion on
the use of the Discrete Wavelet Transform (DWT).

In the frequency domain obtained by using wavelet transforms various image analysis
problems have been solved due to their multiresolution properties and decoupling
characteristics. The wavelet transform has advantages, for application to image
inpainting; in this way, for instance, the size of a missing region will be reduced, which
has a very favourable effect on the application of PDE methods. By comparison with
other inpainting methods, we can expect a better global structure estimation of a
damaged region in addition to better shape- and texture-preserving properties. The
utilisation of wavelet transforms for image inpainting are proposed, owing to their
advantages, as mentioned previously. The next section shows the application of PDE-
based inpainting methods on the natural images in the wavelet domain.
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This PDE-BI method mimics the approach taken in the previous chapter, and

reconstruct damaged regions of images in the wavelet domain using the following steps:

Step 1. The region from the original image to be inpainted is marked manually by

the user.

Step 2. The original image with a damaged region is decomposed into the low and

high-frequency components based on the Haar wavelet filter.

Step 3. The damaged region is repaired by using the PDE method applied to the low-

frequency sub-band.

Step 4. The intensity values of the damaged region in high-frequency sub-bands are
set to zero, this will cause some quality loss in the inpainted area, but this

will not be noticeable especially if the area has relatively less edges.

Step 5. The inverse wavelet transform will be applied to reconstruct the inpainted
image. (i.e. the inverse wavelet transform is used to convert these four sub-

bands to one image which is called the inpainted image).

Initially, the PDE method is applied to recover the damaged region in each sub-band,
and after studying the nature of the high-frequency coefficients (Gonzalez & Woods
2008), we found that the high three sub-bands have information in relation to the
vertical, horizontal, and diagonal edges. Setting these values to zero for the inpainting
area only will have a small effect on the quality after applying the wavelet inverse
transform. Moreover, we could apply the PDE differently based on the edge direction in
these three sub-bands, but this needs more investigation as there is some discontinuity
in the edges information in these high-frequency sub-bands. So, we decided to sacrifice

the quality and leave applying PDE on the high-frequency sub-bands for the future.

This method has been applied to natural images in two scenarios, referred to as the first-
and 2"-level wavelet domains. In the first scenario, the PDE has been applied to
reconstruct the missing region in the low-frequency sub-band (i.e. approximation sub-
band), and in the other three sub-bands, the values of missing high-frequency
coefficients have been estimated. In the second scenario, the PDE has been applied to
reconstruct the missing region in the low-frequency sub-band in the 2" level wavelet
domain, and the values of missing high-frequency coefficients have been estimated in
six other sub-bands. Four PDE methods have been applied to reconstruct the missing

region in the low-frequency sub-band see Table 4-1. The steps of this method in several
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instances are illustrated in Figure4-13. This Figure shows the implementation of the
PDE-BI methods in the first and 2" level wavelet domains. The harmonic model has

been applied to recover the missing regions in the low-frequency sub-band domain.

A process of image inpainting in 1-level DWT A process of image inpainting in 2-level DWT

Figure4-13: Inpainting based-PDE method in 1st and 2" level Haar wavelet domain.

The left column represents the process of the PDE method in level-1in DWT domain,
while the process of the PDE method in the level-2 DWT domain is represented in the
right column. There is no difference between the inpainted images visually in the last
row of each column, but the inpainted image in the level-IDWT domain may be
described as a little better than in the level-2 DWT domain based on values of MSE and
PSNR measures. The white mask that was used in Figure4-13 will be applied to a set of
natural images; then different PDE-BI methods will be used to recover the missing
regions in different levels of the DWT domain. Table 4-1represents the averages of
MSE and PSNR for image inpainted in different level DWTs via PDE-BI methods.

Equations Harmonic Transport MESm mCH
Levels MSE PSNR MSE PSNR MSE PSNR MSE PSNR
1 953.209 | 19.7273 | 916.273 | 19.6507 | 802.234 | 20.4884 | 766.063 | 20.4429

2nd 1023.694 | 18.1239 | 975.391 | 18.7723 | 886.348 | 19.6722 | 813.759 | 19.8872
3 1153.776 | 17.8537 | 1016.87 | 18.1962 | 964.997 | 19.9472 | 905.358 | 19.9723

Table 4-1: The average values of MSE and PSNR of inpainted images of PDE methods in
different levels of DWT.
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The averages of MSE and PSNR from inpainted images in level-1 DWT are better than
those resulting from other levels of DWT; the values of MSE and PSNR become
gradually worse as the levels of DWT rise, which means that the efficacies of the PDE-
Bl methods became gradually worse in recovering the missing regions when applied to
increasingly high-level DWT sub-bands. In the figures below, some of the experimental
results are demonstrated for different PDE-BI methods in different inpainting domains.
So, these PDE-BI methods have been applied to recover the missing regions in level-1
DWT domain.

Figure4-14 shows inpainted images by using PDE-BI methods in the Haar wavelet
domain while in Figure 4-15 presents the inpainted images by applying PDE methods in

the Daubechies 8 wavelet domain.
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Figure4-14: Removing scratches using PDE inpainting methods in the frequency domain. (a)
Original image, (b) original image with scratches, (c), (d), () and (f) inpainted images using
Harmonic, Transport, MES and mCH models, respectively.
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Figure4-15: Removing scratches using PDE inpainting methods in the frequency domain. (a)

Original image, (b) original image with scratches, (c), (d), (¢) and (f) inpainted images using
Harmonic, Transport, MES and mCH models, respectively.

As shown in the above Figures, PDE-BI methods have succeeded in recovering small,

smooth missing regions with non-textured areas around them, while PDE-BI methods
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still have a problem in recovering missing regions with textured surrounding areas in

the spatial domain, as seen in
Figure4-14 and 4-15.

In Chapter 6, the properties of wavelet transforms in image analysis are used to
characterise non-textured and textured image components (i.e. low-frequency
coefficients and high-frequency coefficients). Moreover, the PDE-BI methods are used
to recover missing regions via the low-frequency sub-band, and another inpainting
method will be used to recover the high-frequency sub-bands then the results will be
combined. Comparisons will be made about the performances and efficacies of methods
as well as their abilities to recover deleted areas in the spatial and frequency domains, in
sections 4.7.2.1,4.7.2.2 and 4.7.2.3.

To deeply study the efficacies of 2" and high PDE-BI methods in the spatial and
wavelet domains, we have applied them to two sets of images (natural and faces
databases). Statistical measurements and the TDA approach have been used to study
and compare the results of the implementations of these equations in each domain. The
next section will show these databases and the results of applying these methods to

them in the spatial and frequency domains.

4.7 Image Quality Assessment Post Inpainting

The aim in this section is to test the qualities of various images which have been
inpainted using various PDE-BI methods. In general, high-order PDE-BI methods are
expected to produce better quality images than the 2"%-order PDE-BI methods.
Therefore, the efficacies of the various 2"%- and high-order PDE-BI methods as bases for
inpainting in spatial and frequency domains are compared by assessing the qualities of
their output images using a variety of quality measures. Next, two databases used in our

experiments, the first consisting of natural images and the other of face images.

4.7.1 Databases Description

This subsection gives a brief description of two publicly available databases; a face
biometric database and a natural image database that is used in our experiments to
evaluate the suitability of the different PDE-BI methods. Statistical measurement
methods and topological data analysis methods have been used to evaluate the efficacy
of these PDE-BI methods. The first database is Berkeley segmentation dataset and
Benchmark database (Pablo Arbelaez 2007) as described in Chapter 3. The inpainting-
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based PDE methods have been applied t0100 images of this database. These images
have been selected based on the quantity of texture and structure which helps to check
the efficacy of the PDE-based inpainting methods in recovering small missing regions.
Figure4-16 illustrates examples of natural images from the Berkeley segmentation and

Benchmark database.

Figure4-16: Example of eight out of 300 training natural images.

The second database is the Extended Yale B database (Lee et al., 2005) in (Deng Cai,
Xiaofei He, Yuxiao Hu 2005) which is widely used to test the performance of face
recognition schemes. This database consists of 2414 face images of 38 individuals each
having 64 images, in frontal pose. The reason of choosing this database is the fact that
the inpainting techniques can improve the performance of face recognition applications,
for example, in the case of having occluded face images with missing regions, these
PDE-BI methods recover the missing region and provide a better-quality image which
boosts the application performance. Moreover, these techniques can be used for object
removal, for example, removing glasses from face images. The size of these images is
192x168. The images in the database are divided into five subsets. The inpainting-

based PDE methods have been applied to 76 images of this database.

Figure4-17 shows some examples of training face images taken from the Extended Yale
B database.

Figure4-17: Example of eight out of 114 training face images.
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4.7.2 Statistical Measurements for Image Quality

This subsection shows the results of two groups of experiments, which have been
conducted and are reported in both; spatial and frequency domain. Also, the quality
assessment of the inpainted images for these experiments is checked by using statistical
measurements and the TDA approach. On the other hand, the performance of each
PDE-BI method used in these experiments has been studied and discussed by using the
TDA approach. To keep to chronological order, the statistical measurements to check
the quality of inpainted images of these two groups of experiments in the spatial and

frequency domains.

4.7.2.1 Experiment 1: Results of using PDE on the natural dataset

Different experiments are conducted to measure and compare image quality in the
inpainted images concerning the original images in the spatial and frequency domain,
using MSE, PSNR, SSIM and entropy quality measures. The test images were inpainted
using various PDE-BI methods. The original images of the Berkeley database were used
as the reference by which to measure the quality of inpainted images. In this section,
five experiments have been applied to 100 images of this data set. The aim of these
experiments is to study the effect of the order of PDE-BI methods on the reconstruction
of the edges in different sizes of missing regions in the natural images and to study the
performance of these methods in reconstructing these missing regions. These
experiments have used harmonic, transport, MES, and mCH methods in the spatial and
frequency domains. In general, image inpainting can be described as follows: Let Q be
the image domain, let f: Q — R*be the given original image, and domain D c Q
represents the region with missing information. We refer to domain D as the inpainting

domain, and we assume it has already been identified, as illusturted in Figure4-1.

Five cases of inpainting domains (damaged regions) have been created in the images by
using binary masks. The next equation represents how the scratches and texts are added

to the original images,

fDamaged(x'y) =M‘1(x,y)><f(x,y)+M(x,y) (4.57)
where f is the original image, M is the mask image and M1 is the logical inverse of the

mask image, where

M™1(x,y) =1—M(x,y)
The size of the mask is the same as that of the original image. Multiply every element in

the inverse mask matrix by the corresponding element in the original image matrix. The
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mask images have been chosen based on the width of the texts and scratches; the first
two masks represent the different sizes of text. The font sizes in the texts of the mask
images in C1 and C2 are 12pt, and 16pt respectively. The other mask images represent
two different-sized scratches (C3, C4) and two missing blocks (C5). Figure4-18
represents these five cases of damaged regions in images which have been applied to the
database images to study the efficiency of these PDE-BI methods. The first four masks
will be applied to the set of natural images to study the efficacy of PDE-BI methods.
On the other hand, as mentioned before, we are dealing with high textured colour
natural images, and these PDE-BI methods cannot deal with the highly textured images.
Therefore, the mask C5 will be used to check the ability of PDE-BI methods to recover
large missing regions. These PDE-BI methods will be applied to recover the missing

regions in each channel image.
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Figure4-18: The same natural image with five different inpainting domains.

Harmonic, transport, MES, and mCH methods have been used to remove the texts and
scratches from the damaged natural images; these methods are applied on 100 images

from the Berkeley database in spatial and frequency domain.

Figure4-19 and 4-20 show the results of removing the scratches in the natural images in
the spatial domain. An accurate evaluation of PDE-BI methods which simultaneously
assesses inpainted images qualitatively and quantitatively is not an easy task. The
qualitative evaluation of PDE-BI methods is conducted visually for inpainted images,
while the quantitative evaluation of PDE-BI methods is done by applying statistical

measurements between original and inpainted images.
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Figure4-19: Removing scratches using PDE-BI methods in the spatial domain. (a) Original

image, (b) original image with scratches, (c), (d), (e), and (f) inpainted image using Harmonic,
Transport, MES, and mCH models, respectively.

() [C] - U]
Figure4-20: Removing scratches using PDE-BI methods in the spatial domain. (a) Original
image, (b) original image with scratches, (c), (d), (e), and (f) inpainted image using Harmonic,
Transport, MES, and mCH models, respectively.

@ | © I
Figure4-21: Recovering missing regions using PDE-BI methods in the spatial domain. (a)

Original image, (b) masked image, (c) Harmonic inpainted image at iteration 800, (d) Transport
inpainted image at iteration 900, (e) MES inpainted image, (f) mCH inpainted image at iteration
550.
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Figure4-22: Recovering missing regions using PDE-BI methods in the wavelet domain. (a)
Transport inpainted image at iteration 600, (b) MES inpainted image, (c) mCH inpainted image
at iteration 400.

We note that the inpainted images in Figure4-19 are visually almost identical to the
original images. In Figure4-20 and 4-24, the harmonic inpainted images are visually not
identical to the original images, whereas other inpainted images are visually identical to
the original images. Also, the inpainted images created in the wavelet domain, as shown
in Figure4-22 can be seen to be visually identical to those created in the spatial domain,
shown in Figure4-21. Experimental testing shows that visually acceptable images may
have different image qualities by numerical measures. The efficacy of these methods in
recovering small missing regions has been studied by using the first four masks on the
set of natural images. Their abilities to recover large missing regions have also studied
by applying C5 on the set of images; this is the challenge for these methods.

To check further the quality of an inpainted image, statistical measurements are used, in
particular, to check the efficacy of PDE-BI methods in the spatial and frequency
domains. To get better-quality image inpainting, the qualities of the inpainted regions
are checked by statistical measurements, so the SSIM, PSNR, MSE and entropy have
been calculated only between the inpainted regions and the corresponding regions in the
original images in both domains. Table 4-2 and 4-3 will summarise the comparison of
the qualities of PDE-BI methods in the spatial and frequency domain respectively; the

times taken to get the results using these models are also shown.
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Cases | Equations MSE | PSNR | SSIM | Entropy | Time (S) | Iteration

Harmonic | 105.066 | 29.058 | 0.9230 2.6235 90 300

§ Transport | 99.4891 | 29.329 | 0.9324 2.6247 213 250
8 MESm 48.7816 | 32.227 | 0.9376 2.6230 107 1

mCH 76.0662 | 31.817 | 0.9168 2.6218 128 150

Harmonic | 80.5039 | 30.263 | 0.9201 2.8960 135 300

§ Transport | 75.9052 | 30.568 | 0.9352 2.8971 159 200
8 MESm 32.8185 | 33.929 | 0.9347 2.8961 112 1

mCH 71.7534 | 34.892 | 0.9215 2.8941 131 100

Harmonic | 145.232 | 27.613 | 0.9075 3.2861 143 350

%n? Transport | 138.855 | 27.838 | 0.9201 3.2893 188 250
8 MESm 102.398 | 27.992 | 0.9231 3.2835 142 1

mCH 125.403 | 28.472 | 0.9024 3.1910 129 200

Harmonic | 124.396 | 28.467 | 0.9296 1.4232 142 400

§ Transport | 120.454 | 28.618 | 0.9422 1.4230 210 300
8 MESm 121.108 | 28.980 | 0.9430 1.4222 191 1

mCH 112.138 | 29.350 | 0.9080 1.4212 175 250

Harmonic | 906.190 | 19.618 | 0.9696 1.8905 285 800

ﬁ Transport | 899.007 | 19.660 | 0.9705 1.9075 293 900
8 MESm 803.808 | 20.493 | 0.9713 1.8911 179 1

mCH 711.960 | 21.284 | 0.9942 1.8855 253 550

Table 4-2: The average values of MSE, PSNR, SSIM, and entropy are shown for image

inpainting using Harmonic Transport, MES and mCH models in the spatial domain.

Cases | Equations MSE PSNR | SSIM | Entropy | Time (s) | Iteration

Harmonic 213.048 | 25.913 | 0.9883 | 2.6232 60 220

§ Transport 188.726 | 26.371 | 0.9892 2.6231 165 200
S MESm 179.757 | 26.577 | 0.9897 2.6189 80 1

mCH 158.180 | 28.021 | 0.9885 | 2.6170 90 100

Harmonic 175.986 | 26.766 | 0.9870 2.8888 100 250

% Transport 148.280 | 27.424 | 0.9886 | 2.8939 124 150
8 MESm 143.517 | 27.577 | 0.9890 2.8206 85 1
mCH 125.296 | 28.352 | 0.9894 2.7767 116 80

Harmonic 264.086 | 24.776 | 0.9843 3.2756 121 280

@ | Transport | 277.645 | 24.751 | 0.9826 | 3.2868 151 200
) MESm 238.389 | 25.356 | 0.9845 | 3.2789 128 1

mCH 185.293 | 26.998 | 0.9892 | 2.9002 91 150

Harmonic 226.494 | 25.868 | 0.9948 1.4185 117 300

?95 Transport 199.765 | 26.265 | 0.9952 1.4225 181 250
S MESm 195.582 | 26.378 | 0.9953 1.3903 168 1

mCH 176.072 | 27.778 | 0.9911 1.3682 156 200

Harmonic 953.209 | 19.727 | 0.9124 1.2445 240 550

L&? Transport 916.273 | 19.650 | 0.9705 1.1035 237 600
8 MESm 802.234 | 20.488 | 0.9712 1.0996 120 1

mCH 766.063 | 20.442 | 0.9708 1.0923 190 400
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Table 4-3: The average values of MSE, PSNR, SSIM, and entropy are shown for image
inpainting using harmonic transport, MES and mCH models in the frequency domain.

Table 4-2 and 4-3 show the average values of MSE, PSNR, SSIM and entropy resulting
from the applications of harmonic, transport, MES and mCH equations for recovering
the missing regions in the spatial and frequency domain. In both domains, the values of
MSE, PSNR, SSIM and entropy obtained using the MES and mCH equations are better
than those obtained using the harmonic and transport equations and the number of
iterations of these equations to accomplish their tasks is less than required with other
equations. On the other hand, the harmonic equation requires less time per iteration
than those applied in the transport, MES and mCH methods. Also, MSm can be solved
in a single step.

In the qualitative assessment, the images inpainted in the spatial and frequency domains
look almost identical. On the other hand, in the quantitative assessment, the MSE,
PSNR, SSIM and entropy measures resulting from these methods in the spatial domain
are a little better than those obtained by using frequency-domain methods, while the
number of iterations and computation time needed to recover the missing regions is less
in the frequency domain than in the spatial domain. Also, the above tables show that
high order PDE-BI methods are capable of effective region filling and give relatively
high PSNR values with low MSE values, and the SSIM values are close to 1. Also, the
MES and mCH methods got lower entropy value than harmonic and transport methods

in both spatial and frequency domains.

To confirm current results regarding each PDE-BI method in both domains, Yale B
database face images have been used to check the efficacy of the PDE-BI methods
because face-recognition methods provide an excellent test for the qualities of inpainted
images. In the next section, the results of applying PDE methods on Yale B Database

images are introduced.

4.7.2.2 Experiment 2: Results of using PDE on the face dataset

The Yale B. database is famous, and this database has been used in the assessment of
resolution enhancement of face images and image classification (image recognition). As
the face images in this database are sensitive, even small changes are visually noticeable.
Therefore, a set of experiments was conducted on the frontal face images from the
Extended Yale B database, where the damaged images were generated by different

mask images. Five mask images have been used to study the performance of the PDE-
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Bl methods and the quality of the inpainting results in the spatial and frequency
domains. In general, the size of the damaged region affects the performance of the PDE-
Bl methods in the reconstruction of an image, which means it will affect the result of
inpainting images as well. Equation (4.62) has been used to restore missing regions in
the original images (i.e. face images) based on the mask images. These inpainting
domains (damaged regions) have been chosen based on the width of the scratches, texts
and blocks. The scratch inpainting domains (damaged regions) have contained different-
sized scratches, where three mask images are scratches, and one consists of text and one
of the blocks. Figure4-23 represents these five cases of database face images in which
damaged regions have been created to study the efficiency of these PDE-BI methods in

the spatial and frequency domains.

Damaged image, C1 Damaged image, C2 Damaged image, C3 Damaged age, Cc4 Damaged image, C5
Figure4-23: The same face image with five different inpainting domains.

These inpainting domains (damaged regions) have been applied on the 76 face database
images. Harmonic, transport, MES, and mCH methods have been used to remove the

scratches, text, and blocks from the damaged face images. Figure4-24 to

Figure4-28 show the results of removing the scratches, text and blocks in the natural

images in the spatial domain.
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Figure4-24: Scratch removal using the harmonic model in the spatial domain. (a) Original
image, (b) masked image, (c) at iteration 100, (d) at iteration 200, (e) at iteration 300, (f) at
iteration 400, (g) at iteration 500.

Figure4-25: Scratch removal using the mCH model in the spatial domain. (a) Masked image,

(b) at iteration 50, (c) at iteration 100, (d) at iteration 200, (e) at iteration 250, (f) at iteration
300.

Figure4-26: Text removal using the harmonic model in the spatial domain. (a) Masked image,
(b) at iteration 25, (c) at iteration 50, (d) at iteration 100, (e) at iteration 200, (f) at iteration 250.
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Figure4-27: Scratches removal using the transport model in the spatial domain. (a) Masked
image, (b) at iteration 100, (c) at iteration 200, (d) at iteration 300, (e) at iteration 500, (f) at
iteration 800.

Figure4-28: Object removal using the transport model in the spatial domain. (a) Masked image,
(b) at iteration 100, (c) at iteration 400, (d) at iteration 700, (e) at iteration 1300, (f) at iteration
2000.

Different scratches have been removed in Figure4-24, Figure4-25, and Figure4-27 by
using harmonic, mCH and transport methods respectively at different numbers of
iterations in the spatial domain. The scratches have different thicknesses. Figure4-26
illustrates the removal of text from the face image in the spatial domain by using the
harmonic method at different numbers of iterations.

Figure4-28 introduces the replacement of missing regions (i.e. blocks) from the face
image in the spatial domain by using the transport method at different numbers of
iterations. Figure4-29 and Figure4-30 show the results of PDE-BI methods in the
frequency domain.
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Figure4-29: Scratches removal using PDE-BI methods in the frequency domain. (a) Original
image, (b) masked image, (c) Harmonic inpainted image at iteration 1100, (d) Transport
inpainted image at iteration 1000, () MES inpainted image, (¢) mCH inpainted image at
iteration 400.

Figure4-30: Object removal using PDE-BI methods in the frequency domain. (a) Original
image, (b) masked image, (c) Harmonic inpainted image at iteration 1100, (d) Transport
inpainted image at iteration 1000, (e) MES inpainted image, (¢) mCH inpainted image at
iteration 400.

In the above Figures, experimental testing shows that visually acceptable images may
have different numerically-assessed image qualities. Also, that the numbers of iterations
needed to remove the scratches, text, and blocks by using the harmonic and transport
method were more than were needed when using the MES and mCH methods in the

spatial domain.

In the above Figures, all inpainting PDE-BI methods which were applied to recover the
missing regions were faster in the frequency domain than in the spatial domain.
Statistical measurements been have used to check numerically the quality of inpainted
images and the efficacy of PDE-BI methods. SSIM, PSNR, MSE and entropy have been
calculated only between the inpainted regions and the corresponding regions in the
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original images to get better measures of image inpainting quality. Table 4-4 and 4-5
will summarise the qualitative comparison of the inpainting PDE-BI methods in the
spatial and frequency domain, where MSE, SSIM, PSNR and entropy have been used to

measure the quality of image inpainting and the times taken to get the results using

these models are shown as well.

Cases | Equations MSE PSNR | SSIM | Entropy | Time(s) | Iteration

Harmonic | 307.125 | 23.843 | 0.9375 0.5924 60 450

g Transport | 272.136 | 20.550 | 0.9375 0.5897 195 500
8 MESmM 52.5334 | 31.988 | 0.9426 0.5846 78 1

mCH 134.103 | 25.193 | 0.9599 0.5838 71 250

Harmonic | 162.620 | 23.597 | 0.9415 1.2619 95 500

§ Transport | 135.300 | 23.523 | 0.9407 1.2829 127 500
8 MESmM 131.798 | 28.291 | 0.9454 1.2606 88 1

mCH 133.947 | 27.593 | 0.9589 1.2525 89 300

Harmonic | 89.7650 | 28.770 | 0.9104 0.9324 104 250

2 Transport | 46.6170 | 28.673 | 0.9293 | 0.9297 165 300
8 MESmM 44,5452 | 31.922 | 0.9327 0.9146 108 1

mCH 25.4027 | 34.458 | 0.9476 0.9238 97 100

Harmonic 117.959 | 23.889 | 0.9282 2.5001 102 500

§ Transport | 113.496 | 23.622 | 0.9325 2.5327 180 700
S MESm | 103.051 | 28.179 | 0.9407 | 2.5004 165 1

mCH 109.507 | 27.440 | 0.9522 2.4828 140 400

Harmonic | 210.958 | 23.948 | 0.9311 1.3364 241 1700

§ Transport | 243.732 | 24.770 | 0.9543 1.3321 254 2000
S MESm | 185.653 | 24.978 | 0.9522 | 1.3090 111 1

mCH 201.333 | 25.129 | 0.9617 1.3025 210 550

Table 4-4: The average values of MSE, PSNR, SSIM, and entropy are demonstrated for image

inpainting using harmonic, transport, MES and mCH models in the spatial domain.
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Cases | Equations MSE PSNR | SSIM | Entropy | Time(s) | Iteration

Harmonic 500.004 | 21.673 | 0.9953 0.5818 45 300

g Transport 591.847 | 21.253 | 0.9951 0.5816 165 350
8 MESmM 155.775 | 22.349 | 0.9951 0.5802 57 1

mCH 279.081 | 24.235 | 0.9971 0.5536 53 200

Harmonic 282.439 | 25.263 | 0.9970 0.5714 69 350

% Transport | 260.869 | 25.236 | 0.9966 0.5711 88 300
8 MESmM 197.422 | 26.519 | 0.9974 0.5708 67 1

mCH 229.500 | 26.300 | 0.9972 0.5699 64 200

Harmonic 170.002 | 21.073 | 0.9783 2.6289 81 150

E Transport | 163.588 | 22.226 | 0.9950 2.6327 123 200
8 MESm 107.365 | 23.292 | 0.9958 2.6275 78 1
mCH 131.978 | 23.498 | 0.9852 2.6072 69 50

Harmonic | 313.530 | 23.378 | 0.9809 2.4888 85 350

§ Transport 308.715 | 23.408 | 0.9779 2.4932 150 400
S MESm | 303.160 | 23534 | 0.9811 | 2.4839 132 1

mCH 276.612 | 24.846 | 0.9938 2.4837 111 250

Harmonic | 514.422 | 22.236 | 0.9756 1.2987 214 1100

§ Transport | 453.196 | 23.613 | 0.9813 1.3050 217 1000
8 MESm 339.910 | 23.771 | 0.9814 1.2654 82 1

mCH 309.268 | 23.833 | 0.9749 1.2928 180 400

Table 4-5: The average values of MSE, PSNR, SSIM, and entropy are demonstrated for image
inpainting using harmonic, transport, MES and mCH maodels in the frequency domain.

Table 4-4 and 4-5 showed the average values of MSE, PSNR, SSIM and entropy
resulting from the application of the harmonic, transport, MES and mCH models for
recovering the missing regions in the spatial and frequency domains respectively. In
both domains, the values of MSE, PSNR, SSIM and entropy using the MES and mCH
models are better than those obtained by application of the harmonic and transport
models, and the number of iterations needed for this equation to accomplish its tasks is
less than needed for other equations. Also, the harmonic equation consumes less time to
accomplish its tasks than the transport, MES and mCH equations. In the qualitative
assessment, the inpainted images in the spatial and frequency domains look almost
identical. On the other hand, in the quantitative assessment, the results of MSE, PSNR,
SSIM and entropy assessments show that spatial domain applications of the methods
give better than frequency domain applications. Also, the above tables show that high-
order PDE-BI methods are capable of effective region filling and give relatively high
PSNR values with low MSE values, and the SSIM values are close to 1. Also, the MES
and mCH methods got lower entropy value than harmonic and transport methods in
both spatial and frequency domains.
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4.7.2.3 Experiment 3: Results of using PDE and colourisation methods

The PDE with colourisation methods have been used to recover two inpainting domains
on 100 natural images which shown in Figure 4-11 and Figure 4-12. The traditional
statistical measurements have applied to assess the quality of inpainted regions in the
spatial domain. Table 4-6 presents the statistical results of using the proposed method

and traditional inpainting based PDE methods.

Cases Equations MSE PSNR SSIM | Entropy | Time (s)
Harmonic 614.707 | 21.8401 | 0.97940 | 0.89047 1500
Harmonic & colourisation | 456.952 | 23.1512 | 0.98149 | 0.89367 1900
§ MESm 462.342 | 22.9065 | 0.98025 | 0.86222 100
S MESm & colourisation | 339.608 | 24.2289 | 0.98214 | 0.87801 350
mCH 526.774 | 22.0069 | 0.97874 | 0.86251 650
MCH & colourisation 361.611 | 23.9189 | 0.98152 | 0.87516 800
Harmonic 1410.73 | 17.7137 | 0.97550 | 0.68849 2000
Harmonic & colourisation | 1353.16 | 18.4127 | 0.97588 | 0.68549 2200
§ MESm 1027.05 | 18.1708 | 0.97721 | 0.65637 100
S MESm & colourisation 1017.18 | 19.5025 | 0.97725 | 0.65813 400
mCH 1307.31 | 17.2358 | 0.97521 | 0.66711 750
MCH & colourisation 1234.91 | 17.9722 | 0.97545 | 0.66334 1100

Table 4-6: The average values of MSE, PSNR, SSIM, and entropy are demonstrated for image
inpainting using only harmonic, MES and mCH models and these models with colourisation
method in the spatial domain.

In Table 4-6, the MSE, PSNR, SSIM and entropy measurements resulting from these
methods are a little better than only PDE methods obtained in the spatial-domain
methods because the colourisation helped to add colours to Cb and Cr channels based
the information that recovered in the Y channel. Also, the PDE methods work better on

the greyscale images.

4.7.2.4 Results Analysis

This section discusses the qualitatively and quantitatively evaluation of inpainted
images obtained by using harmonic, transport, MES, and mCH models in both the
spatial and frequency domains. In the qualitative evaluation, the inpainted images
obtained by using four PDE models in Figure4-19 are visually almost identical to the
original images because the scratches are small and all these PDE models successfully
fulfilled the connectivity principle and the curvature preservation through recovering the
missing regions in the spatial domain. Moreover, Figure4-20 and 4-21, the harmonic
inpainted images are visually not identical to the original images, whereas other
inpainted images are visually identical to the original images because the harmonic

model is not connectivity propagate the information in the large missing region without
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produce artefacts and not preserve the curvatures by recovering the missing regions. On
the other hand, the high order PDE models successfully in preserving the curvatures and
connectivity propagate the information in the large missing region without produce any
artefacts. On the other hand, the inpainted images created in the wavelet domain,
shown in Figure4-22 are visually identical to those created in the spatial domain, shown
in Figure4-21. Therefore, these inpainting PDE models need to assess the quality of

inpainted images and the efficacy of these models quantitatively.

To sum up, the experimental testing shows that visually acceptable images may have
different image qualities by statistical measurements. The inpainted images using 2"
and high order PDE methods in the spatial and frequency domains look almost identical
in the first four masks on the set of natural and faces images. While their abilities of
these methods to recover large missing regions have also studied by applying C5 on the
set of natural and faces images; this is the challenge for these methods, the high order
PDE methods have the ability to recover the large missing regions partly better than the
2"%-order PDE methods. Also, the inpainted images in both spatial and frequency
domains are almost identical but at the same time, they have different statistical quality

measurements.

On the other hand, in the quantitative assessment, the MSE, PSNR, SSIM and entropy
measurements resulting from these methods in the spatial domain are a little better than
those obtained in the frequency-domain methods because the intensity values of the
damaged region in high-frequency sub-bands are estimated to zero, this will affect the
quality of the inpainted area, and that will produce more error. Moreover, the number of
iterations and computation time needed to recover the missing regions is less in the
frequency domain than in the spatial domain, because the size of the damaged region in
the frequency domain is smaller than its size in the spatial domain, as seen in Table 4-2,
4-3, Table 4-4, and 4-5.

In both domains, these tables show that high-order PDE methods (i.e. MES and mCH)
are outperforming the 2"- and 3™-order PDE methods (i.e. Harmonic and transport),
where the high order PDE methods are capable of effective region filling and give
relatively high PSNR values with low MSE values, and the SSIM values are close to 1
for all the natural and faces images. The high order PDE models have been successful in
preserving the curvatures and connectivity while propagating information into the

missing regions and produce less error than the other equations. The reason behind this
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is that high order partial derivatives contain lower errors than 2" order ones, and also
because there is more information in the boundary conditions. Also, the MES and mCH
methods got lower entropy value than harmonic and transport methods in both spatial
and frequency domains, which means that the amount of disorder in the inpainted image
obtained by using MES and mCH methods less than in the inpainted images obtained by

harmonic and transport methods.

In both domains, the values of MSE, PSNR, SSIM and entropy obtained using the MES
and mCH equations are better than those obtained using the harmonic and transport
equations and the number of iterations of these equations to accomplish their tasks is
less than required with other equations. On the other hand, the harmonic equation
requires less time per iteration (because of its lower-order PDE) than those applied in
the transport, MES and mCH methods. Also, the MESm can be solved in a single step
because it is an elliptic equation. During the testing, it was found that while some
images could look visually pleasing and similar, they have different PSNR values in

both domains.

Moreover, these statistical approaches used to evaluate the outcome of inpainting based
PDE methods in spatial and frequency domain such as MSE, PSNR, SSIM and entropy.
During the work, we noticed the MSE is not always an ideal error estimation. An
example of this is that a low error value will result in a visually pleasing result, but a
large error value does not necessarily has to result in a poor visual result. This
observation is shown in Figure4-31. We want to investigate if this quantitative
estimation matches the quality of the images as perceived by human beings eyes. This is
done by creating an experiment to analyse some of these observations; the high value of

MSE in the natural images does not mean the image is not visually acceptable.

Figure4-31: Example to the MSE of image. First row: input image, masked image, second row:
first result (high error) and the second result (low error).
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Despite its popularity in the image processing community, PSNR is not a reliable image
quality measure. The PSNR depends on differences between corresponding pixels in the
images under comparison and does not correlate well the visually perceived qualities of
the images from which it is derived. In particular, PSNR does not take into
consideration the spatial distribution of image pixel values. For instance, Figure4-32
shows two images which have the same PSNR whereas their perceived quality is very
different, together with two inpainted images where one is visually more acceptable

than its counterpart but with contradicting PSNR values.

In the end, the some of the quantitative evaluation measurements inversely proportional
with the qualitative evaluation of the PDE inpainting results are concluded. This means
the MSE and PSNR measurements do not match with visual assessment especially
when the high texture images. The MSE and PSNR are not reliable quality

measurements for assessing the image inpainting results.

Figure4-32: First row; an example of two images with different perceptual quality but the same
PSNR (Winkler & Mohandas 2008). Second row; two inpainted images (a) visually acceptable
inpainted image with PSNR = 15.3988 and (b) not the good inpainted version with PSNR=
17.0959.

In 2016, Aras et al. in (Asaad et al. 2017) proposed a method to assess the quality of
degraded images using the emerging scheme of topological data analysis (TDA). They
used Local Binary Pattern (LBP) as a texture feature descriptor, then they construct
simplicial complexes for selected groups of uniform LBP bins and calculate persistent
homology invariants (e.g. a number of CCs). Then they investigated image quality
discriminating characteristics of these simplicial complexes by computing these models
for a large dataset of face images. Lastly, they clarified the number of CCs not only

distinguish between different levels of shadow effects but also help detect the infected
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regions as well. So the TDA approach deals well with texture in the images using LBP
landmarks. Also, the TDA has been used to detect the tampering in the images which
that been applied to detect the image shadow (Asaad et al. 2017), morphing (Asaad &
Jassim 2017), and steganalysis (Asaad et al. 2018), so we will use it to detect the

inpainted regions in the image.

The same topological approach is used to assess the quality of PDE-based inpainted
images in spatial and frequency domain. Next, the TDA approach will use to check the
quality of inpainted images based on build topological objects from images (inpainted

regions).

4.7.3 TDA for Image Quality Assessment
The idea introduced in section 2.6.2 is followed, which builds a sequence of SC to
assess the quality of the inpainted region. Here, the task is to assess the quality of

inpainted methods, we deploy to recover the missing regions in natural and face images.

Figure4-33, below illustrates this idea by showing the simplicial complexes constructed
from the positions of a single ULBP code for an original image and its inpainted version.
The Rips complex graph for inpainted image and the original image are identical, except
the inpainted region which we highlighted by red box. Therefore, the CCs will be
calculated for inpainted regions and the same regions in the original image.
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Figure4-33: LBP and simplicial complexes of the original and inpainted image at threshold
T=10.

TDA approach is applied to study the performance of PDE-BI schemes, by quantifying

the quality of the inpainted image at different iterations. As mentioned in section 2.6.2,
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the uniform LBP patterns determined by the number of ones in such patterns in natural
images from the database of (Ojala et al. 2002). To estimate image inpainting quality,
the number of CCs, at different thresholds, in the inpainted regions and the original

regions are compared.

The TDA approach for evaluating the image inpainting quality is applied by counting
the number of CCs in the inpainted regions, where the CCs is computed in 8 rotations in
each one of these 7 geometries at different thresholdings. The TDA approach is
successful in studying texture deeply in the inpainted regions. The results of the TDA
approach matched the qualitative results. These results are outperformed by those
obtained using statistical measurements in terms of their corresponding with their
qualitative results, which means that the TDA approach gives good evaluation of image
inpainting quality, as seen in the first row of Figure4-32, where the two images have the

same PSNR value, but visually these images are not corresponding.

The TDA approach gives good description of these images in terms of the drawing of
SC and the numbers of CCs in these images at the eight rotations in each one of the 7
geometries at different thresholds, as seen in Figure 4-34 which represents the SC shape
of rotation R1 of geometry G6 at threshold T=10 (as mentioned in 2.6.2). The SC
shapes of these images are clearly different and also the numbers of CCs are different.
Hence, the TDA approach is successful in detecting the differences between these
images where some of the statistical measurements failed. These results are also
important in applications such as image forgery detection. For future work, the TDA

approach can be used to detect forged images and to locate suspect regions in them.
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Figure 4-34: Example of drawing SC for two images that have same value of PSNR described
in first raw in figure 4-32. (a) SC of left image in the first row. (b) SC of right image in the first
raw.
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Figure 4-34 shows the SC of the images which have a different shapes of SC and also

different numbers of CC.

The limitations of using the TDA approach are the time consumed when checking all
these rotations in each of these geometries, then repeating them at different thresholds.

In the future, we will try to reduce these huge computational processes.

The 7 ULBP geometries (G1, G2, ..., G7) in eight rotations (R1, R2,...,R8) are studied
at different thresholds T=0, T=5, T=10, and T=15, for the inpainted images of the two
above experiments, the geometries G4 and G6 at threshold T=10 giving a good
description of the results of PDE-BI methods at different iterations in five cases of
damaged images that been studied, and below it is shown that geometries G4 and G6
are more sensitive to differences between inpainted and original regions in the natural
images. Figure4-35 shows the average number of CCs of inpainted regions obtained
using PDE-BI methods at different iterations for five damaged regions from natural
images in both spatial and frequency domains. The Geometry 6 at threshold T=10 is

shown below.
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Figure4-35: Evaluation of performance of PDE-BI methods using TDA approach at 8 iterations
in G6 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the
number of CCs in inpainted regions in the spatial domain. Right column: Average of the
number of CCs in inpainted regions in the Frequency domain.

Figure4-35 clarifies the number of CCs. It has been found that in the G6 domain at
threshold T=10, the inpainted images obtained using MES and mCH methods are closer
than those obtained by the harmonic and transport methods to the original regions with

respect to the to the numbers of CCs in the both spatial and frequency domains.
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Figure4-36 shows the average number of CCs of inpainted regions which obtained
using PDE-BI methods at different iterations for five damaged regions from natural
images in the both spatial and frequency domains. The Geometry 3 at threshold T=10

describe below.
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Figure4-36: Evaluation of performance of PDE-BI methods using TDA approach at 8 iterations
in G3 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the
number of CCs in inpainted regions in the spatial domain. Right column: Average of the
number of CCs in inpainted regions in the Frequency domain.
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The number of CCs in the other geometries at threshold T=10 is fickle. Moreover, the
numbers of CCs in inpainted regions obtained by using harmonic and transport
equations are close to those found in the original regions of natural images, which
means that these geometries do not correspond well to the image quality assessments of
these inpainting methods, as can be seen in Figure4-36; geometry G3 at threshold T=10.
On the other hand, in the face images database, the number of CCs have been calculated
in the inpainted images which were obtained by using four different PDE-BI methods in
four inpainting domains (damage cases) in the both of spatial and frequency domains.
Figure4-37 and Figure4-38 show the results of G6 and G3 in the spatial and frequency
domains respectively. Also, the numbers of CCs in the inpainted areas which obtained
using PDE-BI methods in the spatial domain are closer to those of the original areas in

comparison with those obtained in the frequency domain.
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Figure4-37: Evaluation of performance of PDE-BI methods using TDA approach at 8 iterations
in G6 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the
number of CCs in inpainted regions in the spatial domain. Right column: Average of the
number of CCs in inpainted regions in the Frequency domain.
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Figure4-38: Evaluation of performance of PDE-BI methods using TDA approach at 8 iterations
in G3 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the
number of CCs in inpainted regions in the spatial domain. Right column: Average of the
number of CCs in inpainted regions in the Frequency domain.
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The results of face images are similar to the results of natural images. The numbers of
CCs in the geometries G4 and G6 at threshold T=10 of inpainted images obtained by
using MESm and mCH are closer to the numbers of CCs of the original regions than in
the inpainted images obtained using harmonic and transport methods. The geometries
G4 and G6 are a better descriptor to image inpainting quality, as seen in the above
Figure4-35 and Figure4-37 which that show the number of CCs in the inpainted areas
and corresponding original areas at threshold T=10, in G6.

For other geometries, the numbers of CCs are wobbling in the inpainted images, as seen
in Figure4-36 and Figure4-38, which clarify the numbers of CCs in G3 at threshold
T=10. In all these PDE-BI methods, the numbers of CCs of the inpainted areas in the
spatial domain are closer to the CCs of original areas in comparison with the obtained in

the frequency domain.

4.7.3.1 Results Analysis

As mentioned in section 2.6.2, the TDA is sensitive to tampering in the image (Asaad et
al. 2018), (Asaad et al. 2017), and (Asaad & Jassim 2017), so any change in the image
will be detected by the TDA approach, based on the number of CCs in certain regions
(i.e. inpainted regions). In both spatial and frequency domains, the TDA approach has
been applied to the inpainted regions and corresponding original regions in both the
natural and face images in seven geometries at different thresholds; using the numbers
of CCs in geometries G4 and G6 at threshold T=10 of inpainted images as measures of
similarity to the original images, those obtained using the MES and mCH methods are
closer to the original images than those obtained using harmonic and transport methods,
in both spatial and frequency domains. The geometries 4 and 6 describe the edges and
the end lines in the natural images (Ojala et al. 2002), while the same geometry
describes the corners in the face images (Chan 2007). That means the MES and mCH
methods have succeeded in reconstructing the edges and the end lines in the missing
regions of the natural images and in reconstructing the corners in the missing regions of
the face images (Esedoglu & Shen 2002), (A. L. Bertozzi et al. 2007).

Therefore, the best descriptor for image quality is based on the number of CCs resulting
from the inpainting methods, where the best image inpainted quality is mCH then
MESm then transport and the lastly harmonic equation for all rotations in the
geometries G4 and G6. Moreover, the number of CCs of the inpainted areas obtained by

using PDE-BI methods in the spatial domain is closer to the CCs of original areas in
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comparison with the results obtained in the frequency domain because the intensity
values of the damaged region in high-frequency sub-bands are estimated to zero, and
this will affect the quality of the inpainted area and will produce more error, as shown in
Figure4-35 and Figure4-37.

On the other hand, the number of CCs in the other geometries (i.e. G1, G2, G3, G5, and
G7) at threshold T=10 are fickle, the numbers of CCs of inpainted regions in both
natural and face images obtained by using harmonic and transport equations are close to
those in the original regions of natural images. This means that these geometries at
threshold T=10 do not correspond well to the image quality assessments of these
inpainting methods in both spatial and frequency domains, as seen in Figure4-36 and
Figure4-38. The results of the geometries G1, G2, G4, G5, and G7 at threshold T=10
will be presented in the appendix (see Appendix A).

The TDA approach has been successfully used to study and check the image inpainting
qualities, because it is a very sensitive process which enables the study of inpainted
regions at seven geometries, and each geometry has eight rotations which means that all
the inpainted regions will be covered. Therefore, the TDA approach will be used to
study the performance of PDE-BI methods in the next section.

4.7.4 TDA for PDEs Performance

This subsection shows the use of TDA to study the behaviour of PDE-BI methods and
compare the results of 2"-and high-order PDE-BI methods at different iterations. The
TDA approach has been used to study the behaviour of PDE-BI methods. As mentioned
before, two types of PDE-BI methods are applied which are elliptic and parabolic. The
elliptic equations each have only one solution, while the parabolic equations have a
finite iteration number of numerical solutions through which to recover the missing
regions. For these reasons, the solutions of these equations are studied at different
iterations, in order to check which one of these equations arrives at a steady state rapidly
and thereby takes a low number of iterations to recover a missing region. The TDA
approach has been applied to the inpainted image obtained by using these methods at
different iterative solutions of the PDEs. After checking the quality of the results
obtained by PDE-BI methods; the geometries G4 and G6 at threshold T=10 gives a
good description to PDE-BI methods at different iterations in five cases of damaged
images. Therefore, the TDA approach is used to study the behaviour of PDE-BI

methods on four cases of damaged regions; we focus only on the study of these
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damaged cases on geometries G4 and G6. The number of CCs has accounted for the
differences between inpainted regions and corresponding original regions at different
iterations. The performances of PDEs have been checked based on the number of CCs

of inpainted areas and corresponding original areas.

Figure4-39, 4-41, 4-43, and 4-45 below, show inpainting results of images at different
iterations of four PDE-BI methods. Each row in these Figures represents inpainted

images by using four PDEs at a specific iteration and so on for other rows.

Figure4-40, 4-42, 4-44, and 4-46 below, display the numbers of CCs in the inpainted
regions and corresponding original regions at threshold T=10 in G6. Each Figure has
four graphs which clarify the numbers of CCs for original and inpainted regions
obtained by 4" PDE-BI methods at different iterations.

Harmonic Transport Mumford-Shah-Euler Cahn-Hilliard

Figure4-39: Object removal using PDE-BI methods. Row 1, Row 2, Row 3, and Row 4
inpainted images using four models at 100, 200, 400, and 500 iterations, respectively.
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Figure4-40: Evaluation of performance of PDE-BI methods using TDA approach at different
iterations for case inpainting 1 in G6 at threshold T=10.

Harmonic Transport Mumford-Shah-Euler Cahn-Hilliard

Figure4-41: Object removal using PDE-BI methods. Row 1, Row 2, Row 3, and Row 4
inpainted images using four models at 100, 200, 400, and 500 iterations, respectively.
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Figure4-42: Evaluation of performance of PDE-BI methods using TDA approach at different
iterations for case inpainting 2 in G6 at threshold T=10.

Harmonic Transport Mumford-Shah-Euler Cahn-Hilliard

Figure4-43: Object removal using PDE-BI methods. Row 1, Row 2, Row 3, and Row 4
inpainted images using four models at 100, 200, 400, and 700 iterations, respectively.
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Figure4-44: Evaluation of performance of PDE-BI methods using TDA approach at different
iterations for case inpainting 4 in G6 at threshold T=10.

Harmonic Transport Mumford-Shah-Euler Cahn-Hilliard

Figure4-45: Object removal using PDE-BI methods. Row 1, Row 2, Row 3, and Row 4
inpainted images using four models at 200, 500, 1700, and 2000 iterations, respectively.
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Figure4-46: Evaluation of performance of PDE-BI methods using TDA approach at different
iterations for case inpainting 5 in G6 at threshold T=10.

We found the high-order PDEs takes less number of iteration than the 2"%-order to
recover the missing areas in the face and natural images. Also, the transport equation

consumes time more than other PDEs for reconstructing missing areas.

4.7.4.1 Results Analysis

As obtained in section 2.6.2, the best topological threshold is T=10, and the geometries
G4 and G6 give the best description to the quality of inpainted images obtained by using
PDE-BI methods. The TDA approach is used to study the performance of PDE-BI
methods based on studying the outputs of these methods at different iterations. This
study aims to evaluate the performance of PDE-BI methods by studying these
progressions iteration gradually. The performances of PDE-BI methods are assessed by
applying the TDA approach to the G6 at the threshold T=10; the numbers of CCs in the
inpainted region obtained by those methods get closer to the number of CCs of the
original regions as the number of iterations gradually increases. Moreover, the numbers
of CCs of inpainted images by MES and mCH methods are closer to those in the
original regions than are the corresponding numbers of CCs in the results of harmonic
and transport methods. The MESm can be solved in a single step because it is an elliptic
equation. The iterations of the harmonic equation arrive in the steady state faster than in
the transport and mCH methods because the harmonic equation is of 2" order.

146



Chapter 4: PDE Based Full Inpainting Methods

On the other hand, in the transport and mCH methods need large numbers of iterations
to arrive in a steady state. This means the high-order PDE-BI methods outperform the
2"-order methods in recovering missing regions in an image. The efficacies of high-
order PDE-BI methods for recovering missing regions are better 2"-order equation

methods, based on the numbers of CCs.

4.8 Summary and Conclusion

The aim of this chapter is the quality evaluation of the PDE based image inpainting
method. Topological and statistical-measurements are proposed to evaluate the qualities
of the image inpaintings in both the spatial and frequency domains. Also, the TDA is
used to study the efficiency of PDE-BI methods. The MSE, PSNR, SSIM and entropy
statistical measurements have been used for quality evaluation. The TDA method is
used to count the numbers of CCs in the inpainted images and the corresponding
original images to see in which inpainted image the number of CCs is closest to that

found in the original image.

Two experiments have been conducted on natural and human face datasets obtained
from the Berkeley and Yale databases respectively. Four PDE-BI methods have been
applied to the two datasets in both the spatial and the frequency domains. The results of
each method on both datasets are similar, as assessed by using both TDA and statistical
measurements. It can be observed from the results that the image inpainting quality
obtained by the mCH and MESm high-order PDEs are better than those obtained by
harmonic and transport PDEs in both the spatial and frequency domains. Furthermore,
the results of image inpainting quality obtained by PDE in the spatial domain are better
than those obtained by PDE in the frequency domain.

The values of the MSE, PSNR, SSIM and entropy measurements applied to inpainted
images obtained by the mCH and MES models are better than those obtained when
harmonic and transport models. The TDA approach also has been applied to check the
efficiency of PDEs by counting the number of CCs of the image inpainted at different
iterations until the whole region is recovered. This shows that the efficiencies of
harmonic and transport PDEs are less than those of the mCH and MES equations at

different iterations.

To sum up, this chapter has experimentally demonstrated that high order PDE-BI
methods outperform 2"4-order PDE-BI methods in recovering small missing regions in

the natural images. However, these methods have limitations when they deal with large
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size missing regions and with large amounts of texture in the surrounding areas.
Therefore, to address these problems, the next chapter will introduce the Topological
EBI (TEBI) technique to reconstruct the texture and structure simultaneously in the

missing regions in natural images.
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Chapter 5 TOPOLOGICAL EXEMPLAR-
BASED INPAINTING

The image inpainting schemes, developed over the last two chapters, focused on
propagating colours into a missing region from its boundary using differently
constructed PDEs in which the intention is to preserve the continuity of features through
the missing regions in a manner compatible with the overall image content and
semantics. However, the success of those schemes depends on a number of factors
including the propagation of approximation errors resulting from numerical solutions
which is particularly the case in a large missing area. The widely accepted observation
that images contain many similar patches that are repeated in different places, motivated
and led to the development of Exemplar-Based Inpainting (EBI) methods. Here, the
similarity is not taken as rigid equality of intensities. The main challenge in designing
EBI is the choice of patch size that can yield a realistic similarity measure that is
relevant to the texture and structure of the missing region's neighbouring area. Existing
EBI schemes tend to use relatively small size patches which can only model simple
texture and structure similarities. In this chapter, a novel approach to extend the
applicability of the EBI approach by using Topological Data Analysis (TDA) is
presented. In particular, this is based on the topological parameters of simplicial
complexes constructed, at different distance thresholds, as models of the shapes of the
neighbourhoods of the missing regions. Texture-dependent parameters of particular
interest are the number of CCs of simplicial complexes associated with uniform LBP
landmarks. The patch propagation priority function is modified by using the curvature
properties of isophotes and improves the matching criteria of patches by calculating the
correlation coefficients from the spatial, gradient and Laplacian domains. The
performance of the modified schemes is tested, in comparison to existing state-of-the-art
EBI schemes, in terms of use several image quality measures, and demonstrate their

superiority.

5.1 Introduction
In general, image inpainting schemes are application dependent, and accordingly filling

a gap in an image is dependent very much on the significant texture, structure and
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semantic information that are conveyed by the rest of the image. In the last two chapters,
the performances of existing PDE based methods have been reviewed and improved,
based on the restorations of small cracks or removed lines or texts, and the propagation
of missing colour(s) into regions where grayscale information may or may not be
present. These schemes used 2" order (linear and non-linear) PDEs as well as higher
order PDEs in order to preserve the continuation of certain texture/smooth features and
recovering edges. However, the various PDE methods have limitations in restoring large

missing region with rich textured resulting in the presence of blurring artefacts.

Alternative inpainting schemes have been investigated and developed that exploit the
similarity between incomplete image blocks with patches elsewhere in the image in
terms of intensity, texture and geometric information. Criminisi et al. in (Criminisi et al.
2004) were the first to propose the idea of using a patch based-exemplar method, where
they simultaneously reconstructed the missing region's texture and structure. This task is
mainly dependent on the filling order decision which must be made to make sure that
linear structures will be propagated before texture filling in order to preserve the
connectivity and continuity of object boundaries. This method does not seem to work

well when removing a large object or when the surrounding area is rich with texture.

In this chapter, the ideas in (Anupam et al. 2010), (Hesabi & Mahdavi-Amiri 2012), and
(Deng et al. 2015) are adopted and improved on by using the geometrical structure
features of images. In particular, we will further improve the inpainted region when the
surrounding area is rich in texture and structure. The main components of the developed

scheme can be summarised as follows:

(1) Determine the size of the patch (a window within the whole image) to be searched
for based on its match/similarity other patches in terms of the texture quantity in the
surrounding areas of the missing region via Topological Data Analysis (TDA)
scheme.

(2) Prioritise patch filling according to the curvature of isophotes.

(3) Introduce different patch-matching criteria in two stages; firstly, calculate the Sum
of Squared Distance (SSD) for Laplacian, gradient and spatial image domains and
select the nearest 30 patches. Secondly, compute the Normalised cross-correlation

coefficients of the 30 patches to select the nearest patch.
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The rest of this chapter is organised as follows. Section 5.2 introduces the traditional
exemplar-based inpainting method. Section 5.3 presents a literature review of the EBI
method. Section 5.4 proposes a topological EBI method to recover the missing regions
in high-resolution images and explains the TDA approach to the analysis of the
surrounding areas of the missing region and illustrates new definitions of patch-filling
priority and matching criteria. The results of the proposed method are explained in
section 5.5. The performance testing experiments is presented in Section 5.6, while

section 5.7 summarises the chapter and the main conclusions.

5.2 Existing Exemplar-Based Inpainting (EBI)

Unlike the non-exemplar-based schemes, the order of filling missing region by existing
EBI methods is determined by what is known as a "priority function® which is used to
select the next patch to be recovered. These schemes proceed by searching for the
nearest patch outside the missing region to the selected according to a 'matching
function’. A major drawback of this EBI method is the bias caused by selection of few
incorrect patches in the priority based filling mechanism, resulting in initial incorrect

completions and spiralling errors that undermine the stability of the inpainting process.

In what follows, the input image I is assumed to be composed of two disjoint regions:
the source region @ and the target region Q. The source region is defined to be the
visible part and the target region is the missing one. Additionally, 6( represents the
pixel set of the target region boundary. The pioneering EBI method of (Criminisi et al.
2004), fixes the patch size to be a window of 9 x 9 pixels for any input image that has a
missing region to be inpainted. For each block (patch), the priority function selects the
next pixel position on the current §Q, and a template patch i, centred at the selected
pixel is determined. The priority computation is encouraged to reconstruct the patches
which are on the continuation of strong edges and are surrounded by high-confidence
pixels. The priority function is defined as the product of data and confidence terms. The
data term is a function of computing the structure information (i.e. broken lines and
corners which tend to connect) in the patches by using isophotes “flows” to encourage
linear structures to be reconstructed first. While the confidence term is a measure
function of the amount of reliable information surrounding the pixel (i.e. to reconstruct

texture information).

A matching function is then used to find the closest patch (recover target patch) that has

similar information based on the sum of squared distance (for example g, 0r p,,).
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After selecting the target patch, they update the template patch by copying the
information from the target patch. This process will be repeated until recovering all the
missing regions, see Figure5-1.

q> Source reglon w‘*”
—— \Uq'w
pSt |
Q, Target region P W O

Figure5-1: T(;Ze EBI procedures for(kr)()ecovering the missing(c;egion in the image (((?;iminisi et al.
2004).

This EBI Method was designed for removing large objects from digital photographs and
replacing the selected object by a visually reasonable background that imitates the
appearance of the source region. It proposes a unified framework, by combining the use
of texture synthesis and isophote driven inpainting according to a priority mechanism.

The patches in the target region are filled by selecting the highest priority patch.

Figure5-1(b) illustrates a point p with high priority lying on the contour of the target
region boundary. The highest priority patch is then filled by finding the best matching
patch in the known regions (rest of image) as explained in Figure5-1 (c). The pixels of
the best-matching patch will be copied in the highest priority patch as described in
Figure5-1 (d). This process continues until the entire gap is filled.

The patch size can be varied depending on the underlying characteristics of the image,
but in this method, the patch size is fixed at 9 x 9. This EBI removal technique
performs well for a wide range of applications such as the restoration of small scratches
and larger objects that are surrounded by simple texture and structure area. However,
synthesising of regions for which similar patches are rare is a challenge, and the method

doesn’t handle curved structures.

5.3 Literature Review

Here, the existing attempts to improve EBI as described in (Criminisi et al. 2004) are
reviewed, and ed the limitations and drawbacks are highlighted. The first category of
those methods consists of those which are focused on improving reconstructed texture
(Sharma & Mehta 2013), (Cheng et al. 2005), (Desai 2012), (Anupam et al. 2010), and
(Hesabi & Mahdavi-Amiri 2012) whereas those in the second category are

modifications of the work in (Criminisi et al. 2004) to restore structure into missing
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regions more accurately from the surrounding areas (Sangeeth et al. 2011), (Waykule &
Patil 2012), (Zongben Xu & Jian Sun 2010), (Gaikar et al. 2014), (Abdollahifard &
Kalantari 2016), and (Deng et al. 2015).

Several studies attempted to adjust the EBI scheme as described in (Criminisi et al.
2004) by redefining the confidence term, the data term formula and matching criteria
(Sharma & Mehta 2013), (Cheng et al. 2005), and (Sangeeth et al. 2011). Other studies
focused on the efficiency of the scheme. Waykule et al. (Waykule & Patil 2012), for
instance, proposed a new method for eliminating big objects from photographs/images,
through redefinition of the data term on the positions of the control points of a contour
going into a damaged region. The new data term formula uses a bi-dimensional
Gaussian kernel filter on the positions of the control points of 0€, then n,, is estimated
as the unit vector orthogonal to the front 0Q. The technique has been successful in
reconstructing both linear structures and two-dimensional textures of small scratches
and larger objects in the target region. This modified EBI scheme improves the
inpainting achieved by the earlier techniques in terms of both perceptual quality and
computational efficiency. Also, a Gaussian kernel filter has been used in (Sharma &
Mehta 2013) to redefine the data term.

W. H. Cheng et al. in (Cheng et al. 2005) present a robust algorithm for developing a
generic priority function that integrates well the overall structure and texture
information into the missing region to facilitate the image reconstruction. The new
priority function definition and the selection of component weighting factors are
designed to reduce the difficult computations of information propagation by the EBI
method. The proposed method in this paper is effective in both the visual quality

improvement and user preference consideration.

K. Sangeetha et al. in (Sangeeth et al. 2011) proposed a new EBI method with an
enhanced priority term that describes the filling sequence for patches in
photographs/images. The proposed method is based on patch transmission by inwardly
transmitting the image patches from the source area into the inside of the target area
patch by patch. The exemplar-based image inpainting method with best patch match is
introduced in this work, and for obtaining this best patch match an enhanced patch
priority term and a suitable choice of search region are introduced. This research is not
wholly limited to the reconstruction of damaged areas or the matching area complete

accurately but also concerns itself with the repair the image’s minute spots, scratches
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and large damaged areas completely. The results of the proposed method show that it
has an obvious enhancement in visual quality as compared to the conventional
exemplar-based inpainting method. This work deals with the inpainting of

images/photographs, and it can also be expanded for inpainting of video frames.

Also, Liang-Jian Deng et al. in (Deng et al. 2015) introduced a new priority definition to
face the problem of improper selection of exemplars in the traditional EBI method. The
independent strategy of priority definition has been defined based on the separation of
the priority definition to first propagate structure then synthesise image textures, aiming
to well recover both image properties. Also, an automatic approach has been designed
to estimate steps for the new separated priority definition. This proposed method has
been successfully applied to the reconstruction of the structure in missing regions.
However, this method faces a problem in recovering the texture in missing regions. The
idea of the estimation of the number of steps is used for recovering the structure and
then the texture in the images by estimating the weight parameters of the texture and

structure in our proposed method.

In a recent work, Z. Xu and S. Jian (Zongben Xu & Jian Sun 2010) proposed a gradient-
based search space reduction. The spatial behaviour of selected regions to be implanted
is controlled by a gradient vector. Also, they used a different distance measure for

determining the patch matching.

M. Desai in (Desai 2012) presented an adapted fast and improved EBI to solve the
unknown row filling difficulties. This improved method is adaptive in updating criteria
in a fast and enhanced EBI method described in (Anupam et al. 2010) which presents a
technique that deals with the case when two or more patches have a same mean square
error, by calculating variance. A reduced search area is suggested, to decrease the
computational difficulty entailed in searching the whole image. The proposed method
resolves the difficulty of unknown row filling and provides better results than the
original fast and enhanced exemplar-based image inpainting method. But images
produced by this approach still suffer from some difficulties because it adds some

unwanted incorrect information from a background in the photograph/image.

Shivani el al. in (Gaikar et al. 2014) utilised two methods to enhance the EBI method
(Criminisi et al. 2004) which are: Discrete Cosine Transform (DCT) and Fast Marching
Method (FMM). So, the DCT method has used with EBI to remove the unnecessary big

objects from the damaged image and replace them with a visually acceptable
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background by sampling & copying colour values from the source. The FMM is utilised
to eliminate all scratches within the image. This scheme has several benefits including
being easy to implement more efficiently.

M. Abdollah and S. Kalantari in (Abdollahifard & Kalantari 2016) introduced an
efficient method harmonious with the core of the labour in (Criminisi et al. 2004). This
method is presented by a gradient-based search space reduction and two changes are
adopted. First, the spatial behaviours in selected regions to be implanted are controlled
by a gradient vector. Secondly, the application of Euclidean distance as the only
measure to compare patches (selected regions) is to be avoided. Instead of a simple
gradient-based similarity measure to select the best matches (template) patch,

de(G(p), GW)) = { ¥:(p) — (@I & [Yy (p) — Yy (@] <8},  (5.1)

Where dG(G(lpp),G(z/Jq)) represents an L,-norm (SSD), and t is a threshold value and
the partial derivatives of the image ¥ in x and y directions are denoted by v, and v,
respectively. Using the properties of gradient magnitude and making the size of patch
21 x 21, the proposed method has succeeded in reducing the search space by a factor of
up to 100. Therefore, similar visual results to those of the original method of (Criminisi
et al. 2004) are obtained more efficiently.

The authors of (Cheng et al. 2005) presented an adapted fast and improved EBI method
to solve the unknown row filling difficulties. Since EBI-method results almost always
depend on the selection order, this method uses a redefined priority function to improve

selection order so that the results get better.

Most of the improved methods for EBI continue to use the same 9 X 9 size of patch
propagation, which seems to produce visual artefacts when the surrounding area of the
missing region is very rich with texture and structure (Criminisi et al. 2004). Also, the
priority function cannot precisely locate positions on the border of the missing region
where there are strong and long edges in the surrounding area. All in all, EBI can only
be applied to images which have simple texture and structure in missing regions'

surrounding areas.

The work in the next section aims to overcome and consequently improve EBI
regarding the size of patch propagation, to improve the priority function and matching
criteria, and to reduce the artefact problem to an unnoticeable level. To accomplish this
task, the emerging Topological Data Analysis scheme is applied.
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5.4 Topological Exemplar-Based Inpainting Method (TEBI)

To the best of our knowledge, no method has addressed the patch size selection in
Criminisi’s et al. method. We propose to adaptively select the size of the patch
propagation based on quantifying the texture and structure in the surrounding areas of
the missing region, using the innovative TDA based strategy. Also, a new definition of
priority will be proposed to determine the priority of patch filling place based on the
concepts of the curvature and the total variation of an isophote to encourage priority
filling of the edges and corners in the patches. Finally, new matching criteria has been
introduced to choose approximate true patches from the source region to recover the
regions with high texture and structure surrounding it. Figure5-2 shows the flowchart of
the proposed topological EBI method.

Determine the target vegion with uniform colour

Determining the size of the pateh based on the
guantity of texture in the surs ling of led

target region via topological invariants of cortain
local binary pattern points.
™ |
+

TLocating the border of the target region

!

Computing the value of priority fox all the patches
with centre pixels on boundary points.

!

Selecting the patch having highest priority

!

Finding the best match patch for selected patch
from source region by using two matching stages

!

Filling the highest priovity patch with the best
match patch

Update the value of
priovities

Ix the full target region
fillea?

Figure5-2: Flowchart of the proposed topological EBI method.
The steps involved are determining the size of propagating patches by the TDA
approach; and recovering edges and corners in the missing regions with high texture and
structure areas surrounding the missing regions by using a new modified priority

function and new matching criteria. These steps are illustrated in the subsections below.
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5.4.1 Topological Image analysis

The TDA approach studies the correlation between structure/texture and the patch size.
To quantifying the amount of local texture existing in missing region’s surrounding area,
the image is first transformed into the LBP domain and select landmark points of ULBP
codes as the 0-simplices as the initial step in building a sequence of increasing Rips
simplicial complexes from the missing region's neighbouring area. The ULBP pixels are
divided into a number of geometries according to their number of 1’s in their byte code,
and each geometry represents a different texture type. Also, each geometry is divided
into 8 different rotations depending on the initial position of the 1’s run within the byte
binary representation. For each geometry and each rotation, we will have an initial set of
0-simplicies that form the start of building of the sequence of simplicial complexes. At
each threshold, the number of CC will automatically quantify the nature of the given
geometry-related texture in the regions surrounding the missing area. The rest of this
section is aimed at using these quantifications to determine the appropriate size of patch
propagation of our intended TEBI scheme.

5.4.1.1 Experimental Dataset and Protocols

To test the performance of our TEBI scheme, a number of experiments is conducted by
using different assembled datasets of images and adopting a number of training-testing
protocols. We assembled an initial dataset of 240 randomly selected natural google
images: 120 are known to be of low-texture, and 120 are known to be of rich-texture
taken from (Vedaldi 2014). Figure5-3 shows a sample of these images. We recognise
that image texture is not uniformly expressed in images, and any of the selected images
are expected to have regions with different intensity of texture, and the given label
depends on the texture in a majority of image sub-regions. Accordingly, to determine
the type of texture of unknown input images, five non-overlapping blocks from each of
the images are randomly selected. For our experiments, we randomly selected 5 sub-
images of size 25x25 from each image in our dataset to we end up with 1200 image
subsets of 240 original images where 600 of them are subsets of rich textured images,
and the other 600 are subsets of low-textured ones.
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Figure5-3: Samples of low texture images selected from google image.

Four different training-testing protocols are used to evaluate the performance of our

developed TEBI schemes:

S1) 17% Training - 83% testing protocol (40 images for training and 200 for
testing),

S2) 33% Training - 67% testing protocol (80 images for training and 160 for
testing),

S3) 50% Training - 50% testing protocol (120 images for training and 120 for
testing),

S4) 83% Training - 17% testing protocol (200 images for training and 40 for
testing).

There are various parameters that need to be chosen that will help us determine a
practical way for implementing our TEBI scheme which requires a specific way with
which to classify image texture. Accordingly, our experiments are designed to
determine three choices, the appropriate ULBP geometry, the best threshold to model
texture, and what strategy to follow when linking the extracted topological invariant of
the chosen geometry at the chosen threshold to the type of image texture. Accordingly,
any input image needs to be subjected to three checks to be classified as a rich/high
textured image or not. First, out of 8 uniform LBP code rotations, at least 5 rotations
must vote in favor of High Texture (HT) so that an image subset will be classified as a
textured subset. Second, out of 5 image subsets, at least 3 must vote in favour of high
texture for the image to be cast as a rich textured image. Following the same process, an
input image may be classified as a Low-Textured (LT) image. Finally, out of the 3 best
ULBP geometries, at least two geometries must vote in favour of HT or LT, then the
image will be casted as a HT or LT. Hence, a missing region's surrounding area will be
treated as a HT or LT when the EBI method is applied.
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In these experiments, the Support vector machine (SVM) method is used to obtain our
optimal criteria to be used in our proposed TEBI scheme. The support vector machine
(SVM) is one of the most widely used supervised classifiers which aims to find an
optimal separating hyper-plane among different classes of a given n-dimensional dataset
(training set). The optimal separating hyper-plane is the one that has a maximum
distance to the nearest data samples (the so-called support vectors) in the training set.
Such optimisation technique endeavours to maximise the margin between the hyper-

plane and the support vectors, expecting a better classification accuracy.

5.4.1.2 Classification Results

As mentioned above, an increasing sequence of simplicial complexes is constructed at 6
different distance thresholds only and compute the number of CCs at each threshold. A
linear SVM (i.e. classification technique) is first used to determine the best threshold
that accurately discriminates images in terms of their quantified texture. The SVM
classifier is used to classify the images into high and low texture based on the number
of CCs in each geometry at different thresholds for the four different protocols that are
used for classification. The features were fed into the classifier in two different ways in
each experimental protocol: First, a feature vector of size 40 x 1 is created from the 8
CC numbers obtained from the five image subsets at each geometry, and the decision is
based on the majority vote. Second, at the first stage, the CCs of each image subset are
used as a feature vector of size 8 x 1 independently and decide the type of texture in
image subsets using a majority vote, and at the second stage, we again make a decision
among the seven-geometries-based majority vote. Each of the above four protocols will
be repeated 100 times to ensure that we are covering as much as possible different

selections.

Figure5-4, displays the achieved accuracy rates for the testing images showing the use
of a topological feature vector of size 40 x1 in an SVM classifier for 7 ULBP

geometries at different thresholds in four different protocols.
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Figure5-4: Texture classification results using SVM classifier for different protocols, 7 ULBP

groups at 6 topological features (thresholds).

Figure5-5 noticeably displays the use of a topological feature vector of size 8 X 1 in an
SVM classifier for 7 ULBP geometries at different thresholds in four different protocols;
where the SVM classifier will apply on each image subset and make a decision among

the image subsets using a majority vote.
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Figure5-5: Texture classification results using an SVM classifier for different protocols, 7

ULBP groups at 6 topological features (thresholds).

In these experiments, the results clearly show that topological features at threshold
T=10 perform better in discriminating rich textured regions in comparison with other
thresholds, and among 7 ULBP geometries G1, G2, and G5 are performing better at
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discriminating texture features. Therefore, these three geometries are used to quantify
the amount of texture in a missing region’s surrounding area, and consequently, the
patch size will be determined. The charts, also reveal that there is no need to have a big
training set as the accuracy when the training is 17% is nearly similar to the 83%, 50%,
and 33% training when using T10 that means the features (the number of CCs) that used
in SVM classifier method are strong and the big training set doesn’t effect on the results.
Also that means the TDA approach has been successfully discriminating between the

high and low texture images.

We have also seen the SVM classifier is adapted, the experimental results justify the
assertion that SVM performs better in higher dimensional spaces. The input feature
vector was fed to the SVM in different numbers of dimensions, the first with 8
dimensions, and the second set with 40 dimensions. We observed that SVM classifies
the higher dimensional feature vector with higher accuracy, and from this comes the fact
that, as the number of dimensions gets higher, the separation of different classes gets
better.

5.4.1.3 Determination of Patch Size

From the above set of experiments, the topological features at threshold T=10 perform
better discrimination of high textured regions in comparison with other thresholds, and
among 7 ULBP geometries G1, G2, and G5 are performing better in discriminating
texture features in each experimental protocol. However, we note that the best
topological threshold is not always T=10; this may change according to the nature of the
images as well as the landmark point distribution. Rich textured images used for
training and testing have many strong edges and lines. The reason behind the good
performance of ULBP geometries is that G1, G2 and G5 are edges and corners

descriptors inside an LBP.

Therefore, the three best-performing geometries are used to quantify the amount of
texture in the missing region’s surrounding area, and consequently, the propagation
patch size will be determined adaptively depending on the outcome from the 5 image

subsets according to the heuristic rules:
1. If 3 image subsets voted for HT, then select a patch size of 7 x 7,

2. If 4 or 5 image subsets voted in HT, then select a patch size of 5 x 5,
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3. Else if 3 image subsets voted in LT then select the patch size to be 11 x 11,
13 x 13 or 15 x 15 if 4 image subsets voted LT. Otherwise, select the patch
size to be 21 x 21.

The next step after selecting the appropriate patch size for filling procedure is patch
filling priority. In other words, where is the best place to start the information
propagation into the missing region? The next section contains a discussion about the
priority function which modified by adding what is known as isophote curvature to the
priority function to make sure that the strong/long edges on the border of the missing

region are restored sequentially.

5.4.2 Patch Filling Function

One of the challenges in filling the missing region is to decide: where should the filling
procedure start? The best filling method would be the one that gives high preference to
the regions that continue the structure of the image into the missing area in the
beginning then propagating the texture within the missing area. Criminisi et al. in
(Criminisi et al. 2004) proposed that one can decide the order of filling priority based on
1) how reliable is the information surrounding the pixel (known as confidence term) and
2) a function that measures the strength of the isophote that first hits the front of the
border of the missing area (known as Data term). The priority function P(p) is the

product of two terms (Criminisi et al. 2004):

P(p) =C(p)-D(p) (5.2)
where C(p) is the confidence term and D (p) is the data term, and they are defined as

follows:

Zq@l)pn(z—m C(q)
¥l

_ VL. n,|

Clp) = (5.3)

D(p) .. (5.4)

Where |1/)p| is the area of ,,, VI is a gradient of the imagel, a is a normalisation factor
(e.9., a =255 for a typical grey-level image), VI3 is the isophote (direction and
intensity) at pointp, n;, is a unit vector orthogonal to the front dQ in the point p and L
denotes the orthogonal operator. The data term boosts the priority of the patch that an

isophote flows into.
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Different definitions of the priority function have been tested when the summation and
multiplication of data and confidence terms, and different kinds of data and confidence
terms also have been used. The definition of the priority function also has been tested
when the subtraction of data and confidence terms; the negative sign has affected on the
values of confidence and data terms. Table 5-1 shows the advantages and disadvantages
of some of the priority functions P(p) that were tested by using different formulas of
confidence and data term.

P(p) Advantage Disadvantage

This priority function helps to | Poor texture propagation in
recover small missing regions | missing regions and poor

C D 8 . .
_ (I?) N (_p) and to remove small objects. geometry propagation in
in (Criminisi et al. large missing regions
2004)
This priority function improves | Poor geometry propagation
texture propagation in small in missing regions. But
C,C(p) + C,D e : . o
1C(P) 2D(@) missing regions as well as when | improved results if different
in (Anupam et al. | removing larger objects. patch size and different
2010) weight values are used.
St1:P(p) = D(p) Enhances the process of Poor texture propagation in
St2:P(p) = C(p) ge_orr_letry pr_opagation in the the missing_ regi_ons asa
) missing regions and also when result of using fixed patch
in (Dengetal. | removing objects. size.
2015)
Helps fill the information in Poor texture and geometry
small missing regions and when ropagation in large missin
C,C(p) — CD(p) TIssIng 1egie Propag 9 0
removing small objects. regions.

Table 5-1: Description of the priority functions tested in this study.

5.4.2.1 Innovative Adaptive Priority Function

Having implemented and observed the performance of the above-mentioned priority
functions, we found that priority functions that are linearly dependent on the data and
confidence terms, such as the Anupam et al. (Anupam et al. 2010) function, have
reasonable results especially when dealing with surrounding areas of missing regions
have edges and corners. Initial tests of the above schemes helped to develop a new
innovative adaptive linear priority function by tuning the confidence and the data terms.

The rest of this section is devoted to describe the tuning steps.
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The first change was to add a total variation operator |V1p|_% to the weighted sum of
the new confidence term and the data term. This TV operator is of fundamental
importance because it encourages linear structures to be synthesised first, and, thereafter
propagated securely into the target region. The confidence term is slightly modified, to

control the smoothness of curves, using a regularization term ¢ as follows:

R.(p) =(1—-¢)xC(p) +¢, 0<e<l.

where ¢ is the regularising factor for controlling the curve smoothness of the
information in C(P). However, even with these two changes, we noted that in some
cases the data term vanishes, producing artefacts after the filling procedure is complete.
To overcome this, the data term is additionally redefined by adding the curvature of
isophotes (Shen & Chan 2002), The redefined data formula after curvature isophote

addition is as follows:

V. n VI
D(p)=M+ V.—=| ..(55)
a |V
where Iz% is the normal direction of the isophote; V.% is the curvature of the

14 14
isophote. Finally, our Priority function is defined by:

1

P(p) = C; XR.(p) + C, X D(p) + |VI,| 2 ..(5.6)

Where C; and C, are respectively the component weights of the confidence and the data
terms and C; + C, = 1. Anupam et al in (Anupam et al. 2010) suggest the use of C; =
0.7 and C, = 0.3.

The curvature model (5.6) enhances the driving of diffusion along the isophote
directions and thus allows the propagation of thicker regions in the beginning. This
approach works in some scenarios. However, it will not produce a good reconstructed

image in other cases when using C; = 0.7 and C, = 0.3.

Therefore, our final modification of linear priority function is based on an adaptive
selection of C;and C,. Inspired by the work of Deng et al in (Deng et al. 2015), this
adaptation will be based on a measure of the quantity of structure needed to propagate
inside the missing region. Accordingly, the idea of the work in (Deng et al. 2015) is on
separating the task of filling the template patch into two phases: the first phase is about
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recovering the structure patches by propagating geometry, and the second phase is about

recovering the texture.

Our adaptive estimation of C;and C, is based on computing the number of propagation
steps of structure patches in the missing region; then subtracting them from all

propagation steps to determine the number of propagation steps of texture patches.

Let the source region and target region are defined as ® = {®d; U &,\ &, N O, = @},
and Q = {Q, U Q:\ Qs N Q, = 0, where &;, Q, represent the structure in @ and Q,
respectively, and ®,, , represent the textures in @ and Q, respectively. The structure
part is computed via some edge detectors, e.g., “canny” or “Sobel” detectors. A
structure patch's propagation step in the missing region may be described by the

equation:

A A A

where A4 and Ag represent the areas of the source @ and target Q regions, respectively.
Also22s =295 4 — p4. and 22 = 1% \where Eq is the edge map of the source
Ap Ag S @ Ap Tq

region ®. Ag  is computed by the quantity of nonzero elements in Eq, and p is set to
be n, where the size of patch isn X n. In addition, the total step number T, can be

estimated by the areas of patch v, and the target region €, i.e.,

TQ = AQ/(OSAwp)
We used equation 5.7, i.e. the ratio of the calculated number of structured patches that

need to be filled in the missing region, to compute C;, and C,. As follows:

C, = T”S vand €, =1-C,.

We now reformulate our adaptive priority function as follows:

1
P(p) = C; X R.(p) + C, X D(p) + |VI,| 2

Where R.(p) is improved confidence term, which defined as R.(p) = (1 — &) X

ViE. n
| p- pl |V

C(p) + €, D(p) is improved Data term, which defined as D(p) = el
14

and Cy, C, are the weight components which are determined based on the quantity of
structure in an image.
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This adaptive priority function will be shown to improve the reconstruction of the
structure of the missing region (i.e. curves, corners, and edges) in a more deterministic
and trustful way that only depends on the content of the image. Having defined the
patch priority function, at each step the patch of the TEBI with the highest priority
(called the template) need to be filled using matching criteria that is used to search in

the rest of the image. This is the aim of the next section.

5.4.3 Matching Criteria

Finding the patch that best matches the selected (template) patch, from the previous
section, to reconstruct the missing region is critical. The SSD between template patch
and the candidate patch outside the missing region in the spatial domain is used by
(Criminisi et al. 2004), (Sharma & Mehta 2013), (Cheng et al. 2005) and (Deng et al.
2015). In (Hesabi & Mahdavi-Amiri 2012) the computed SSD between the template
patch and the candidate patch outside the missing region is conducted in the spatial as
well as in divergence and gradient domains. The later approach improved missing-
region texture recovery. However, still in some cases, visible artefacts are produced. To
avoid this in this final stage, the procedure is experimentally improved by first
computing SSDs in the spatial domain then in the gradient and Laplacian domains. In
other words, the SSD in the spatial, gradient and Laplacian domains is added between
the template patch and candidate patches. Equation (5.8) shows the procedure to
compute the SSD between a candidate and a template patch.

g = argminy, cq ds(I0P), 1(%g)) + dg(G(Wp), G(g)) + du(L(Wp), L)) (5.8)
where dg, dg and diare spatial, gradient and Laplacian distances, respectively. As can
be seen in Figure5-1, ¥, and v, are template and candidate patches respectively. Recall
that this is the first stage matching criteria. The patch with the smallest Euclidean
distance is not necessarily the best candidate for replacement by the

template/destination patch.
Therefore, the second stage of similarity measurement is suggested as follows:

e Determine the 30 nearest patches to the template patch with the smallest SSD

values.

e Measure the Normalised Correlation Coefficients (NCC) between the template
and the 30 nearest candidate patches to get the patch which has the NCC value
closest to 1.

166



Chapter 5: Topological Exemplar-Based Inpainting

The formula for NCC is given as:

2(1/)17)' (lpq) 2
dwce (10).1(9,) ) = g(l,,p)z z(wqu

We tested the outcomes of selecting all the patches in the surrounding area of the

..(5.9)

missing region and calculated the NCC in each case, and the results with all 30 patches

were similar. Therefore, to reduce the time we stick to the 30 smallest SSD patches.

As a result, texture properties will be preserved by the second matching stage. This
patch-based filling criterion helps achieve speed efficiency, accuracy in the synthesis of
texture and accurate propagation of linear structures. Finally, the most similar patch is
copied to the destination patch and update the information of the destination patch. The

process in the last two subsections will be repeated until all missing region is recovered.

5.5 Experimental Results

In this section, the results of testing the performance of our TEBI method for 100
different images are reported, in comparison to that of the Criminisi, Anupam, and
Deng methods that introduced in (Criminisi et al. 2004), (Anupam et al. 2010), and
(Deng et al. 2015). Table 5-2 shows the testing parameters of priority function,
matching criteria and patch size used in these schemes.

P(p) C(p) D(p) Matching criteria | Patch Size
C(p)-D(p), Laeppnan C(@ | |VI. n,| !Euclid(_aan dista.nce
in (Criminisi et al. ¥, a in spatial domain. 9x9
2004)
quwpn(l—ﬂ) C(q)
CiRc(p) + C.D(p) [ |VLE. n,| | Euclidean distance
P pl. o] i
where R, (p) = R.(p) a in spatial domain 9x%x9
(1-w)XCP)+win| =1 —¢&xC(p)
(Anupam et al. 2010) +e
Stl:P(p) = D(p) Y aewpng-n € (@ ||711-,L, np| !Euclidgan distan(-:e
St2:P(p) = C(p) vy | a in gradient domain. 9%09
in (Deng et al. 2015)
Ci X R.(p) -|; C, X quwpn(l_m Cc(q) ||711-,L, np| Sumln;atior; of Adz:]ptable
1 Eucli .
D() + V1| %, where [, | o Euclidean |st§nce tot e
i VI, || in spatial, gradient, quantity of
Re(p) = (1 —w) X v |V1p| and Laplacian texture
Clp)+w. domain. Then NCC | surrounding
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in our proposed R.(p) to determine the areas in the
method. =(1-¢e)xC(p) best. image
+ ¢

Table 5-2: comparing priority function, matching criteria and patch size in Criminisi, Anupam,
Deng and TEBI.

Our test criteria is based on how visually the inpainted target region mimics the source
region in appearance when we remove objects and fill the gap using the tested
inpainting schemes. More precisely, the TEBI proposed method is tested on 100 natural
Images containing missing regions of different sizes at random locations for the same
natural image. Below, in Figure5-6, 5-7, 5-8 and 5-9, the test for a selected number of

images is illustrated.

To e 0 ' @ ) ®
Figure5-6: Removing Objects: (a) Natural image from the internet; (b) original image with

occluded areas; (c), (d), (e) and (f) Inpainted image using Criminisi, Anupam, Deng and TEBI
schemes, respectively.

® (d) (e) )
Figure5-7: Region reconstruction using EBI. The natural image from the internet (a), original

image with the occluded area (b); (c), (d), (e) and (f) inpainted image using Criminisi, Anupam,
Deng and TEBI schemes, respectively.

(d) (®
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(C) © ® (C) © ®
Figure5-8: Region reconstruction using EBI. The natural image from the internet (a), original

image with the occluded area(s) (b); (c), (d), (e) and (f) Inpainted image using Criminisi,

Anupam, Deng and TEBI schemes, respectively.

(@ ® M (@ ® ®
Figure5-9: Region reconstruction using EBI. The natural image from the internet (a), original
image with the occluded area (b); (c), (d), (e) and (f) Inpainted image using Criminisi, Anupam,
Deng and TEBI schemes, respectively.

The above figures demonstrate how our proposed method is outperforming the
Criminisi, and Anupam methods while getting a result roughly similar to that obtained
with the Deng method. Figure5-6 and 5-8 clearly illustrate the success of our approach
in removing unwanted objects in two images, while Figure5-7 and 5-9 clearly illustrate

the success of proposed method in reconstructing the missing regions in the images.

Furthermore, our approach is outperforming these state-of-the-art methods especially
when the size of the missing region is big, and the surrounding area of the missing
region has high texture and structure. More precisely, in Figure5-6 and 5-7 the missing
region is relatively big and to reconstruct the missing information, one needs to extend
the edges outside the missing region into the missing region. Figure5-7 and 5-9
illustrate the success of our method in reconstructing the edges and corners in the

missing regions of the images. This shows that our method can successfully reconstruct
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sharp edges sequentially even when the missing region is large, due to good patch size
propagation selection using topological invariants. As a result, the priority function
determined the best location in which to propagate the information in a steady manner.

The missing region reconstruction is now fully based on the information in the
surrounding area. The success of any inpainting method is estimated in a precise way by
the quality assessment of how well the geometric structure, photometric information
and texture is propagated into the target region. Next, it is necessary to check the quality
of the restored image so that one can check the suitability of the method as well as
whether the produced image is visually acceptable or not. The next section will contain
inpainting image quality assessment using different statistical measurements and the

TDA approach.

5.6 Image Quality Assessment

The aim in this section is to test the qualities of various images which have been
recovered using the proposed EBI method. The quality of its output images will be
assessed by using statistical quality measurements and the TDA approach. The
proposed EBI method has been applied to several natural images from the Berkeley
database, as explained in section 3.6.1. The natural images in this database are classified
into categories of low and high information (i.e. the quantity of texture in the images)
based on TDA features that use in SVM classifier method; where the number of images
in each category is 100 images. These images have been selected based on the quantity
texture and structure (i.e. low and high information images) which that help to check the
efficacy of EBI methods on each category of these image categories.

Thus the effectiveness of the proposed TEBI method and Criminisi, Anupam, and Deng
methods will be studied by applying them to each one of these categories. Also, the
output images of the proposed EBI method has been compared with the output images
of Criminisi, Anupam, and Deng methods described in (Criminisi et al. 2004), (Anupam
et al. 2010), and (Deng et al. 2015). Figure5-10 and 5-11 show examples of high and
low information natural images from the Berkeley database, respectively.
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"2:.‘..; &% |

Figure5-10: Example of eight out of 100 training low-information natural images.

Figure5-11: Example of eight out of 100 training high-information natural images.

Five experiments will be conducted to evaluate the inpainting of images from each of
the two texture (high/low) categories. The aim of these experiments is to study the
efficacy of proposed method on the reconstruction of the missing regions of different
sizes and with high texture and structure around them in the natural images and to study

the performance of the proposed method in reconstructing these missing regions.

We will be following the same steps that were presented in chapter Chapter 4 to create
the inpainting mask. Five cases of inpainting masks have been used to study the efficacy
of the proposed EBI method and to compare it with Criminisi, Anupam, and Deng
methods. To cover all possibilities of using this TEBI method, these missing regions
have been randomly selected in the mask images, and they are chosen based on different
sizes of - different positions of-, and different numbers of missing regions in inpainting
domains (Casel, Case2, Case3, Case4, Caseb). Figure5-12 shows five cases of
inpainting mask (i.e. inpainting domain) which represents five damaged regions in
images that have been applied to both high and low texture database images to study the
efficiency of the proposed EBI method.
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Damaged image Casel Damaged image Case2 Damaged image Case3 Damaged image Case4 Damaged image Case5
Figure5-12: The same natural image with five different inpainting domains.

To obtain evaluations of the output images of these experiments in each high and low
texture category image, the statistical quality measurements and the TDA approach are
used. The next two subsections will discuss and show the results of quality measures on

two categories of natural database images.

5.6.1 Statistical measurements for image quality

The establishment of an accurate evaluation method which simultaneously assesses
inpainted images qualitatively and quantitatively is a problem which has not been fully
solved yet (Chandler 2013). Therefore, we depend on visual analysis to assess inpainted
images qualitatively. However, for quantitative evaluation, the Mean Square Error
(MSE), peak signal-to-noise ratio (PSNR), Structural Similarity (SSIM), Coherence
structural quality measurement (CSQM), and entropy are calculated. To get better-
quality image inpainting, the values of MSE, PSNR, and SSIM are only calculated
between the inpainted regions and the corresponding regions in the original images; and
the values of SCQM and entropy are also calculated on the inpainted regions (cf.
Section 2.6.1).

Table 5-3 and 5-4 below summarise the comparison of the TEBI method with the
Criminisi, Anupam, and Deng methods based on the average values of MSE, PSNR,
SSIM, CSQM and entropy on the low and high information images, respectively; the

times have taken to get the results using these methods are also shown.
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C# Methods MSE PSNR SSIM CSQM Entropy T(s)
Criminisi method | 300.275 | 24.969 | 0.9755 | 0.47039 1.1900 55

§ Anupam method 253.685 | 25.711 | 0.9761 | 0.47170 1.1863 67
S Deng method 348.248 | 24.235 | 0.9753 | 0.47152 1.1865 92
TEBI method 252.451 | 25.728 | 0.9763 | 0.47361 1.1750 121
Criminisi method | 283.779 | 25.171 | 0.9503 | 0.25397 2.0543 65

§ Anupam method 279.927 | 25.239 | 0.9503 | 0.25477 2.0533 73
S Deng method 285.493 | 25.141 | 0.9503 | 0.25398 2.0545 96
TEBI method 378.261 | 24.046 | 0.9492 | 0.25831 2.0336 136
Criminisi method | 401.215 | 23.432 | 0.9234 | 0.20356 2.5216 78

@ Anupam method 383.021 | 23.677 | 0.9243 | 0.20333 2.5145 93
S Deng method 597.413 | 21.549 | 0.9220 | 0.20187 2.4765 111
TEBI method 379.917 | 23.668 | 0.9242 | 0.20537 2.2144 165
Criminisi method | 425.420 | 23.288 | 0.9408 | 0.26899 1.9857 67

S [_Anupam method | 367.423 | 23562 | 0.9410 | 0.26841 1.9815 78
S Deng method 575.560 | 22.065 | 0.9397 | 0.26672 1.9494 93
TEBI method 355.304 | 23.761 | 0.9414 | 0.27810 1.9208 133
Criminisi method | 593.974 | 21.952 | 0.9178 | 0.22847 2.3045 88

‘9 | _Anupam method | 574.116 | 22.060 | 0.9182 | 0.22810 2.2993 95
S Deng method 809.893 | 20.420 | 0.9186 | 0.22469 2.2422 127
TEBI method 573.177 | 22.054 | 0.9184 | 0.23808 2.2195 178

Table 5-3: Inpainted image quality assessment comparison using MSE, PSNR, SSIM, CSQM
and Entropy for low information dataset images.

C# Methods MSE PSNR | SSIM CSQM Entropy | T(S)
Criminisi method | 975.919 | 18.883 | 0.9556 | 0.81145 1.2310 79

3 Anupam method 926.117 | 19.089 | 0.9559 | 0.80826 1.2283 86
S Deng method 1307.57 | 17.705 | 0.9533 | 0.81071 1.2142 112
TEBI method 922.282 | 19.408 | 0.9579 | 0.89128 1.2077 167
Criminisi method | 1149.85 | 18.173 | 0.9078 | 0.43602 2.1312 87

9 Anupam method 1025.25 | 18.608 | 0.9088 | 0.43608 2.1252 98
S Deng method 1404.03 | 17.360 | 0.9050 | 0.43624 2.0859 121
TEBI method 1018.40 | 18.955 | 0.9189 | 0.45565 2.0237 183
Criminisi method | 1442.66 | 17.155 | 0.8651 | 0.34645 2.6378 96

2 Anupam method 1364.21 | 17.335 | 0.8662 | 0.34640 2.6296 111
S Deng method 1779.13 | 16.195 | 0.8623 | 0.34381 2.5674 137
TEBI method 1359.10 | 17.863 | 0.8862 | 0.34913 2.4296 201
Criminisi method | 1571.17 | 16.863 | 0.8938 | 0.45931 2.0989 83

3 Anupam method 1451.14 | 17.075 | 0.8945 | 0.45804 2.0907 91
S Deng method 1839.31 | 16.103 | 0.8918 | 0.45551 2.0331 116
TEBI method 1411.64 | 17.667 | 0.8978 | 0.46902 2.0189 178
Criminisi method | 1995.07 | 15.682 | 0.8578 | 0.38833 2.4670 110

‘2 | Anupam method 1868.96 | 15.949 | 0.8586 | 0.38460 2.4510 132
S Deng method 2390.96 | 14.847 | 0.8564 | 0.38252 2.3474 165
TEBI method 1848.71 | 16.378 | 0.8786 | 0.39557 2.4199 241

Table 5-4: Inpainted image quality assessment comparison using MSE, PSNR, SSIM, CSQM
and Entropy for high information dataset images.
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Table 5-3 and 5-4 show that the TEBI method is capable of effective region filling in
low and high information natural images and gives a relatively higher PSNR value with
low MSE value and that it leads to values of SSIM close to 1. The image quality
measures used in Table 5-3 clearly show that TEBI is outperforming the Criminisi,
Anupam, and Deng methods; however, the TEBI method takes a bit more time due to
the amount of calculation entailed in the matching stage. During the testing, it was
found that while some images could look visually pleasing and similar, they have
different PSNR values. All the methods have succeeded in recovering the missing
regions in the low information database images; the values of MSE, PSNR, SSIM from
inpainted areas obtained by the TEBI method and other Criminisi, Anupam, and Deng
methods are closer to each other than to the high information database images. The
average values of PSNR and SSIM of inpainted areas obtained by the Anupam method
are better than those obtained by the proposed method in Case2 and Case5, while the
value of entropy is a measure by which the proposed method outperforms all the other
methods. The TEBI method got lower entropy value than other methods. Also, the
TEBI method got higher values of CSQM than other methods.

5.6.1.1 Results Analysis

To discuss the results of statistical measurements for low-information inpainted images,
we found the average values of MSE, PSNR, SSIM from inpainted areas obtained by
the TEBI method and other Criminisi, Anupam, and Deng methods are closer to each
other in the low- information database images. The average values of PSNR and SSIM
of inpainted areas obtained by the Anupam method are better than those obtained by our
method in Case2 and Case5, while the value of entropy and CSQM are a measure by
which TEBI outperforms all the other methods for all inpainting cases because the
CSQM measure has been used to study the inpainted areas based on the coherence of
inpainted areas with the remainders of the images,and entropy studies the amount of
disorder in inpainted areas. So, in most situations, lower entropy is better than higher

entropy.

The TEBI method got lower entropy value than those obtained other methods in both
low- and high-information images. This means that the amount of disorder in the
inpainted image by TEBI is less than the disorder in the inpainted images obtained by
the Criminisi, Anupam, and Deng methods. While, the high values of CSQM represent
better results; the TEBI method got higher values of CSQM than other methods in both
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low- and high-information images; this means the inpainted regions obtained by the

TEBI method are more coherent with the remainders of the images.

To sum up, the proposed TEBI method and the Criminisi, Anupam, and Deng methods
succeeded in recovering the missing regions in the low-information database images.
These methods have the ability to deal with simple texture and structure images (low-
information images) as these methods proposed for this purpose. Moreover, we found
the efficacy and the significant superiority of the TEBI in the reconstruction of the
texture and structure in the missing regions in the high information images database due
to good patch size propagation selection using topological invariants and the
performance of matching criteria that used to give good matching patches especially for

reconstructing the edges and corners in the missing regions of the image.

On the other hand, TEBI takes more time due to the amount of calculations entailed
during the size patch decision and the matching stage. The TEBI and other methods
need more time in reconstructing the missing regions in the high-information images
than in the low-information images because the matching criteria needs more time to
find the similar patch. During the testing, it was found that while some images could
look visually pleasing and similar, they have different PSNR values.

As mentioned earlier, the MSE and PSNR are not reliable measures for checking the
quality of image inpainting. Therefore, the TDA approach will be used, in the next
section, to assess and compare the quality of inpainted images reconstructed in both the

low and high information images databases.

5.6.2 Topological Data analysis for image quality

The TDA approach for the evaluation of the quality of image inpainting and the efficacy
of the inpainting technique has been explained and introduced in section 2.6.2). To get
inpainted-relevant image quality, this approach has been studied only the inpainted
regions in the images, i.e. the number of CCs has only been calculated in the inpainted
regions and the corresponding original regions. The same steps are followed in the
construction of the Vietoris-Rips complex as introduced in section 2.6.2.2.

The 7 ULBP geometries have been studied at different thresholds T=0, T=5, T=10,
T=15, for the inpainted images of the above experiments (i.e. five inpainting domains
cases). The numbers of CCs are got in the geometries G3, G4, G5 and G6 at threshold
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T=15. It needs to be said that the numbers of CCs for all methods in the other

geometries at threshold T=15 are ill-conditioned.

Figure5-13 shows the average numbers of CCs of inpainted regions as obtained by the
TEBI method and by the Criminisi, Anupam, and Deng methods for five damaged
regions from low and high information natural images datasets in the geometry G4 at
threshold T=15.

Figure5-14 shows the average numbers of CCs of inpainted regions which were
obtained by the TEBI method and by the Criminisi, Anupam, and Deng methods for
five damaged regions from low and high information natural images datasets in the
geometry G7 at threshold T=15.
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Figure5-13: Evaluation of performance of EBI techniques using TDA approach in the inpainted
regions of high and low-information natural images in five inpainting domains at threshold
T=15, in G4. Left column: Average of the number of CCs inpainted regions in low-information
natural images. Right column: Average of the number of CCs inpainted regions in high-
information natural images.

177



Chapter 5: Topological Exemplar-Based Inpainting

TDA-EBI sethods, Low information humges, Casel, T=15, G7 TDA-EBI methods, High informution lmwges, Casel, =15, G7
) M
P FRCR
16 16 '
] 1%
! 12 = Orighal 2 | *Origia)
- U} ® Crimanind Y ® Criminis
is 1 ¥
! ¢ # Aaupam ; 6l * Apapam
£ »Ivog ER | » Deng
G2  Frapasd TERE vz { ® Proposed TEH
0 0
Rt R R} R¢ RS Rs R =8 Ré 7
Rotatkon sof LBF Ronlhnol l.l?
TDA-EBI methods, Low mfornsation tmages, Case2, T<15, G7 TDA-EBI methods, High nformation mages, Case2, T-15, G7
A5 »
ERY R
g_zs ix
fa  Original gn » Origieal
< » Criminim v » Criminini
T T8
T » Awxpam E * Anwpam
! » " Deng 5 o "Dy
3s # Proparwd TERI S s # Propassd TERI
¢ [}
R R R M B M R B RIE R B R R R R R
Retaticavol LBP Rotations of LB
TDA-EB methods, Low information images, Casel, T-15, 7 TDA EBL methods, High Information Images, Cased, T=15, G7
» ¥
Ex i
§ :
i »
) 8 Origml 53 ¥ Ocighal
; i » Crimisist v = * Crimins
-
£ el | I ey
= » Deng g "Dy
c s ahropesed TEEL | | © ° # Proposed TEEI
0 0
R R B M B B R B RI R R R B R¢ R RS
Rotatious of LUP Rotations of LD
TDA-EBI methods, Low tmformation tmages, Cased, T=15 G7 TDA EB methods, High information mmages, Cased, T=15, G7
! ﬁ
in HE
: | ~ : .
5 15 ®Origenal ! 15 ® Origisal
v # Crimaisi v * Crinmluni
Tl i
E # Asspan E * Auwpam
E 5 *Desg ! 3 *Deug
~ * Propased TEBI - # Proposel TEHW
1 [ - -
R R R R R B R RS RI R M R R R R R
Rotatioss of LUP Rotations of LUP
TDA-EBI methods, Low informstion timages, CaseS, T-15, G7 TDA-EBI mwthods, High mforwation images, Case§, T-15,G7
» »n
i= j=
g i
| Ea  Ovigieal i Original
‘!" 15 # Criminid ; 1 * Crimintd
2 " » Amipas T ® Asupam
a
HE "hes 3 Shey
v * Propasal TEBL v # Proposd TEBI
0 0
Rl R R R R R6 R' RS R R K M R R R =’
Rotatioasof LBP Rotatinns of LEP

Figure5-14: Evaluation of performance of EBI techniques using TDA approach in the inpainted
regions of high and low-information natural images in five inpainting domains at threshold
T=15, in G7. Left column: Average of the number of CCs inpainted regions in low-information
natural images. Right column: Average of the number of CCs inpainted regions in high-
information natural images.
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As mentioned before, the uniform LBP pattern classifications based on the number of
ones included in the pattern in the natural images database was introduced in (Ojala et al.
2002). The numbers of CCs in the inpainted areas that are recovered by the proposed
method are closer to the numbers of CCs in the original areas than in the inpainted
images obtained by other methods in the geometries G3, G4, G5, and G6 at threshold
T=15 in both the low and high information natural images. Further, the numbers of CCs
in the inpainted regions that are obtained by the TEBI method and by the Criminisi,
Anupam, and Deng methods are wobbling in the geometries G1, G2, and G7 in both

low and high-information images databases.

The rest of the numbers of CCs in other geometries G1, G2, G3, G5, and G6 at
threshold T=15 are presented as an Appendix at the end of thesis (cf. Appendix B).

5.6.2.1 Results Analysis

The numbers of CCs in the inpainted areas that are recovered by the TEBI method are
closer to the numbers of CCs in the original areas than in the inpainted images obtained
by using other methods, as counted in the geometries G3, G4, G5, and G6 at threshold
T=15 in both the low and high information natural images. This means the TEBI
method has been successful in reconstructing the corners, edges and the line ends in the
missing regions because of the patterns that are described in the geometries G3, G4, G5,
and G6 geometries. This means the TEBI method has been successful in reconstructing
the corners, edges and the line ends in the missing regions because of these geometries
G3, G4, G5, and G6 geometries described the pattern of the corners, edges and the line
ends in the image (Ojala et al. 2002).

The numbers of CCs in the inpainted areas in the low natural images that have been
recovered by the TEBI method and other methods are closer to the numbers of CCs in
the low information original areas than to the numbers of CCs in the high-information
original areas. This means the TEBI and other methods have succeeded in
reconstructing the missing regions in low information images because these methods
already work well with simple texture and structure images (low-information images).
However, the TEBI method is better than other methods in recovering the missing
regions in high-information images based on the number of CCs in the inpainted regions
because the proposed method is successful in reconstructing the edges and corners in
the missing regions of the images due to good patch size propagation selection using

topological invariants and the performance of matching criteria that have been used to
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give good matching patches especially for recovering the texture in the missing regions.
As a result, the priority function determined the best location in which to propagate the
information in a steady manner, and the proposed method has successfully worked in

recovering the missing regions in both low and high information natural images.

The numbers of CCs in the inpainted regions that are obtained by using the TEBI
method and by the Criminisi, Anupam, and Deng methods are wobbling in the G1, G2,
and G7 geometries in both low and high-information image databases because the
inpainted regions are not totally identical to the original images owing to the inpainted
region representing the approximation solution which can be close to the corresponding
region of the original image but not totally identical because the missing information
cannot be found in the image, although closely approximating information will be
searched for in the rest of the image. Nevertheless, the TEBI method has succeeded to
recover the regions in the both low- and high-information images. The TDA approach is
used successfully to evaluate the qualities of inpainted images obtained by using the
TEBI and other methods. The efficacy of these methods has been checked by the TDA

approach as well.

5.7 Summary and Conclusion

A novel topological exemplar-based inpainting method (TEBI) has been proposed to
improve the EBI method to remove and reconstruct large missing regions based on
adaptive patch sizing when there is high texture in the missing region’s surrounding
area. An innovative adaptive priority function is introduced by adding a total variation
term, uses a curvature operator to gain more insight into the structures of template
patches and propagates lines and edges into the missing regions. A new criterion for
matching template patches with candidate patches in the missing region’s surrounding
area is proposed. Experimental results illustrate the success of the TEBI method, which

creates visually plausible images.

The proposed method performed well in recovering the image geometry but could not
recover curved or cross-shaped structures completely. Nevertheless, the proposed
method showed better visual results than other compared exemplar-based methods for
the case of curved or cross-shaped structures. In particular, our method performed not
so well in cases where the missing region has no similarity with other regions in the

image.
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The next chapter will introduce a hybrid inpainting technique based on decomposing the
Image into texture and structure components, after which the TEBI and PDE methods to

recover the missing regions in texture and structure components, respectively.
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Chapter 6 HYBRID IMAGE INPAINTING
TECHNIQUE

In chapter Chapter 5, a topological data analysis approach was developed to improve the
EBI technique that simultaneously reconstructs texture and structure in missing regions
in an image. The resulting TEBI scheme helped determine the appropriate size of
patches for propagating information into the missing regions. The success of
simultaneous propagation of texture and structure, however, occurs only when there are
regions similar to the missing regions in the rest of the image. In this chapter, the
decoupling of the reconstructions of texture and structure information to be separately
propagated into the missing region is investigated. A hybrid inpainting technique that
combines a TEBI scheme to restore the missing region texture component with a high
order PDE algorithm to recover the missing region structure component is developed.
The results of using the hybrid inpainting technique in reconstructions of missing
regions are promising, because both the TEBI and high-order PDE-based inpainting
methods have been successful in recovering missing regions with high texture and
structure in the surrounding areas. The hybrid scheme has been conducted in both
spatial and frequency domains, and its performance has been assessed by using
statistical and topological image quality measures. To clarify their superiority, the
results of the proposed hybrid technique is compared to the results obtained from the

techniques described in (Bertalmio et al. 2003) and (Jassim et al. 2018).

This chapter consists of five sections. Section 6.1 reviews the literature on existing
hybrid-based inpainting algorithms. Sections 6.2 and 6.3 describe the design of our
hybrid-based inpainting schemes in both the spatial and frequency domains, and present
some experimental results of their use. Image qualities resulting from inpainting via the
PDE algorithm are assessed by using statistical measurements and the TDA approach in
both spatial and frequency domains, as discussed in section 6.4. Lastly, a summary and

conclusions will be presented in section 6.5.
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6.1 Hybrid inpainting techniques - A Literature Review

A hybrid inpainting scheme is meant to combine two or more inpainting approaches,
each of which has own limitations but for different reasons. Ideally, a hybrid scheme
should provide desirable visual results when applied to a variety of inpainting
applications that cannot be achieved by its constituent schemes applied separately. In
this section some papers which shed light on the studies of various hybrid inpainting
techniques which include either texture Synthesis, PDE and/or exemplar-based

algorithms are reviewed.

The shortcomings of existing single-approach inpainting schemes seem to be deeply
rooted in the extremely difficult task of simultaneously understanding and analysing
image features at different scales. By no mean is this problem confined to inpainting,
and indeed many image applications that require feature detection/manipulation suffer
from the difficulty of finding one image algorithm that can simultaneously
manipulate/repair image features at different scales. Indeed, our inability so far to tackle
the tough challenge of recovering large missing regions can be attributed in part to the
difficulty of determining with certainty the scale of missing features within the region.
It is worth noting that the EBI schemes that were investigated in the last chapter,
including the TEBI, do recognise this issue and attempt to deal simultaneously with
missing information at large scales (referred to as structural component) and small

scales (referred to as textural component).

Images can be decomposed/analysed in many different ways, and multi-resolution (e.g.
wavelet-based) approaches have been dominant in many applications. In relation to
image inpainting, one is usually interested in decomposing an image into its structural
components, representing the main large image features/objects at microscales, and a
textural part, with microscales feature representations. The definition of these two
components is somewhat vague as a result of the absence of agreement on scale for
different applications. At a given scale, a structure may be construed as texture in
another larger scale. Textural, and to a less extent structural, features are expected to
appear repeatedly throughout the image perhaps with some orientational variation.
Appropriate decomposition of damaged images into texture and structure components
provides a useful background understanding of the challenges of image inpainting
especially for large missing regions and provides the initial step of existing hybrid

inpainting techniques.
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Hybrid inpainting has a rich literature and remains an active area of research. Therefore,
it is not an easy task if one wants to cover all aspects of these models. Most existing
hybrid inpainting techniques attempt to combine inpainting schemes that are good at
recovering missing information at small scales with those that are good at recovering
missing information at large scales. Their success, however, strongly depends on the
ability to adequately decompose/analyse images at a multi-scalar level in order to
identify the types of missing information at different scales. Another factor that
influences the success of hybrid schemes is their strategy for restoring the two different

types of missing information.

Bertalmio et al. in (Bertalmio et al. 2003) have proposed the first known Bertalmio
hybrid technique that combines the results of using texture-based synthesis and a PDE-
based method. The idea of this technique is to divide the image into texture and
structure components by using a total variation model (i.e. 2"%rder PDE) which was
applied in (Rudin et al. 1992). Restoration of each component is implemented
separately. The missing regions in those components are recovered by texture based
synthesis (Efros & Leung 1999) and a PDE-based method (Bertalmio et al. 2000)
respectively. The transport model has been used to recover the missing region in the
structure component. This scheme performs better than many other hybrid schemes
proposed later when the same reconstruction algorithms is applied (e.g. either texture

synthesis or PDE-based inpainting).

Many researchers in recent years have adopted the Bertalmio et al. hybrid design
strategy as a benchmark. In (Jiying Wu & Qiugi Ruan 2008) another hybrid image
inpainting model was proposed that uses a bidirectional diffusion PDE to reconstruct
the missing regions in the structure components. This PDE restores information
smoothly and preserves linear structures. At the same time, the missing regions in the
texture components have been reconstructed by an improved EBI method which is
constrained by a cross-isophote diffused data term. The inpainted regions in structure
and texture components are then combined. The results of this novel hybrid model were
very favourable for both the texture and structure components, and it performs better

than those in (Bertalmio et al. 2003) for reconstructing small missing regions.

In an attempt to reconstruct large missing regions, the authors in (Chen 2006) proposed
a method to recover the structure and texture simultaneously in the missing regions,

applying a wavelet decomposition model to the texture and the structure of the image.
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The wavelet transform is used to decompose the image into high frequency and low-
frequency parts. Subsequently, a Compactly Supported Radial Basis Function (CSRBF)
(Kojekine et al. 2003) and texture synthesis methods are used to recover the missing
regions at the low and high-frequency levels, respectively. The results of this method
have been compared with the results of using the transport method (Bertalmio et al.
2000) on natural images, and the outputs of this method outperform those obtained
using the transport method.

The authors in (Sangeetha et al. 2011) have proposed yet another hybrid technique to
recover the large missing areas based on the same idea as in (Bertalmio et al. 2003). The
image is decomposed into texture and the structure components by the 3™-optimal PDE
algorithm which was proposed in (Bertalmio 2006). For recovering the missing regions
in structure components. The Quick Curvature-Driven Diffusions (QCDD) model
introduced in (Xu et al. 2008) has been used; the QCDD model is a 3"-order PDE,
which is an improved version of the CDD model. The authors have suggested
improving the exemplar-based inpainting algorithm by using new matching criteria to
measure patch similarities in order to recover the missing regions in the texture
components. The inpainted image can be represented by the combination of outputs of
inpainted texture and structure components. This method was very effective for
reconstructing large missing regions in the texture and structure components. The
results of this technique have been compared with some present methods on different
natural images, which has demonstrated the eligibility of this proposed approach in
providing high-quality inpainted images.

The above reviewed hybrid techniques have been shown to be capable of recovering
rather small missing regions with texture and structure surrounding them, but their less
than satisfactory dealing with difficult cases such as large missing regions doesn’t seem
to be due to an ineffective way of splitting texture and structure information but rather
more to the strategy of simultaneous recovery of texture and structure information in the
missing regions using the same information propagation method. Our proposed hybrid
approach attempts to depart from the strategy of using the same inpainting scheme for
simultaneous/separate recovery of texture and structure information, while we continue
to use image decomposition methods to analyse the image into its texture and structure
components. Moreover, our hybrid scheme exploits the improvements achieved in the
last 3 chapters on both the EBI and PDE-based method.
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6.2 Hybrid inpainting technique in the spatial domain

In this section, a new hybrid inpainting technique is proposed that is followed the
above-established trend in starting with the decomposition of images into texture and
structure components, to be followed by the selection of possibly different inpainting
schemes for recovering these two components in the missing region. Based on our
adopted TV and PDE models of the image inpainting problem, image decomposition
schemes are investigated and a geometry- based structure-texture decomposition
procedure is adopted. In selecting the appropriate texture and structure components for
recovery, it would be natural to exploit the benefits of using the schemes developed in
the earlier chapters of this thesis due their established desirable performances compared
to other schemes. In chapters Chapter 3 and Chapter 4, PDE-based inpainting
algorithms (using different order PDESs) are developed to recover the texture in missing
regions, which succeeded in restoring the textures and structures of small missing image
regions. In the last chapter, the alternative TEBI scheme was developed and tested, but
its success depended on the presences of patches in the rest of the image that have
similarities with the region’s boundary blocks. The TEBI highlighted the importance of
distinguishing between image texture and structure by dealing with them
simultaneously, whereas the PDE-based schemes do not explicitly take into account this
distinction in the recovery process. The TEBI performs well in recovering the geometry
of a missing region but not curved or cross-shaped structures completely. These
observations necessitate the need for choosing a geometry-compatible texture-structure

image decomposition

The next subsection is devoted to the description of the decomposition models of
interest to our hybrid inpainting. After that, subsection 6.2.2 shows the texture-structure

components recovery schemes, and outlines fully the steps of our hybrid scheme.

6.2.1 Image decomposition methods

In this section, the image decomposition approach is introduced as one of the three key
ingredients in the hybrid inpainting algorithm. As mentioned earlier, the preference is
geometric based decomposition schemes. The main ingredient of such image
decomposition schemes was originally developed in the process of image restoration
and denoising using total variation minimisation (Rudin et al. 1992), (You & Kaveh
2000), and (Vese & Osher 2003). Here we note, that denoising is reliant on

decomposing an image into the unknown clean image and the added noise model.
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The basic idea of the decomposition model used in this chapter is: I(x,y) = u(x,y) +
v(x,y), where I(x,y) is the input damaged image, u(x, y) is the structural component,
and v(x, y) is the texture component. The end goal of the decomposition method is to
have a very smooth image u(x, y) which preserves all the dominant edges in an image
but is smooth on interior regions, and an image v(x, y) which contains all the texture in
an image as well as the noise. These images (components) will then be fed into a PDE-
based inpainting method and a TEBI method, respectively. The output of those methods
can be recombined to obtain the final image.

In (Rudin et al. 1992), the problem of denoising I by taking a minimisation of this
problem in the space of functions of bounded variation BV(R?).The total variation
TV — L' model is
uggér(lﬂ) {]A[u] = LIVuI + Al I=u+tv } (6.1)

where A > 0 is a scaling constant. The first part represents a regularising term, to
remove noise or small details with observance of important features such as sharp edges
and corners. The energy (a fidelity) term is represented in the second part. The TV
regularisation model is applied to decompose the image into a structure part and a
texture part, where the difference between I and u represents the texture part. The

minimising model is expressed formally as the Euler-Lagrange equation (6.1):

i+ law (T4 o

u= i iv 7ul in 62)
ou '
— = on 0.

on

while the formula of the total variation that defined in TV — L2 model is

min {]A[u] = f Vul®> + Avll2,l =u+v } (6.3)
Q

UEBV(Q)

The Euler-Lagrange equation corresponding to (6.3) is:

=1 ! vz inn
u=1+ ﬁ n
du
37 = 0 on d1).
The finite difference method has been used to apply the model (6.2) with a simple

(6.4)

Dirichlet boundary condition which will produce a smoothly structured image. More
information about the numerical application can be found in (Vese & Osher 2003). The

numerical application of the model (6.4) is similar to model (6.2).
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In addition, the 4" order model has been used to decompose the image into texture and
structure components. Originally, this model was proposed in (You & Kaveh 2000)
again for image de-noising as well as image decomposition, and its performance was
compared with that of the total variation model. This model is based on the following
minimisation equation:

Jmin {h[u] = | faveu )an} 65)
where V2denotes the Laplacian operator andf(-) > 0 and is an increasing function. The

Euler-Lagrange equation derived from the model (6.5) is

2

f (|v2u|)“72 |
The general details of the variational problem and application of the Euler-Lagrange
equation on the model (6.5) can be found in (You & Kaveh 2000) and (Strobel 1989).

The following gradient descent procedure has been applied to the model (6.6):

=0 (6.6)

—f(l v I)

“72 6D

The finite difference method can be used to solve the model (6.7). This model is
proposed for the removal of noise and the preservation of edges. The properties of the
model (6.7) and its numerical solution have been introduced and discussed in (You &
Kaveh 2000) and (Bertozzi & Bertozzi 1998).

In order to help with the determination of our preferred texture-structure decomposition
scheme, the above denoising schemes are implemented. Figure6-1, below, illustrates the
noise removal process from a colour image by the (6.2) model. Figure 6-2 presents the
denoised images obtained from the (6.2), (6.4), and (6.7) models.

(@) Noisy Green Ghennel ) Nolny Bius Ohanne!

1) Denoined Wnage Groen ¢ " o Blue O

Figure6-1: Image denoising example. Row (1) original images, row (2) the noise images, row
(3) denoised images by using model (6.2).
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(d) (e)
Figure 6-2: Comparison of three denoising models. (a) Original image, (b) noisy image, (c)
TV-L! model, (d) TV-L? model, and (e) 4™-order model.

We can observe that the 4™ order model has failed to completely remove the noise
because piecewise planar images have less masking capability than step images.
Furthermore, the edges have been preserved in the denoised image by the 4™ order

model while TV models tend to generate multiple false edges.

In the decomposition task, the models (6.2), (6.4) and (6.7) have been studied and used
to decompose images into texture and structure components. The results of applying
these models to the original image were smooth structure images, where the original
image is without noise. On the other hand, the texture image is the difference between
the original image and the structure image. Figure6-3 illustrates the decomposition of
the previous image into texture and structure components using the (6.2) model. The
decomposition of another general image into texture and structure components by the
(6.2), (6.4), and (6.7) models are shown in Figure6-4.

®) Structure green image () Structure blue image

Q) Texture colour image. () Texture red channel (®) Texture green image (D Texture blue image

Figure6-3: Image decomposition example. Row (1) the original images, row (2) the structure
component images by using model (6.2), row (3) the textured component images.
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(b1) (b2) (b3)

(c1) (c2) (c3)
Figure6-4: Comparison of three decomposing models: (a) Original image, (bl) and (cl)

structure and texture components by TV — L' model, (b2) and (c2) structure and texture
components by TV — L? model, and (b3) and (c3) structure and texture components by 4"-order
model.

As seen in Figure6-4, the structure component generated by TV — L! is sharper than that
by TV — L2(Jiying Wu & Qiugi Ruan 2008) and 4™ order models (You & Kaveh 2000).

The structure component generated by a 4™ order model (6.7) is sharper than that by
TV — L? model (You & Kaveh 2000). This means that if the structure component is
smoother, the texture component will be higher. Therefore, the texture and structure
components of the image generated by the TV —L! model (6.2) are a better
representation than those generated by other models. Therefore, the TV —
L'decomposition model is used to analyse images into texture and structure components

in the hybrid inpainting technique.

6.2.2 Inpainting methods for reconstructing the texture and structure
images

Having decomposed an image with a missing region (s) into its texture and structure
components, appropriate inpainting methods which can be used to reconstruct the
missing region through these components are selected. Naturally, the results of the
previous chapters in our information recovery of missing regions are exploited. In
particular, the use of the TEBI and PDE-based inpainting methods to recover the

missing regions in the texture and structure components, respectively, is tested.

For example, the topological exemplar-based inpainting method (TEBI described in
chapter Chapter 5) is most suitable for use in reconstructing the texture components of
missing regions, see (Jassim et al. 2018). This choice is also supported by efficiency
consideration. In contrast, the texture synthesis method inefficiently propagates
information into the missing region recursively, i.e. pixel by pixel until the entire

missing region is filled. The optimal combination of these various algorithms will be
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designed to form our proposed technique which will be used to reconstruct small as well
as large regions. Besides improving inpainting quality, this method is computationally
efficient. In the subsequent sections, the merits and shortcomings of this approach are

discussed.

The proposed hybrid technique starts by decomposing the image into texture and
structure components, after which the damaged regions are separately recovered by
different inpainting methods. The hybrid technique has been used for the simultaneous
rebuilding of the textures and structures of missing regions in an image, in the spatial
domain. The ingredients that are used in this technique are the TV model, the TEBI, and
the PDEs inpainting model. The idea of this approach is to first decompose the image
into two components which are the texture and structure components by using the TV
model then rebuilding each one of these components separately by using TEBI, and
PDEs inpainting methods respectively. Finally, inpainted structure and texture

components are combined.

Figure6-5, below, depicts a block diagram of our proposed hybrid inpainting algorithm.
The image decomposition step is not specified in this diagram, but the proposed scheme

implements the TV — L'decomposition model, as discussed in section 6.2.1.

Input image
Determining the missing
regions in the image
Decomposing the image into
< texture and structure >
components using PDE model
y 2
Structure componeat Texture component
A 4 h 4
Inpainting the missing regions Iupainting the missing regions
in the structure component in the texture component using
using PDE models TEBI method
A 4 | Combining the upamted texture | v

and struciure compooents

3

Displaying the combined
inpuinted image

Figure6-5: Flowchart Hybrid technique in the spatial domain.

This technique works with a combination of inpainting algorithms of image structure

and texture. The steps of the proposed method can be represented as follows: Firstly,
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read the input image, then mark the region of interest in it. After initialisation, a marked
image is decomposed into its structure and texture components. Next, inpainting of the
structure and texture components of the image are carried out by the PDE-based
inpainting and the TEBI methods, respectively. Two kinds of PDE-inpainting
techniques (the MES, and the mCH schemes) are proposed for the reconstruction of
image structures. The texture image component can be efficiently reconstructed via the
TEBI method. The quality of the results of this hybrid technique will be compared with
the results of the benchmark Bertalmio technique by using statistical measurements and
the TDA approach.

Here we recall that the TEBI method has been used to rebuild missing-regions' textures
by using the matching criterion described in chapter Chapter 5. In (Jassim et al. 2018),
we established that this method produces very good texture synthesis results. In
Figure6-6, we illustrate that the proposed TEBI approach succeeds in reconstructing the
straight edges and corners, whereas a well-known inpainting algorithm, (Efros & Leung
1999), results in the appearance of highly visible artefacts. Note that this image shows
the same relatively small structure repeated periodically, and therefore only the texture
needs to be repaired because the TEBI method has a good priority function and a strong
matching criteria that helped to success in recovering the missing regions with highly-

textured surrounding areas.
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Figure6-6: Recovering missing texture region. (a) Masked image, (b) and (c) inpainted image
by using the algorithm (Efros & Leung 1999) and TEBI method, respectively.

On the other hand, PDE-based inpainting methods are our obvious choice to reconstruct
the missing regions in highly structure images. The key idea behind these methods is to
spread the image information from outside of the missing region (i.e. boundary of the
missing region) to inside it in the direction of minimal change (isophotes). The
numerical solution of these algorithms creates the propagation of information in the

direction of isophotes.

The work in Chapter Chapter 4, shows that high order PDE models provide the best

way to treat the missing regions in structure images because these models have certain
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advantages such as the ability to propagate the information into large missing regions
(i.e. continuity property), and they also smoothly propagate grey-values in gradient
directions. As we experimentally demonstrated in chapter 4, the performances of high
order PDEs are better than that of the 2" order PDE in recovering the missing regions
in an image. Therefore, two kinds of high order PDE-inpainting methods are used to
recover the missing regions in the structure image, which are MES (Esedoglu & Shen
2002) and mCH models (A. L. Bertozzi et al. 2007).

The next section introduces some examples of using the hybrid technique to recover the
missing regions in the natural images in the spatial domain. Also, these results will be

discussed and be compared with the results of the Bertalmio technique.

6.2.3 Experimental results in the spatial domain

The hybrid technique is applied to the rebuilding of missing structure and texture
simultaneously. This approach is implemented on different size regions in several
images, and MES and mCH models have been used to recover the structure missing
regions as previously clarified in chapter Chapter 4. The missing texture region is
recovered by the topological exemplar-based inpainting algorithm, which was

previously introduced in chapter Chapter 5.

The process implemented by the hybrid technique is introduced step by step by
Figure6-7. To check the efficacy of the proposed hybrid technique, some comparisons
are conducted between it and the single inpainting methods and with the Bertalmio
technique. Therefore, comparisons between the results of the proposed hybrid technique
and the results of texture-synthesis and PDE-based inpainting methods are undertaken
to demonstrate that the combining of two inpainting methods leads to better results than
a single method in recovering the missing regions in natural images, as seen in the
Figure6-8 and 6-9. Figure6-7 shows the recovery of the missing regions by the hybrid
inpainting technique, using again the decomposition steps as in Figure6-4 to recover

each component in the missing region.
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®

Figure6-7: Hybrid inpainting process. (a) Masked image, (b) and (c) masked texture and
structure images, respectively, (e) and (f) inpainted texture and structure image, respectively, (d)
combining inpainted texture and structure images,

Also, Figure6-8 illustrates the comparison between the proposed hybrid technique and
three kinds of PDE-based inpainting methods used to recover the missing regions in the
image; transport, MES and mCH maodels.

- .

(d) ()

Figure6-8: Recovering the missing region using the hybrid technique. (a) Masked image, (b) (c),
(d), and (e) inpainted image by our proposed hybrid approach, transport, MES and mCH PDE
methods, respectively.

Figure6-9 shows examples of object removal and the results of the proposed hybrid

technique with texture synthesis and transport methods.
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Figure6-9: Object removal by hybrid technique. (a) Original image, (b) masked image, (c), (d),
and (e) inpainted image by PDE (Bertalmio et al. 2000), Texture-synthesis method (Efros &
Leung 1999), and proposed hybrid technique, respectively.

Finally, Figure6-10 introduces the examples of object removal and for comparison the

results of the proposed hybrid technique with the Bertalmio technique.

Figure6-10: Comparison of the proposed hybrid technique with the Bertalmio technique. (a)
Original images, (b), (c), and (d) inpainted image by Bertalmio technique, proposed hybrid
technique with MES method for structure image, and the proposed hybrid technique with mCH
method for structure image, respectively.

The output of the hybrid technigue, in the above examples, has outperformed the texture
synthesis and PDE-inpainting methods. Visually, its results are more acceptable than
those of single methods, which are texture synthesis and PDE-based inpainting methods.
The TEBI method has been applied to the reconstruction of the information in the
texture images; and also the propagation of information block by block. This means the
propagation of information into the missing region by using the TEBI method, which is
faster in this context than the texture synthesis method. The MES and mCH methods
have qualitatively outperformed the transport method, as seen in Figure6-8 and 6-9.

The second comparison is made between the results of the proposed hybrid technique
and the results of the original hybrid technique of Bertalmio et al. scheme. The
proposed hybrid technique has been applied to recover the missing regions by using the
MES method and mCH methods to recover the missing regions in the structure images.
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Figure6-10, below, displays the results of the proposed hybrid technique and the
original hybrid technique. Large missing regions have been recovered in different
texture and structure images; the high order PDE methods have been applied to recover
large missing regions in the structure images. The TEBI method has successfully
reconstructed the large missing regions in the texture images. Therefore, the proposed
hybrid technique when using the mCH method to recover the missing region in a
structure image visually outperformed both the original hybrid technique and the
proposed hybrid technique when using the MES method for the same task. Eventually,
the results of the proposed hybrid technique in both cases turn out to be better than the
results of the original hybrid technique. The task of assessing image inpainting quality
will be studied and discussed after the discussion of the implementation of the proposed

hybrid technigue in the frequency domain.

As we mentioned in chapter Chapter 4, the image in the frequency domain has been
analysed into non-textured and textured image components (i.e. low-frequency
coefficients and high-frequency coefficients), and the size of a missing region will be
reduced, which has a very favourable effect on the application of PDE algorithms.
Therefore, the next section studies the hybrid technique in the frequency domain, and
the application of this technique on a set of images, and the results will be compared
with those obtained by applying the same technique in the spatial domain.

6.3 Hybrid inpainting technique in the frequency domain

Wavelet filter banks provide well-established tools for multi-resolution decomposition
of images; the low-frequency response components capture coarser features (i.e.
structure) while the higher-frequency response components capture image features at
finer scales (i.e. texture). This fact motivates the development of a hybrid inpainting
algorithm for digital reconstruction based on the combination of wavelet
decompositions. The proposed hybrid algorithm will also use a PDE-based inpainting
algorithm to recover missing coefficients in the low-frequency sub-band, and for texture
recovery, TEBI methods will be used to recover missing coefficients in the high-

frequency sub-band.

Tin the hybrid technique, the wavelet transform is used to decompose the image into

low- and high-frequency sub-bands.. The steps of the technique are as follows:

1. Step 1. The region of the original image to be inpainted is marked manually by

the user.
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2. Step 2. The masked image is decomposed into non-texture and texture images
(i.e. the low and high-frequency components) by using the Haar wavelet
transform.

3. Step 3. The damaged region in the non-texture image (i.e. low-frequency sub-
band) is reconstructed by using the PDE-based inpainting method.

4. Step 4. The intensity values of the damaged regions in texture images (i.e. high-
frequency sub-bands) are recovered by the TEBI method.

5. Step 5. The inverse wavelet transform is used to convert these images (i.e. four

sub-bands) to one image (which is called the inpainted image).

As described in the last section, the first step of the spatial domain hybrid technique
decomposes the image into a non-texture image and a texture image. However, the
standard wavelet image decomposition by filtering to depth 1, produces one non-texture
image and three texture images. Hence, this proposed frequency-domain hybrid scheme
uses PDE-based inpainting method to recover the missing region in the non-texture
image and EBI method will be applied to reconstruct the missing region in each of the 3

texture images. Finally, the wavelet transform will be inverted in the usual way.

At a k-level depth wavelet decomposition there would be 1 non-texture image but 3k
texture images at different scales. For the sake of understanding the impact of the
transform depth, the wavelet-based hybrid scheme is applied to natural images in two
scenarios, referred to as the 2" and 3™-level wavelet domains. In the first scenario, the
PDE-based inpainting method has been applied to reconstruct the missing region in the
non-texture image (i.e. low-frequency sub-band) in the second level of wavelet
decomposition, and TEBI method has been used to recover the missing information in
the six other texture images (i.e. six high-frequency sub-bands). In the second scenario,
the PDE-based inpainting method has been applied to recover the missing region in the
non-texture image (i.e. low-frequency sub-band) in the 3 level wavelet domain, and
TEBI method has been used to reconstruct the missing information in the nine texture

images (i.e. nine high-frequency sub-bands).

Two kinds of high order PDE inpainting methods have been applied to reconstitute the
missing region in the non-texture image (i.e. low-frequency (approximation) sub-band)
which are MES and mCH methods. The TEBI inpainting method has been used to
recover the missing regions in the LH3, HL3, and HH3 images in the 3" level and then

the same three procedures were applied to recover the missing regions in the LH1, LH2,
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HL1, HL2, HH1, and HH2 images. The aim for each method in practice is to follow the
same priority in choosing the block which is to be filled and the same similarity block
that is determined from the rest of the image (the same steps as are used to recover the

missing regions).

Therefore, if the size of the block that is used to recover the missing region in LH3,
HL3, and HH3 images is 3x3, then the size of the block that is used to recover the
missing region in LH2, HL2, and HH2 images is 6x6, while the size of the block that is
used to recover the missing region in LH1, HL1, and HH1 images is 12x12, as seen in
Figure6-11.
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Figure6-11: The representative value of the wavelet transform for 15¢, 24 and 37¢ levels.

Through the implementation of the hybrid technique in the frequency domain, we found
that inverting the wavelet transform back to the spatial domain the accuracy of image
reconstruction depends on the size of the image. For instance, the size of the image is
150 x 150 for 1st level, the size of each sub-band is 75 x 75, while the size of each
sub-band is 38 x 38 in the 2" level. Then when using the inverse of the wavelet
transform to return the image to the spatial domain, the size of the image will increase
and will be 151 x 151, and that will affect the accuracy of the image. Therefore, to
overcome the problem, we need to use images of 2™ x 2" before to convert the image to

the frequency domain.

In practice, the wavelet inverse transforms process influences the edges of objects in the
image because the size of sub-bands needs to be resized as it converts from the 3" level
to the second level. Therefore, the damaged images have been cropped to be 2 ™ such
as 2 9 =512, the size of the image being 512 x 512, or the 2 & = 256, the size
being 256 x 256. The cropping task has been treated the effects of resizing on the
edges of objects in the images, and the new size of the image means that the image
doesn't need to be resized when it's converting from 3" to second and from 2" to the 1%
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level. Figure6-12 presents the effects of resizing on the sub-bands before converting

from 3" to second and second to the first level after recovering the missing regions.

r

Figure6-12: Hybrid-Based Inpainting technique in the 2™ and 3" level wavelet domains. (a)
Original image. (d) masked image, (b) and (c) inpainted images in the 2™ and 3" level wavelet
domains with using resize for sub-bands, respectively, (e) and (f) inpainted images in the 2" and
3 level wavelet domains with using cropping the image in before reconstructing the missing
regions, respectively.

The image cropping task helps to solve the effect of the resizing of the sub-bands when
trying to convert the image from 3™ to 2" level, or from 2" to 1% level. The effect of
resizing the image when converting from 3" to the 2" level will be more apparent than
that from converting from the 2" to the 1% level. The image cropping process has been
done in two ways; either cropping whole the borders of the image even get the size 2™ x
2™, or cropping the size 2™ x 2™ from left to right, then using the hybrid technique to
recover the missing region and after that restoring its original size then do cropping
again but this time from right to left, and the same thing from up to down, or down to up.
This means the missing region in each cropped piece from the image will be recovered
because the hybrid technique has been applied to each cropped piece of the image. The
second cropping process has been followed to recover all the missing regions in the

image.

The steps of this technique in several instances are illustrated in Figure6-13 which
shows the same image as recovered by the PDE algorithm described in Section 4.6. The
hybrid technique is used to recover the missing regions in the 2" and 3' level wavelet
domains. The MES method has been applied to recover the missing regions in the non-
texture images (i.e. low-frequency sub-band domain). The results are better than those
obtained using PDE inpainting models as shown in Figure 4-16 because the texture has
been recovered by the TEBI method while the missing regions in high sub bands are
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estimated zero value in Figure4-13. This is only a typical example of natural images,
demonstrating that using one inpainting algorithm for both structure and texture
components is less effective than our wavelet-based hybrid scheme that treats the high-
frequency sub-band image differently from the structure image modelled by the low-

frequency sub-band.

@ (b) (©
Figure6-13: Inpainting based-hybrid technique in 2" and 3™ level wavelet domains. (a) Masked
image, (b) and (c) inpainted images using hybrid technique in the 2" and 3™ level wavelet
domains, respectively.

To deeply study the efficacies of hybrid inpainting techniques in the spatial and
frequency domains, the set of natural images is used, as described in 3.6.1. Statistical
and TDA quality measures have been used to evaluate and compare the results obtained
by using these techniques in each domain. The experimental results of will be presented

next.

6.4 Performance of the hybrid scheme in terms of Image Quality

This section studies the quality of the inpainting of images which have been recovered
using the various proposed hybrid techniques. In general, hybrid techniques are
expected to produce better quality images than the single methods. Therefore, the
effectiveness of the hybrid inpainting techniques are compared in both the spatial and
frequency domains, by measuring the quality of their output images using a variety of
quality measures. Statistical measurements and the TDA approach are used to check and
estimate the quality of the image inpainting. The results of the proposed hybrid
technique are also compared to the results of the Bertalmio technique, in both the spatial
and frequency domains. The next subsection will show the evolution of image quality

according to statistical measurements on natural images databases.

6.4.1 Statistical image quality measures

The experiments on the natural images have been conducted, and the results in both the

spatial and frequency domains are reported. The MSE, PSNR, and SSIM have been

used to quantify the qualities of inpainted images in both the spatial and frequency

domains. The results of two kinds of hybrid techniques have been checked and
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compared with the results of the Bertalmio and TEBI techniques described in
(Bertalmio et al. 2003) and (Jassim et al. 2018), respectively. This subsection clarifies
and presents these groups of experiments and their results in both the frequency and

spatial domains.

The experiments have been conducted to measure and the compare image quality in the
inpainted images with respect to the original images in the spatial and frequency
domains, using MSE, PSNR, SSIM and entropy quality measures. The test images were
inpainted using three kinds of hybrid techniques and TEBI method. The original images
of the Berkeley database were used as the reference by which to measure the quality of
inpainted images; this database has been introduced in chapter Chapter 4. In this section,
five experiments have been applied to 80 images of this data set. The aim of these
experiments is to study the effect of combining two methods on the reconstruction of
the missing regions of different sizes and with high texture and structure around them in
the natural images and to study the performance of the proposed techniques in
reconstructing these missing regions. The steps as presented in chapter Chapter 4 are
followed to create the inpainting mask. Five cases of inpainting masks have been used
to study the efficacy of the hybrid technique and to compare it with the Bertalmio and
TEBI techniques, respectively. The mask images have been chosen based on the size of
the missing regions and quantity of texture in the surrounding areas of the missing
regions; the first three masks (Casel, Case2, Case3) represent the different sizes of
missing regions at different positions in the images. The other mask images represent
two missing blocks at different positions in the images (Case4, Case5). These images
have been selected based on the complex texture and structure which that help to check
the efficacy of hybrid inpainting methods in recovering separately texture and structure

in small missing regions.

Figure 6-14 shows five cases of inpainting mask (i.e. inpainting domain) which
represents five damaged regions in images which have been applied on 80 images from
the Berkeley database in spatial and frequency domain to study the efficiency of these
hybrid techniques.
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Damaged image Casel ~ Damaged image Case2 ~ Damaged image Case3 ~ Damaged image Case4 ~ Damaged image Case5

Figure 6-14: The same natural image with five different inpainting domains.

The proposed hybrid techniques are used to reconstruct missing regions in natural
images; the MES method is applied to reconstruct missing areas in the structure image
as part of the method referred to hybrid 1, while the hybrid scheme that uses mCH
method for recovering the missing structure regions is called hybrid 2. The objective of
the two inpainting domains (i.e. Casel, and Case2) is to evaluate the performance of the
hybrid techniques by reconstructing the texture in small missing regions. The objective
of the other inpainting domains (i.e. Case3, Case4 and Caseb) is to check the ability of
the hybrid technique to recover the large missing regions with texture in the surrounding
areas of them. The performance of the hybrid scheme is assessed both qualitatively and
quantitatively. The qualitative assessment subjectively reviews the inpainted images
visual quality, but as before the quantitative evaluation is based on statistical and TDA
measures. Figure 6-15 and 6-16 show the results of recovering the damaged regions for
some typical natural images in the spatial domain. The achieved image quality,

presented here is typical of most tested images.

@ (b) ©
(d) (e) ®
Figure6-15: Recovering missing regions in the spatial domain. (a) Original image, (b) masked

image, (c, d, e, f) inpainted images using Bertalmio, TEBI, Proposed Hybrid 1 and Proposed
Hybrid 2 methods, respectively.
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Figure6-16: Recovering missing regions in the spatial domain. (a) Original image, (b) masked
image, (c, d, e, f) inpainted images using Bertalmio, TEBI, proposed Hybrid 1 and proposed
Hybrid 2 methods, respectively.

Figure6-17 and 6-18 illustrate the results of reconstructing the damaged regions in

natural images in the frequency domain.

(a) (b)
(d)

(e) U]

Figure6-17: Recovering missing regions in the frequency domain. (a) Original image, (b)
masked image, (c, d, e, f) inpainted images using Bertalmio, TEBI, Proposed Hybrid 1 and
Proposed Hybrid 2 methods, respectively.

(d)
Figure6-18: Recovering missing regions in the frequency domain. (a) Original image, (b)
masked image, (c, d, e, f) inpainted images using Bertalmio, TEBI, Proposed Hybrid 1 and
Proposed Hybrid 2 methods, respectively.
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To get a comprehensive quantitative inpainted image quality, the qualities of inpainted
images by various schemes are checked. The SSIM, PSNR and MSE have been
calculated only between the inpainted regions and the corresponding regions in the
original images in both domains (cf. Section 2.6.1). Table 6-1 and 6-2 summarize the
comparison of the qualities of inpainting hybrid techniques in the spatial and frequency

domain respectively; the times taken to get the results using these techniques are also

shown.
C# Equations MSE PSNR SSIM Entropy | T(s)
Bertalmio method | 1499.223 | 18.66756 | 0.986235 0.395273 | 506
§ TEBI method 793.3923 | 21.15446 | 0.986612 0.394516 90
S | Proposed Hybrid 1 | 1244.128 | 18.70744 | 0.986409 0.388296 | 130
Proposed Hybrid 2 | 1113.426 | 19.92023 | 0.986666 0.380634 | 150
Bertalmio method | 311.1367 | 24.81957 | 0.993912 0.346964 | 450
§ TEBI method 193.6683 | 27.19607 | 0.995629 0.349171 78
&S | Proposed Hybrid 1 | 290.4463 | 25.24197 | 0.993989 0.336341 | 120
Proposed Hybrid 2 | 248.5659 | 26.32689 | 0.995164 0.320051 | 134
Bertalmio method 974.6182 20.18458 0.954591 1.271754 680
g TEBI method 652.3106 | 22.02176 | 0.955993 1.266625 | 110
&S | Proposed Hybrid 1 | 829.3944 | 19.73906 | 0.954471 1.240264 | 145
Proposed Hybrid 2 | 753.6958 | 20.81098 | 0.955591 1.238316 | 167
Bertalmio method | 678.9732 | 21.01168 | 0.965138 1.139665 | 986
§ TEBI method 401.5857 | 24.10073 | 0.965989 1.138165 | 187
&S | Proposed Hybrid 1 | 492.4136 | 22.71132 | 0.968253 1.122888 | 265
Proposed Hybrid 2 | 476.2108 | 22.85803 | 0.968555 1.120781 | 289
Bertalmio method | 856.9898 | 19.57195 | 0.928726 1.957309 | 957
§ TEBI method 453.1367 23.33227 0.930119 1.947071 194
&S | Proposed Hybrid 1 | 566.7113 | 21.86056 | 0.937431 1.915651 | 259
Proposed Hybrid 2 | 529.5586 | 22.12666 | 0.937918 1.928869 | 249

Table 6-1: The average values of MSE, PSNR and SSIM are shown for image inpainting using
Bertalmio, TEBI techniques and our proposed hybrid technigues in the spatial domain.

204




Chapter 6: Novel Hybrid Image Inpainting Technigue

C# Equations MSE PSNR SSIM Entropy | T(s)
Bertalmio method | 1066.283 | 20.56447 | 0.988515 | 0.395273 | 232

§ TEBI method 894.4014 | 20.83924 | 0.987874 | 0.379203 | 65
O | Proposed Hybrid 1 | 961.7229 | 20.43006 | 0.986235 | 0.378938 | 92
Proposed Hybrid 2 | 920.8161 20.60669 | 0.988744 | 0.385993 | 114
Bertalmio method | 343.5751 | 24.78881 | 0.994658 | 0.350051 | 253

% TEBI method 307.3867 | 24.85707 | 0.993911 | 0.345554 | 51
O | Proposed Hybrid 1 | 316.5131 | 24.94827 | 0.994838 | 0.290051 | 89
Proposed Hybrid 2 | 312.1997 | 25.25388 | 0.994994 | 0.345115 | 97
Bertalmio method | 1209.187 | 20.20774 | 0.963136 | 1.271754 | 356

E TEBI method 831.9352 | 20.71266 | 0.962888 | 1.249958 | 93
O | Proposed Hybrid 1 | 1122.919 | 20.37882 | 0.961024 | 1.221049 | 111
Proposed Hybrid 2 | 924.6182 | 20.43458 | 0.954591 | 1.220746 | 129
Bertalmio method | 657.7232 | 21.08668 | 0.965188 | 1.139665 | 487

§ TEBI method 493.9757 | 22.76874 | 0.975935 | 1.119615 | 110
S | Proposed Hybrid 1 | 568.8276 | 22.20677 | 0.975448 | 1.113111 | 148
Proposed Hybrid 2 | 526.6572 | 22.55822 | 0.976358 | 1.113351 | 152
Bertalmio method | 838.2398 | 19.67195 | 0.928726 | 1.957309 | 466

ﬁ TEBI method 566.0581 | 21.85964 | 0.949031 | 1.920873 | 123
O | Proposed Hybrid 1 | 698.0841 | 21.17582 | 0.947483 | 1.908716 | 156
Proposed Hybrid 2 | 656.9365 | 21.46956 | 0.949809 | 1.906103 | 161

Table 6-2: The average values of MSE, PSNR and SSIM are shown for image inpainting using
Bertalmio, TEBI techniques and our proposed hybrid techniques in the frequency domain.

6.4.1.1 Results analysis

In this section, the performance of hybrid techniques is analysed based on statistical
results for inpainted regions in the natural images. The results of these techniques have
been evaluated qualitatively and quantitatively. The qualitative evaluation shows a good
reconstruction of the texture in Figure6-15 and 6-16. When the PDE-inpainting methods
is used to recover the missing regions in the structure component, a problem with edges
of the missing regions is detected where the colours will be overlapping on the edges of
objects, and this will produce a blur on the edges of objects in the image. The inpainted
images created by using the proposed hybrid techniques in Figure6-17 are visually
closer to the original images than the inpainted images created by the TEBI technique.
On the other hand, the inpainted images obtained by using the proposed technique could
not outperform those inpainted by TEBI. Also, we found inpainted images created in the
wavelet domain in, shown in Figure6-17 and 6-18 to be visually identical to those
created in the spatial domain.

Lastly, the hybrid technique performs well when there are regions similar to the missing
region because of the TBEI process, for more information about TBEI method, we refer
the reader to chapter Chapter 5. In addition, the hybrid technique performs well when

the missing region is small and has a complex texture around it along with structure.
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The performance of the hybrid technique in recovering large missing regions are
illustrated in Figure6-10. Experimental testing shows that visually acceptable images
may have different image qualities by numerical measures. The efficacy of these
techniques in recovering small missing regions has been studied by using the first two
masks on the set of natural images. Their abilities to recover large missing regions with
high texture and structure have also studied by applying Case3, Case4, and Case5 on the
set of images; this is the challenge for these techniques because of the performance of

PDE-inpainting methods in recovering the missing structure regions.

In summary, the proposed hybrid techniques and the Bertalmio and TEBI techniques
have successfully recovered the small missing regions in the natural images, while these
techniques have reconstructed the large missing regions with some limitations about the
size of the missing region and the quantity of the texture in the surrounding of missing
regions. Also, when missing regions contain objects which don't have similarity in the
rest of the image, this will have an effect on the reconstructing process. During the
testing, it was found that while some images could look visually pleasing and similar,
they have different PSNR values in both domains. The hybrid 2 technique outperforms
the hybrid 1 technique. However, both proposed hybrid techniques have succeeded in

removing texts, scratches and large spurious objects in images in both domains.

Moreover, in both domains the values of MSE, and PSNR obtained using the proposed
hybrid techniques are better than those obtained using Bertalmio technique in four cases.
While the TEBI technique performs better than hybrid 1 in case3 in the spatial domain
and casel in the frequency domain. In addition, the results obtained using the TEBI

technique are better than those of proposed hybrid techniques.

On the other hand, the values of SSIM obtained using proposed techniques are better
than those obtained using other techniques in 3 cases in the spatial domain and 4 cases
in the frequency domain, while the TEBI technique performs better than other
techniques in case2 and case3 in the spatial domain and case3 in the frequency domain.
In most inpainting cases, the proposed hybrid technique outperformed other techniques
in recovering the geometry of the image. In addition, the values of entropy obtained
using proposed techniques are better than those obtained using other techniques in all
cases in both domains. That means the hybrid techniques are capable of effective region
filling and give relatively high PSNR values with low MSE values, and SSIM values are
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close to 1 with the entropy value is less in the most of all inpainting cases, as shown in
Table 6-1 and 6-2.

On the other hand, the proposed hybrid techniques require less time to reconstruct the
missing regions in natural images than the Bertalmio technique because of their TEBI
technique that use blocks to recover the missing regions in texture images. Whereas, the
TEBI technique takes less time to reconstruct the missing regions in natural images than
the proposed hybrid techniques. Also, the MSE, PSNR, SSIM and entropy measures
resulting from these algorithms in the spatial domain are a little better than those
obtained by using frequency-domain algorithms, while the computation time needed to
recover the missing regions is less in the frequency domain than in the spatial domain,
because the size of the damaged region in the frequency domain is smaller than its size
in the spatial domain, and also it does not use any decomposition method to analyse the
image, but it instead uses the wavelet transform to analyse the image into high and low-
frequencies components. However, the proposed techniques take more time due to the

amount of calculation in the spatial and frequency domain.

Other quality measurement which is TDA approach will be used to compare the
proposed hybrid technique with Bertalmio and TEBI techniques in the next section.

6.4.2 Topological Data Analysis for image quality

As explained in Section 2.6.2, the TDA approach has been proposed to evaluate the
quality of image inpainting. Therefore, the TDA approach has been applied to study the
results of hybrid techniques, and it is also applied on natural image datasets. To get
better results of image inpainting quality, this approach has been applied to study only
the inpainted regions in the images, this means, the number of CCs has only been
calculated in the inpainted regions and the corresponding original regions, where the
number of CCs in the other parts of the inpainted image and the original image are the
same. The same steps are followed in the construct of the Vietoris-Rips complex which

was introduced in Section 2.6.2.2.

We have studied 7 ULBP geometries at different thresholds T=0, T=5, T=10, T=15, for
the inpainted images of the above experiments. We found the geometries G2, G4, and
G6 at threshold T=10 giving a good description to proposed hybrid techniques in all
five cases of damaged images because the c give the best descriptors of the texture in

the images.
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Figure6-19 shows the average number of CCs of inpainted regions as obtained from the
proposed hybrid techniques and Bertalmio and TEBI techniques for five damaged
regions from the natural image dataset in the both spatial and frequency domains. The
Geometry G6 at threshold T=10 is shown below.
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Figure6-19: Evaluation of performance of hybrid techniques using TDA approach at 8
iterations in G6 at threshold T=10 for 5 inpainting cases of natural images. Left column:
Average of the number of CCs inpainted regions in the spatial domain. Right column: Average
of the number of CCs inpainted regions in the Frequency domain.
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The numbers of CCs in the other geometries at threshold T=10 are not robustly

determined, we sometimes found the numbers of CCs in inpainted regions created by

using Bertalmio technique and hybrid 1to be close to those seen original regions of

natural images. So that means these geometries at threshold T=10 do not describe well

of the image quality assessment of these inpainting algorithms, as seen in the below

Figure6-20 which illustrate the number of CCs in the geometry G5 at threshold T=10.
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Figure6-20: Evaluation of performance of hybrid techniques using TDA approach at 8
iterations in G5 at threshold T=10 for 5 inpainting cases of natural images Left column:
Average of the number of CCs inpainted regions in the spatial domain. Right column: Average
of the number of CCs inpainted regions in the Frequency domain.
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6.4.2.1 Results analysis

The TDA approach has been used to assess the results of the five inpainting domains in
both spatial and frequency domains obtained by using the proposed hybrid techniques
and TEBI. The TDA approach has been applied to the inpainted regions and
corresponding original regions in the natural in seven geometries at different thresholds.
In both spatial and frequency domains, the number of CCs in the inpainted areas that
recovered by the proposed hybrid techniques close to the number of CCs in the original
areas than Bertalmio method in the geometries G2, G4, and G6 at threshold T=10 in the
natural images. The geometries G2, G4 and G6 describe the corners, edges and the end
lines in the natural images (Ojala et al. 2002). This means the proposed methods have
been succeeded to reconstruct each of the corners, edges and the line ends in the missing
regions because of the patterns that described in the geometries G2, G4, and G6 at
threshold T=10.

However, the numbers of CCs of inpainted regions which obtained by using TEBI
technique is closer to those occurring in the corresponding original regions than those
obtained using the hybrid 1, hybrid 2 technigues and the Bertalmio technique, in the
both of spatial and frequency domains. Also, the numbers of CCs of the inpainted areas
obtained by using hybrid techniques in the spatial domain are little closer to the
numbers of CCs of original areas in comparison with frequency domain, as described in
Figure6-19.

For other geometries, the number of CCs is wobbling in the inpainted regions, as seen in
Figure6-20, which shows the numbers of CCs in geometry G5. In all these types of
hybrid techniques, the numbers of CCs of the inpainted areas in the spatial domain are
closer to those observed in the original areas than in the frequency domain. Therefore,
the best descriptor for image quality based on the number of CCs of the results obtained
by using these methods, where the best image inpainted quality is TEBI method then
hybrid 2 then hybrid 1 and the lastly Bertalmio method for all rotations in the
geometries G2, G4 and G6. The results of geometries G1, G2, G3, G4, and G7 at
threshold T=10 which are given in Appendix C.

Finally, the TDA approach has been successful for to the study and checking of the
qualities of image inpainting because this it involves a very sensitive process which
enables the study of the inpainted region at seven geometries and each geometry has

eight rotations which means that it will cover all the inpainted regions.
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6.5 Summary and Conclusion

This chapter introduced the improvement of the Bertalmio technique by using three
different methods which permit the reconstruction of textures and structures in the
missing regions simultaneously. Furthermore, two kinds of hybrid techniques are
proposed. Each one of them uses a combination of image decomposition with PDE-
based inpainting and TEBI methods. Three kinds of decomposition methods have been
studied to decompose the image into texture and structure components; the total
variations in Lt, L?and 4™ order PDEs. The texture component obtained by using total
variation in Ltis sharper than the one obtained by using the other two methods. On the
other hand, the TEBI method has been used to recover the missing region in the texture
component. The results of this method show that it outperforms the texture-synthesis
method described in (Efros & Leung 1999) in addition to consuming less computational

time.

The last step is the high order PDE-based inpainting which has been successfully used
to recover the missing regions in the structure component. All in all, the proposed
hybrid technique has been applied to recover texture and structure information in the
missing regions in both the spatial and frequency domains. Furthermore, the proposed
hybrid technique has been used to recover the information in the frequency domain by
using the wavelet transform as a decomposition method to analyse the image into high
and low-frequency sub-bands (i.e. structure and texture components). The TEBI and
PDE methods have been applied to recover the missing regions in the low and high-

frequency sub-bands in the 2" and 3™ level.

The hybrid technique is used in two ways: 1) recovering missing regions and 2)
removing unwanted objects r, as in Figure6-7, 6-8 and 6-10. The hybrid image
inpainting technique provides better visual quality results compared to other single
methods, as shown in Figure6-7 and 6-9. These techniques have been tested
experimentally by applying them to five different inpainting domains (i.e. damaged
regions) by using natural image datasets in both spatial and frequency domains. The
quality of inpainted images has been evaluated by statistical measurements. The
experimental results of the proposed hybrid techniques have been compared with the
results obtained using the Bertalmio and TEBI techniques. The results of the proposed
hybrid technique outperform the results obtained by using Bertalmio technique.
However, the results obtained by using TEBI technique are more efficient than those

obtained by using the proposed hybrid technique. The TDA approach has been proposed
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to study the quality of image inpainting, and it is more successful in this application
than statistical measurements. The overall execution time of the proposed technique is
about 3-5 minutes without any improvements in its speed. Most of the computing time
is consumed by the execution of the PDE method which includes a high number of
iterations used to recover the missing region. As explained before, the hybrid technique
Is a combination of three main components, each of them includes several methods.
Furthermore, finding the best combination among the available methods is still an open

task. In the future, many experiments should be conducted in order to accomplish this.

To conclude, the hybrid and TEBI techniques have successfully reconstructed the
texture and structure simultaneously in the missing regions in the natural images.
Nevertheless, these techniques still have drawbacks in reconstructing large missing
regions in the natural images. Therefore, to address this issue, the next chapter
introduces a novel additional step to our inpainting technique to be based on the

interesting concept of seam carving.
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Chapter 7 INPAINTING LARGE MISSING
REGIONS BASED ON SEAM CARVING

In the last 5 chapters of this thesis, are reviewed, modified, developed and conducted
extensive comparative testing of the performances of a variety of partial/total inpainting
approaches to restore missing image data. The common strategy in all schemes is that of
information propagation from the missing region's neighbouring areas, pixel by pixel, to
fill in the missing texture and structure information. The main existing and developed
schemes are modelled on numerical solutions of different order partial differential
equations based inpainting (PDE-BI), a variety of exemplar-based inpainting (EBI), and
also hybrids of these models. Overall, the various tests show very promising results and
lead to achieving the desired effects in most cases especially when dealing with
relatively small missing regions. This chapter investigates the challenge of inpainting
relatively large missing image areas and develops an innovative approach that exploits
the benefits of the recently developed Seam Carving concept to reduce the investigated
challenge to that of inpainting “relatively small” missing areas problem. We shall

demonstrate empirically the success of this innovative reductionist approach.

The rest of this chapter is organised as follows: The challenge and review existing
approaches are introduced to the inpainting of large missing regions in section 7.1. The
concept of the seam-carving operator is presented and explained in section 7.2. The
reductionist seam-carving technique is introduced in section 7.3. The effect of different
levels of seam carving on the inpainting challenge will be analysed in section 7.4, while
in section 7.5 the inpainted image qualities are evaluated for various levels of seam

carving. Finally, the conclusions and future directions are presented in section 7.6.

7.1 Inpainting relatively large missing regions - Introduction

The literature review that was conducted on image inpainting and the research work
carried out in this thesis have shown that there are various viable single-approach based
and hybrid models to solve this problem and that each has its own complexity,
advantages and limitations as well as requirements. The common strategy in all schemes

is the iterative propagation of information into the missing region either using numerical
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solution of PDE’s with certain boundary conditions or using exemplar blocks in the rest
of the image (or even from other images) that have “similarities” with border blocks.
Naturally, both approaches are subject to error propagation which can have adverse
effects on the quality of inpainted images which become more apparent with the large
missing regions. This is more obvious in the case of PDE-BI, but provides partial
explanation of how this limitation also affects the EBI based inpainting schemes that
was designed for the task of recovering large missing regions, (e.g. see Criminisi et al
(Criminisi et al. 2004)). It is worth noting that the larger the ratio of missing region size
to the overall image size the less chances are there to find good exemplar patches. The
various attempts that we made to improve the performance of developed schemes have
led to noticeable improvements but with very limited success in inpainting large
missing regions. These schemes include the TEBI, the higher order PDEs and hybrid
schemes, which were successful in reducing the effect of error propagation and in
recovering edges and corners but could not recover large missing regions especially

when the surrounding areas have a rich texture.

The image inpainting problem remains an active area of research and remains
challenging in recovering large missing regions. There are several image inpainting
approaches for recovering large missing regions which have been improved in recent
years; they are roughly classified into two main types: non-Exemplar Based Inpainting
(nEBI) and EBI methods.

The first type, nEBI methods uses Partial Differential Equations (PDE) to propagate the
information from the surrounding (or neighbouring areas of the missing region) to the
missing region. The PDE based inpainting methods have been used to recover small
missing regions such as cracks, dates, texts, advertising signs, or to remove small
unwanted areas, as in (Bertalmio et al. 2000), (Chan & Shen 2002), (T. Chan and J.Shen
2001), (Wei Guo & Li-Hong Qiao 2007), (Bertalmio 2006), and (Esedoglu & Shen
2002). These methods have limitations in reconstructing large missing regions with high

texture in the surrounding areas (i.e. the size of missing regions more than 25%).

Secondly, the EBI method proposes the idea of using a patch-based-exemplar method,
with which textures and structures are simultaneously reconstructed in the missing
region. This task depends mainly on the choice of filling order; an optimal choice will
ensure that linear structures will be propagated before texture filling so that the

connectivity and continuity of object boundaries will be preserved, for which some
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improvements have been proposed, as introduced in (Sharma & Mehta 2013), (Cheng et
al. 2005), (Desai 2012), (Anupam et al. 2010), (Hesabi & Mahdavi-Amiri 2012),
(Sangeeth et al. 2011), (Waykule & Patil 2012), (Zongben Xu & Jian Sun 2010),
(Abdollahifard & Kalantari 2016), (Deng et al. 2015), and (Jassim et al. 2018). These
methods have limitations with reconstructing large missing regions with high texture

surrounding areas.

The size of the missing region affects the performances of inpainting methods, and both
the nEBI and EBI methods do not perform a well in recovering large missing regions.
Therefore, in this chapter, a novel inpainting technique for recovering large missing

regions is introduced.

In the literature of inpainting techniques for large missing regions, there are few
publications that report significant success in recovering large missing regions but are
targeting narrow types of applications that use range images. Pixels in any segmented
region have similar range, and depth discontinuities coincide with intensity edges.
Torres et al. in (Torres-Méndez & Dudek 2008) have introduced a technique to recover
large missing regions for 3D indoor environments map colour images captured with
range sensors. Their approximate MAP-MRF estimation at a pixel involves sampling a
histogram of its neighbours, learning the intensity, range statistics via belief propagation
(BP) and edge-detection to improve estimation at discontinuities. The edges have been
built by using a process similar to that used in the inpainting method described in
(Criminisi et al. 2004). The similarity measure which applies a Gaussian kernel to each

neighbourhood has been used.

The authors in (Bhavsar & Rajagopalan 2010) proposed a method which uses the image
segmentation cue to recover large missing regions in range images. They used the
improved mean-shift segmentation (Christoudias et al. 2002) which is more robust than
edge detection in delineating regions. The framework of this method involved local cost
computation based on plane-fitting and local medians over segments, and effectively
used the properties of the mean-shift algorithm to guide the inpainting. The simple
strategy involves plane-fitting and local medians over segments to compute local
energies for labelling unknown pixels. This method achieved high-quality inpainting
with very low errors in spite of significant missing data in observations (of the order of
60% to 90%).
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Since many of the schemes investigated/developed in this thesis work well with small
missing regions, perhaps with some conditions, a plausible approach would be to try to
reduce/transfer the problem to one involving a relatively small missing region.
Conventional resizing the image cannot work due to the fact that such a transformation
doesn’t change the ratio of the size of the missing region to the image size. Despite the
fact that image compression reduces the image storage size, it is not clear how
compression could help in this effort because the reduction is achieved by efficient data
coding and decompressing restores the image size. In this respect, it is worth noting that
the standard wavelet transformation of an image has the effect of reducing the
inpainting of any missing region into a number of inpainting procedures of significantly
smaller sizes. Unfortunately, such a transform is not shift invariant, may result in
considerable loss of information and consequently may have a significant adverse
impact on the quality of inpainting large missing regions. This can be clearly
demonstrated by the following example, where a large region of a natural scene image
was removed and recovered by the wavelet-based hybridl scheme presented in Section
6.3.

Original image Masked image Inpainted image

Figure 7-1: Failure of wavelet-based Hybrid inpainting for large missing region.

We note that both conventional image size reduction and wavelet transform has the
effect of uniform down-sampling, and interpolation, which leads to loss of significant as
well as insignificant information throughout the image. This observation shows that for
the intended reductionist strategy to succeed, we need a non-uniform image down-
sampling that removes pixels without losing important image content. Fortunately, the
known concept of seam-carving, introduced by Avidan and Shamir in (Avidan &
Shamir 2007), provide us with an appropriate content-aware approach to image resizing
that can be used for both image size reduction and expansion. In this chapter, this
concept is exploited to develop a novel inpainting technique designed especially for the
reconstruction of relatively large missing regions without artefacts. Next, the use of the

seam-carving is described and discussed for image resizing tasks.
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7.2 Seam carving — Introduction and Implementation

The seam carving method, (Avidan & Shamir 2007), is used for resizing the image
without affecting its contents. The basic idea of seam carving is to remove redundant
connected image paths, called seams, without having a noticeable visual effect. A seam
Is an optimal 8-connected path of pixels in an image from left to right and/or from top to
bottom of the image, where an image energy function defines the optimality of the seam.
Roughly speaking, the seam carving procedure will preserve pixels that have high
energies in comparison with their surrounding pixels. Mathematically speaking, the
energy of a pixel with respect to the x and y axes may be computed through the
magnitudes of the derivatives with respect to x and y determined by the pixel's
neighbourhood, which is known as gradient operator. Different energy functions have
been proposed in (Rubinstein et al. 2008), (Ye & Shi 2017), (Zhu et al. 2016), (Itti et al.
1998), and (Harris & Stephens 1988).

Throughout this thesis we adopt the following mathematical equation for the energy

function; let f be an n X m image:

e =[] + ]2 7.1
This energy function is used to determine the locations of candidate seams in the image
to be removed and can be implemented in different ways. The Prewitt and Sobel filters
are commonly used to compute the discrete differentiation operators, in the x and y
directions by convolution weighted 3x3 kernels with the input image. The Prewitt

filters are defined

1 0 -1 1 1 1
fx=[1o—1], fy=[ooo]
1 0 -1 -1-1-1
While the Sobel filters are
10-1 1 2 1
fx=[20—2], fy:[O 0 o]
10-1 -1-2-1

Where f, and f, represent the first derivative filters for the x and y directions
respectively. Figure7-2 shows the applications of the energy function on a natural

image.
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Figure7-2: Different energy functions for the natural image. (2) and (b) Energy image by a
gradient operator using Prewitt and Sobel filters, respectively. (c) Energy image by the entropy
of the gradient operator. (d) Energy image by the histogram of the gradient.

In the above Figure, the energy function calculated by using the gradient Sobel filter
produces images with higher intensity values along edges within the image than that
calculated using the gradient Prewitt filter. The output image obtained by using the
entropy energy function is smoother and has higher intensity values along edges. The
result of using the histogram energy function is higher intensity values along edges.
More information about edge-detection filters can be found in (Gonzalez & Woods
2008).

It is worth noting that the type of energy function used to remove seams from a missing
region is based on calculating an energy function from f, once by gradient and then by
entropy operators, then adding both of them together as clarified in

Figure7-4 b.

The size of the image is retargeted to a smaller size by repeatedly carving out seams in

both directions; a vertical seam S* is defined as follows:

§* = {S7}ey = {(x(D, D}iza (7.2)
Such that Vi, |x(i) —x(i — 1)| < 1, and x is a mapping defined as x:[1,...,n] —
[1,...,m]. A vertical seam represents an 8-connected path of pixels in the image which

goes from top to bottom and contains only one pixel in each row of the image, see
Figure7-4 c.

Similarly, a horizontal seam SY is defined as follows:

s =1{s7}_, = {0 yi)L (7:3)
Such that Vj,|y(j)) —y( —1)| <1,y is a mapping defined as y:[1,..,m] —
[1,...,n]. A horizontal seam represents an 8-connected path of pixels in the image
which goes from left to right and contains only one pixel in each column of the image,

see
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Figure7-4 d.

The pixels of the path of seam S, for instance, a vertical seam {S;} will be

us = {u(Si)}iz = {ulx@, i,
Observe that, after the removal of row or column from an image, the missing seam will
be compensated for by shifting all the pixels of the image left or up. The energy of a

seam is defined as follows:

n

E(S) = E(us) = ) e(u(s)). (7.4)

i=1
The optimal seam (path) S$*, which minimises the total seam energy of each pixel in the
path is defined by the next formula:

n
§* = minE(S) = msinz e(u(S)). (7.5)
i=1
The general aim of using the seam-carving operator on an image is to resize the whole
image for extension or shrinking. Figure7-3 shows the flowchart of the general seam

carving approach for reducing/enlarging the size of the image.

Ener Seam Image

Image b W il Seam finding == Removal/ = Reduced/
Function ”

addition Enlarged

Figure7-3: The flowchart of the seam carving approach for image reduction/enlargement.

The process of applying the seam-carving approach is illustrated in Figure7-5, which
shows the application of seam-carving to reduce the size of image vertically and

horizontally by removing 20 seams vertically and horizontally from the image.

Figure7-4: Seam carving process. (a) Original image, (b) energy image, (c) and (d) determining
20 vertical and 20 horizontal seams, respectively, (e) and (f) removing 20 horizontal and 20

vertical seams in image, respectively.
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As mentioned previously, the seam-carving approach targets the seams that have low
energy values. Therefore, to applying seam carving to solve an image inpainting
problem, the seam-carving approach is used to reduce the size of an occluded region to

enhance the inpainting technique when it is applied to that region.

Figure7-5 shows the application of seam-carving to an occluded region in an image.

Figure7-5: Seam carving process. (a) Masked image, (b) energy image, (c) and (d) determining
20 vertical 20 horizontal seams, respectively, (e) and (f) removing 20 horizontal and 20 vertical
seams in image, respectively.

As explained before, the seam is chosen based on the energy intensity values of its
pixels. The vertical and horizontal seams have been determined in different places on

the pixel energy intensity values in

Figure7-4 and 7-5. To reduce\enlarge the region of interest in the image, we set to zero
the values in the region which needs to be recovered which means that the region of
interest will have low energy values; this will help to determine the seams in the region

of interest, as seen in

Figure7-4 and 7-5. Different energy functions have been tested on the images; all these

energy functions have helped to determine the seams in the occluded regions.

Many inpainting methods have limitations with large missing regions. Based on our
observations from the literature, the largest missing region that can be recovered using
the TEBI method is of an area corresponding to 20% of the total area of the original
image. Therefore, we are proposing to reduce the size of the missing region using the
seam carving method, after which the TEBI method is applied to reconstruct the
reduced size missing region. To recover the original size of the image, the old seams
will be added back; this will leave missing thin lines that can be recovered using PDE-
Bl method. The method of our technique will be explained in the next section.
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7.3 Seam-carved approach to inpainting
The aim of proposing this technique is to reconstruct a large missing region by using
seam carving, TEBI, and PDE methods. The steps of the proposed technique are

represented as follows:

1. Read the input image with a marked region to be removed.

2. The seam-carving approach is applied to shrink the missing region.

3. The TEBI method is used to recover the shrunk missing region in the image
(Jassim et al. 2018).

4. Add back the old seams to recover the original size of the image. However, the
original information of the added seams is missing.

5. The MES method is applied to reconstruct the missing paths (seams).

Whether the shrinking of the missing region occurs vertically or horizontally is based on
the nature of the shape of the missing region in an image. The steps of the proposed

technique are illustrated in Figure7-6.

Figure7-6: Inpainting-based seam-carving approach. (a) Original image. b) Image with
occlusion, (c) Shrunk occlusion by removing 30 seams. (d) TEBI Inpainted of (c). (e) Re-
inserting seams. (f) PDE-BI Inpainting of seams.

In the next section, the proposed technique is described to be used for large object

removal and for recovering large missing regions in natural images.

7.4 Experimental results

In this section, the proposed technique is tested on a variety of natural images, selected
from the Berkeley Segmentation Dataset and Benchmarks 500 (BSDS500), see Section
3.6.1, and compared the experimental results of the proposed technique with those of
the classical EBI method (Criminisi et al. 2004) and TEBI method (Jassim et al. 2018)
(i.e. which has been implemented without the use of seam-carving). The seam-carving
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inpainting is used to remove large unwanted objects, and to reconstruct missing regions
of various large sizes. These experiments are meant to check the effectiveness of seam-
carving inpainting and establish the success of the reductionist strategy based on the

direction and the number of removed seams.

Figure7-7 displays some selected sample of images resulting from the implementation
of our technique besides the EBI and TEBI methods for large objects removal. This
figure provides a means of visual comparison of the performances of these three

methods and demonstrates the superiority of the seam-carving inpainting approach.

Figure7-7: Large object removal examples. (a) Original images, (b) masked images, (c), (d),
and (e) inpainted images using EBI, TEBI, and proposed inpainting methods, respectively.

The above results show that the proposed technique outperforms EBI and TEBI
methods. However, the number of seams to be removed is limited as it is directly related
to the performance of the MESm. In the case of using a large number of seams, MESm
produces artefacts when the seams are condensed next to each other. We found by
experiments that the number of seams to be removed is better limited to between 20%
and 30% of the size of the missing region.
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The direction of seams can be determined based on the shape of a damaged region and
the geometry of the surrounding areas of a missing region. That will help, after
recovering the missing region, reinsert the seams without effect on the inpainted regions,
as seen in Table 7-1, which presents the ratios of missing region sizes to the whole
image size before and after using seam carving approach for each image illustrated in

Figure7-7.

Figure7-7: row number - | Size % of the occluded | Size % of the occluded
Seam Direction region before reduction | region after reduction
Row 1- Horizontal 21.9097% 17.5681%
Row 2-Vertical 22.7639% 18.2821%
Row 3-Vertical &Horizontal 31.1759% 21.6329%
Row 4-Vertical 25.9162% 19.6148%
Row 5- Horizontal 23.8266% 19.3262%
Row 6-Vertical 30.2734% 20.2324%

Table 7-1: Ratios of missing regions size to whole images in figure 7-7 before and after seam-
carving.

Table 7-1 is shown the direction and the quantity of removed seams that applied in the
first step from the proposed technique process. The proposed seam-carving technique is
also used to recover large missing regions in the natural image. Figure7-8 shows some
results giving comparisons of the uses of the EBI and TEBI methods for recovering
large missing regions. The visual comparison of their performances again demonstrates

the superiority of the seam-carving schemes and the success of our reductionist strategy.
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Figure7-8: Recovering large missing regions examples. (a) Original images, (b) masked images,
(c), (d), and (e) inpainted images using EBI, TEBI, and proposed inpainting methods,
respectively.

Similarly, the direction of seams can be determined based the shape of the damaged
region and the geometry of its surrounding areas, as seen in the table below, which
presents the ratios of missing regions sizes to the whole image size before and after

using the seam carving approach for each natural image described in Figure7-8.

Figure 7-8: row number - | Size % of the occluded | Size % of the occluded
Seam Direction region before reduction | region after reduction
Row 1-Vertical 23.9573% 19.2061%

Row 2-Vertical 21.8241% 17.5991%
Row 3-Vertical 28.7831% 21.3971%
Row 4-Vertical 23.2162% 18.6818%
Row 5-Vertical 30.4921% 21.9861%
Row 6-Vertical 20.8918% 17.1562%
Row 7- Horizontal 29.8565% 23.6753%

Table 7-2: The size of the missing regions to the whole images in figure 7-8 before and after
reduction using the seam-carving method.

From the various experiments, we observed that there is a clear logical link between the
geometry directions of the surrounding areas of the missing region and the direction of
the removed seams. More precisely, the direction of seams can be determined based on
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the structure directions of the surrounding areas of missing regions. This helps the patch
selection to be propagated better. As an example, the size of the missing region in row 2,
4 and 6 in Figure7-7 is reduced vertically by removing the vertical seams. We can also
see in row 1, 5 and 7 in Figure7-7 and 7-8, respectively, that the size of the missing
region has been reduced horizontally. Also, we reduced the size of the missing regions
in both directions as seen in row 3 Figure7-7. On the other hand, We found by
experiments that the number of seams to be removed is better to be limited between 20%
and 30% of the size of the missing region, that allows to PDE-BI methods to get better
results, where the number of removed seams affects on the performance of PDE-BI

methods.

The subjective examination of the output from various experiments demonstrate beyond
any doubts that the proposed technique outperforms the original EBI and TEBI methods,
especially when the size of the missing region is relatively large, and the surrounding
area of the missing region has high texture and structure. This can easily be seen in
Figure7-7 and 7-8. More precisely, as shown in the third, fifth, and sixth rows images in
Figure7-7 and the first, third, and sixth rows images in Figure7-8, the proposed method
successfully reconstructed the missing regions in column (d), but there is a need to
continue the edges from the outside of the missing region to the inside. Consequently,
the proposed technique can successfully reconstruct sharp edges sequentially even when
the missing region is relatively large, due to the use of the seam carving approach which
enhances good patch-size propagation selection using topological invariants. As a result,
the priority function determines the best location in which to propagate the information
steadily. The missing region can then be reconstructed fully based on the information in

the surrounding area.

The next section will be focusing on quantitative evaluation of inpainting schemes, by
assessing image quality for a sufficient number of different natural images in terms of

different objective measurements.

7.5 Image Quality Assessment

It is widely accepted that image quality assessment is not an easy task and has not been
fully solved yet (Chandler 2013). Notwithsatnding this difficulty, the qualities of image
inpaintings produced by using the seam carving scheme have been assessed
qualitatively and quantitatively. We rely on subjective visual analysis to assess

inpainted images qualitatively. However, for quantitative evaluation, the common
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statistical quality measures and the TDA approach have been used to evaluate the
inpainted images and the corresponding inpainting techniques. The results of the
proposed technique are compared to the results of the EBI and TEBI methods. To
deeply study the efficacies of the proposed inpainting technique, we have applied it to
the set of images (natural databases) described in section 3.6.1. The next two sections
show the assessment of image inpainting by using statistical measurements and the
TDA approach respectively.

7.5.1 Statistical measurements for image quality

A set of experiments has been conducted, and the results on the natural images are
reported. The inpainted images have been evaluated in two cases when a reference
image (i.e. original image) is available, and when it is not. The efficacy of the proposed
inpainting technique is studied by measuring the quality of its output images using a
variety of statistical quality measures. The performance testing experiments are
conducted for two different inpainting tasks: removing large objects and restoring large

missing regions.

The original images of the Berkeley database were used as the references in order to
measure the quality of inpainted images. For each of the two inpainting tasks, five
experiments will be conducted on 50 images of this data set. These selected images
have complex texture and structure, which help to check the efficacy of novel inpainting

method in recovering texture and structure in large missing region.

The aim of these experiments is to study the effect of combining two inpainting
methods on regions of different sizes and with high texture and structure around them.
The steps presented in Section 4.7.2.1 are followed to create the inpainting masks. Five
cases of inpainting masks have been used to study the efficacy of the proposed
technique and to compare it with the EBI and TEBI methods. The mask images belong
to 5 different cases (Casel, Case2, Case3, Case4, Caseb) representing different sizes
and a different number of missing regions in different positions within the images.
Figure7-9 illustrate these five cases of inpainting mask (i.e. inpainting domain)

representing five damaged/removed regions applied to the database images.

e L o

Damaged image Casel Damaged image Case2 Damaged image Case3 Damaged image Case4 Damaged image Case5

Figure7-9: The same natural image with five different inpainting domains.
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Recall that the first step of using the proposed technique is the application of the seam
carving approach to reduce the sizes of the damaged regions. Table 7-3, below, presents
the sizes of missing regions tin relation to the size of the whole image before and after
applying the seam-carving approach to the damaged images cases that were shown in
Figure7-9. We note that the larger the original size of the occlusion the bigger the

reduction in its size by seam-carving.

Figure 7-9: Damaged Size % of the occluded Size % of the occluded

image Cases region before reduction region after reduction
Casel-Vertical 23.9668% 19.8533%
Case2-Vertical 25.9988% 19.8493%
Case3- Horizontal 32.2152% 21.2498%
Case4-Horizontal 34.5963% 23.8531%
Case5-Vertical 35.4977% 25.8226%

Table 7-3: The size of the missing regions to the whole images in figure 7-9 before and after
reduced using the seam-carving approach.

Figure 7-10 displays some selected images that show the implementation of the
proposed technique and the EBI and TEBI methods to recover the large missing regions

in different inpainting domains.

Figure 7-10: Recovering large missing regions examples. (a) Original image, (b) masked image,
(c), (d), and (e) inpainted image using the EBI, TEBI and proposed inpainting methods,
respectively.
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7.5.1.1 Quality measures for removing large regions

In the first case experiments, the proposed technique has been used to remove large
objects in the natural images; its outputs have been visually compared with those
obtained by using the EBI and TEBI methods, as illustrated in Figure7-7. Through the
analysis of image inpainting results, we found that two main aspects need to be
considered in image quality assessment. First, the completion is blindly performed
without any cue from the original content of the image, that is, the restored regions
depend only on the rest of the image. Therefore, the newly generated pixels should be
consistent with those in the rest of the image. This refers to the coherence of inpainted
regions and enables the detection of undesired visual artefacts. Second, the human gaze
IS more attracted by structures or contours than other parts; hence more impose should
be associated with these salient features. As a result, the MSSIM (Shi et al. 2009),
entropy (E) (Gabarda & Cristdbal 2007) and Coherence structure quality measurement
(CSQM) (A. DANG Thanh Trung, B. Azeddine BEGHDADI 2013) have been used to
check quantitatively the qualities of inpainted images. For more details information

about these measurements see Section2.6.1.

Table 7-4 presents the comparison of the statistical quality measurements values
resulting from inpainting using the EBI, TEBI and proposed methods; the times taken to

get the results using these techniques are also shown.

Figure 7-7: row number Methods used Entropy MSSIM CSQM T(S)
EBI Method 4.5917 0.7347 0.0280 89
RSB (e TEBI Method 45827 | 07538 | 00289 | 17
Proposed Method 4.5615 0.7970 0.0320 234
EBI Method 3.3167 0.8919 0.0231 84
Results of Row 2 TEBI Method 34780 | 08835 | 00243 | 121
Proposed Method 3.1094 0.8974 0.0271 231
EBI Method 5.2871 0.7834 0.0231 132
Results of Row 3 TEBI Method 48853 | 08440 | 00236 | 167
Proposed Method 4.5833 0.9045 0.0257 292
EBI Method 3.5814 0.8115 0.0234 137
Results of Row 4 TEBI Method 35750 | 08426 | 00243 | 181
Proposed Method 3.3842 0.8798 0.0266 265
EBI Method 4.6786 0.7613 0.0511 129
Results of Row 5 TEBI Method 4.6783 0.7635 0.0514 141
Proposed Method 4.6781 0.7887 0.0519 386
EBI Method 4.5643 0.8059 0.0232 137
Results of Row 6 TEBI Method 4.4483 0.8494 0.0272 178
Proposed Method 4.2549 0.8963 0.0283 297

Table 7-4: Inpainted image quality assessment comparison using E, MSSIM, and CSQM.
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In Table 7-4, the statistical quality results following removal of large objects
demonstrated that our proposed technique is capable of effective region filling and gives
high CSQM values with low Entropy values, and the MSSIM values are close to 1.

7.5.1.2 Quality measures for reconstructing large missing regions

This section continues the analysis of the statistical quality measures, but here we
consider images with large missing regions in natural images. The proposed technique
Is applied to restore missing regions in a sample of 40 images from the Berkeley
database. The outputs have been visually compared with the results of EBI and TEBI
methods, as seen in Figure 7-10. The quality of inpainted regions has been studied when
the reference images (i.e. original images) are available. The table below shows
calculated averages of MSE, PSNR, SSIM and EI of our seam-carving inpainting in

comparison with the averages obtained by using the EBI and TEBI methods.

C# Methods used MSE PSNR | SSIM CSQM Entropy | T(s)
o EBI Method 2680.99 | 14.650 0.801 0.137 2.848 63
% TEBI Method 2971.46 | 14.823 0.838 0.147 2,722 120
© Proposed Method 2071.12 | 15.692 0.833 0.151 2.629 181
~ EBI Method 1804.44 | 16.417 0.842 0.146 2.671 72
§ TEBI Method 1501.45 17.486 0.886 0.147 2.691 131
© Proposed Method 1189.15 | 18.182 0.883 0.161 2.629 197
- EBI Method 2654.84 | 15.220 0.763 0.085 3.933 96
§ TEBI Method 214490 15.639 0.712 0.091 4.140 176
© Proposed Method 1695.06 | 16.678 0.757 0.096 3.833 227
<« EBI Method 2409.83 | 15.617 0.756 0.001 3.940 103
% TEBI Method 1915.83 | 16.658 0.798 0.093 3.764 184
© Proposed Method 1519.99 | 17.183 | 0.792 0.097 3.713 243
o EBI Method 1676.91 | 16.827 0.799 0.114 3.354 110
% TEBI Method 1294.35 | 18.160 0.864 0.115 3.332 196
© Proposed Method 934.440 | 19.460 | 0.866 0.118 3.312 283

Table 7-5: Inpainted image quality assessment comparison using MSE, PSNR, SSIM, CSQM
and Entropy.

Table 7-5 clearly shows that the proposed technique again outperforms the EBI and
TEBI methods when using them to recover the large missing regions.

7.5.1.3 Results analysis

This section introduces the analysis of the statistical results of the proposed technique
for large object removal and recovering large missing regions. Firstly, for large object
removal, Table 7-4 shows that our proposed technique is capable of effective removal of

large object by region filling and gives high CSQM values with low Entropy values, and
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MSSIM values close to 1. The entropy represents the amount of disorder in the
inpainted image. Therefore, generally speaking, lower entropy values are better than
higher entropy (Gabarda & Cristébal 2007). The proposed technique obtained lower
entropy value than the EBI and TEBI methods. The MSSIM measure is used to study
the coherence extent of the inpainted region in comparison with the rest of the image. In
addition, CSQM characterises the visual coherence of the inpainted regions and the
visual saliency characterising the visual importance of the inpainted region. High values
of MSSIM and CSQM represent better results (A. DANG Thanh Trung, B. Azeddine
BEGHDADI 2013). The seam-carving scheme obtained higher values of MSSIM and
CSQM than the EBI and TEBI methods, and hence the inpainted regions obtained by
using our technique are more coherent with the rest of their images.

For recovering large missing regions, the image quality measures used in Table 7-5
clearly show that the proposed technique again outperforms the EBI and TEBI methods.
The proposed technique is clearly capable of effective region filling giving high PSNR
values and the SSIM values are close to 1. Moreover, the high CSQM values confirm
the success of the proposed technique. However, it takes a bit more time due to the
amount of calculation entailed during the matching stage. During the testing, it was
found that while some images could look visually pleasing and alike, although they
have different PSNR values.

The performance of the proposed technique has dramatically improved the
reconstruction of edges and corners in large missing regions. The reduced size of the
missing regions introduces massive assistance and allows good patch propagation
selection. We directed the seam carving approach to reduce the size of the missing
region vertically if we want to reconstruct it horizontally and that helps the patch
selection to propagate better as seen in Figure7-8 and 7-10. On the other hand, the seam
carving approach has been applied to reduce the size of the missing regions horizontally,
when we want to reconstruct the missing regions vertically. As mentioned earlier, the
MSE and PSNR are not reliable measures to check the quality of image inpainting.
Therefore, in the following section, the TDA approach will be used to assess the

efficacy of the proposed technique and its output results (i.e. inpainted images).

A warning. The proposed technique directly restores a clear image from a corrupted
input image without any assumptions about the corrupted regions as seen in Figure7-7
and 7-8. However, it does not work well when important structures or details are

damaged because its work depends on the information in the rest of image. These
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structures or details are usually unique to each image. The first four rows in Figure 7-10
show some examples of undesired failure. This warning is a declaration that the results
of restoring large regions that do not have high similarity with the rest of the image are
less than acceptable. This may be due to difficulty in finding matching patches within
the image, and such cases our technique is not guaranteed to recover some missing
regions. Remedying this shortcoming will be a challenge to be dealt with in the future.
Possible solutions could be developed by dictionary of images when searching for
matching patches rather than searching the image itself. The use of deep learning may

provide another solution, but this is outside the realm of this thesis.

7.5.2 Topological Data analysis for image quality

The TDA approach, as a measure of image quality was introduced in (Asaad et al. 2017),
and has been used to evaluate the quality of image inpainting and study the efficacy of
the various developed inpainting techniques. The TDA quality measure is defined in
terms of the number of CCs, but its computation was confined to the inpainted regions
in natural images, because the numbers of CCs in the remaining parts of the inpainted
image and the original image are the same. The same steps are followed in the

construction of the Vietoris-Rips complex which was introduced in 2.6.2.

Recall that there are 7 ULBP geometries each coming in 8 rotations. In our experiments,
the number of CCs is counted at different thresholds T=0, T=5, T=10, and T=15, for the
inpainted images of the above experiments (i.e. five inpainting-domain cases). The
volume of the resulting data from the experiments is far too large to be included in the
thesis, but the results for T=10 are selected as a good representation of the patterns of
TDA values for the entire set of experiment. Figure7-11 and 7-12 show the average
number of CCs of inpainted regions as obtained by using the proposed technique and
the EBI and TEBI methods for five damaged regions from the natural image dataset in
the geometries G5 and G1 at threshold T=10, respectively. The rest of the results of
geometries G2, G3, G4, G6, and G7 at threshold T=10 are presented as an Appendix at
the end of thesis (cf. Appendix D).
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Figure7-11: Evaluation of performance of the proposed inpainting technique using
approach at 8 iterations in G5 at threshold T=10 for 5 inpainting cases of natural images.
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Figure7-12: Evaluation of performance of the proposed inpainting technique using the TDA
approach at 8 iterations in G1 at threshold T=10 for 5 inpainting cases of natural images

Examining these charts we can easily ascertain that the numbers of CCs in the inpainted

areas as recovered by the proposed method are closer to the numbers of CCs in the
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original areas than those observed in the output images from other methods in Geometry
G5 but to less extent in G1. We observed the same pattern of results for the geometries
G4, and G6 at threshold T=10 in the natural images. The geometries G4, G5 and G6
describe the corners, edges and the end lines in the natural images (Ojala et al. 2002).
This means the proposed technique has been successful in reconstructing corners, edges
and the line ends in the missing regions because of the patterns that are described in the
geometries G4, G5, and G6 at threshold T=10. However, the numbers of CCs of
inpainted regions obtained by using the TEBI technique are closer to the numbers of

CCs of corresponding original regions than those ensuing from the EBI method.

Unfortunately, the number of CCs in the inpainted regions for the geometries G1, G2,
G3 and G7 do not follow a clear pattern, however, although the results of using method
described in (Bertalmio et al. 2000) are not visually acceptable, sometimes the numbers
of CCs of inpainted regions by using method described in (Bertalmio et al. 2000) are
close to those observed in the original regions of natural images, which means that these
geometries at threshold T=10 do not act as reliable measures of the image qualities
resulting from these inpainting techniques, as seen in Figure7-12, where this Figure

clarifies the number of CCs in geomatry G1 at threshold T=10.

In conclusion, the TDA approach has been successfully used to study and check the
qualities of image inpainting because this approach is a very sensitive process which
allows the inpainted region to be studied via at seven geometries, and each geometry

has eight rotations which means it will cover all the inpainted regions.

7.6 Summary and Conclusion

We have proposed a novel technique to reconstruct large missing regions in natural
images using seam carving. This technique is based on a reductionist strategy which can
be used to recover large missing regions with high texture contents around them. It
could be used to remove large objects in natural images. Since most of the existing
methods cannot recover large missing regions, the size of the missing region is reduced
by using the seam carving approach. The developed approach acts in a hybrid manner,
in that the TEBI method is used to recover the missing region after which the PDE
method is used to recover the seam lines after adding them back to the inpainted image.
This technique has been tested on many natural images with visually acceptable results.
The proposed technique has succeeded in reconstructing the corners, edges, and line
ends in the missing regions. Our results exhibit high-quality inpainting with very low
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errors. The qualities of the inpainted images that were obtained by using the proposed
technique have been checked by statistical measurements and the TDA approach.
Furthermore, the proposed technique shows better performance than the EBI and TEBI

methods without the resizing approach, as in (Criminisi et al. 2004).
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Chapter 8 CONCLUSIONS AND FUTURE
RESEARCH

Over the last few years, there has been a growing interest in the process of Image
inpainting (image editing) for a variety of purposes and outcomes including the
recovery of lost image data such as colour in different types of regions, or the removal
of undesired image objects. It has several applications such as automatic scratch
removal in old images and films, the removal of dates, text, subtitles, or publicity from
an image/film, adding colour to grayscale images after object removal. In addition, the
emergence of tougher new challenges in this research field in parallel with rapid
advances in, and convergence of, a variety of computational mathematics areas
provided me with a strong motivation to embark on a PhD program of research in this
field exploring its link with my background in numerical solutions of PDEs. Moreover,
the existence of so many inpainting research publications made me realise that for my
project to make useful contribution in the field | must keep awareness of other related
advances in the mathematics of image processing/analysis field in order to inject and
integrate relevant new emerging concepts and/or procedures into my work. In what
follows, the main conclusions from this research work are presented, and then we
briefly report few items of future work including a description of on-going pilot study

extension of this research.

8.1 Work summary

The investigations conducted and frequently refined over the duration of the research
programme, and reported in several chapters of this thesis, focused on reviewing,
modifying, and developing a variety of novel partial/total inpainting approaches to
restore missing image data/colour. Our work was of general nature targeting different
types of images including natural images as well as other types that are subject to

variations in the level and distribution of texture and structure.

The extensive literature review, conducted continuously throughout the project-life,
revealed a variety of general and special purpose inpainting schemes naturally reflecting

the historical changes in the focus of relevant research as well as the emergence of new
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well-intentioned as well as the malicious application of image restoration/reconstruction.
Accordingly, our initial work focused on establishing an in-depth understanding of the
working, and properties, of existing inpainting techniques. We found that a well-
performing PDE-based colourisation scheme was developed under unnecessarily
restricted to certain 3-colour channels system that overlooked the well-established linear
relationship to the other widely used 3-colour schemes. We also found that the less than
adequate visual quality of that scheme was possibly due to restricting the geometric
propagation criteria to a simple TV-model and low order PDE. The relaxation of these
restrictions raised a new challenge on how to quantitatively compare the performances
of our schemes with those of existing schemes. Due to the general objectives of
inpainting, performances need to be evaluated in terms of the connection of edges over
large distances (i.e. the Connectivity Principle) and depend on how smooth level lines

are propagated into the damaged areas (i.e. Curvature Preservation).

Testing the adequacy of such measures must be done through reconstructing small
removed regions surrounded by limited when texture areas for a sufficiently large image
dataset of different types (e.g. natural and face images). The current success of research
conducted in the department on developing topological data analysis tools for detecting
image tampering, revealed the relevance of using TDA approach as an image quality

measure.

Moreover, the study of the non-PDE inpainting approach, i.e. the EBI schemes, revealed
that their success was limited to inpainting regions that are surrounded by highly
textured areas. Again, the ability of TDA parameters to establish such properties

highlighted the relevance of TDA to reducing the limitations of this inpainting approach.

At that stage it was clear than neither of the two approaches, even with our
improvements, could persistently produce visually acceptable images by reconstructing
large missing regions, especially when these regions are surrounded by highly textured
areas. Hence, the next obvious move was to develop hybrid combination inpainting
schemes. However, the success of hybrid approaches has been found to be less than
remarkable. Hence the alternative, was to attempt to develop a mechanism to reduce the
problem of inpainting of large regions into a problem of inpainting relatively smaller
sub-regions. Again, we found several benefits from incorporating the recently

developed seam-carving content-aware image resizing procedure which helped by
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providing us with an innovative reductionist strategy to deal with inpainting of large

missing regions.
The work done, and the achievements of this thesis can be summarised as follows:

1. We extended the partial (YCbCr) colourisation technique proposed by Sapiro in
(Sapiro 2005) for application in other colour spaces. This was based on the
linear/affine relations between the colour spaces then these relations were used
in order to apply this technique on seven other colour spaces. To overcome the
overlapped colours on the edges (artefacts), the Sapiro technique by minimising
total variation of (YCbCr) colour channels of two other geometric functionals is
improved: (1) the directional derivatives of the gradients, and (2) the Laplacian.
The performance of these proposed new schemes is tested on a known database
of natural images in different colour spaces both in the spatial and frequency
domains. Traditional statistical image quality measures have been used to
demonstrate that the PDE algorithm cannot only compete with other algorithms
but also creates acceptable visual inpainting in comparison with three
colourisation algorithms which are given in (Levin et al. 2004), (Popowicz &
Smolka 2014), and (Sapiro 2005). Furthermore, we successfully added colours
to entire grayscale images by using the PDE method in different colour spaces in

both the spatial and frequency domains.

2. The success of the above PDE based partial inpainting algorithms was then used
for total inpainting, when all colour channels are missing. We modified existing
PDE total schemes, which apply the same PDE to restore each of the channels,
by recovering the (grayscale channel) and then following the above Sapiro-like
schemes to recover the rest of the channels. We compared the effects of using
2" and high order PDE methods. Two experiments have been conducted on
natural and human face images sampled from the Berkeley and Yale databases
respectively. Four PDE algorithms have been applied to the two datasets in both
the spatial and the frequency domains. To quantitatively assess the performances
of the various schemes with respect to the quality of the inpainted regions, we
introduced the TDA quality measure to the traditionally used statistical image
quality measures. While the qualitative subjective image quality assessment
results were not reflective of the statistical quantitative measures, the

guantitative TDA approach measures were reflective of the visual quality. The
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results demonstrated that the image inpainting qualities obtained by using the
high-order PDEs are better than those obtained by using 2" and 3 order PDEs
in both spatial and frequency domains. Furthermore, the results of image
inpainting quality obtained by using PDE algorithms in the spatial domain are
better than those obtained by using the same algorithms in the frequency
domain. Our modified total PDE-based algorithms were shown to be more

efficient than existing ones.

3. A novel topological exemplar-based inpainting method (TEBI) has been
proposed to remove large objects and reconstruct large missing regions when
there is high texture in the missing region’s surrounding area. The TEBI method
has been introduced to improve the EBI method by selecting adaptively the size
of the patch propagation based on the quantity of texture and structure in the
surrounding areas of the missing region. Also, a new definition of priority has
been proposed to determine the prioritisation of patch filling places based on the
concepts of the curvature and the total variation of an isophote to encourage
priority filling of the edges and corners in the patches. Finally, a new matching
criteria has been introduced to choose approximate true patches from the source

region to recover the regions surrounded with high texture and structure.

Experimental results illustrated the success of the TEBI method, and image
quality measures confirmed the suitability of the TEBI method. The proposed
method performed well in recovering the image geometries but could not
recover curved or cross-shaped structures completely. Nevertheless, the
proposed method showed better visual results than other exemplar-based
methods in such cases. In particular, the proposed method performed not so well

in cases where the missing region has no similarity to other regions in the image.

4. To allow the reconstruction of missing regions with high texture in the
surrounding areas using PDE methods, we introduced the improvement of the
technique described in (Bertalmio et al. 2003) by using a hybrid of a PDE and
TEBI methods to reconstruct the textures and structures in the missing regions
simultaneously. The scenario of this technique starts by decomposing the image
into texture and structure components using the PDE method, after which the
damaged regions are separately reconstructed by TEBI and PDE methods
respectively. Different PDE methods have been used for decomposing the image

and for reconstructing the missing regions in the structure component.
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Furthermore, the proposed hybrid technique has been used to recover the
information in the frequency domain by using the wavelet transform as a
decomposition method to analyses the image into high and low-frequency sub-
bands (i.e. structure and texture components). The TEBI and PDE methods have
been applied to recover the missing regions in the low and high-frequency sub-
bands in the 2" and 3" level.

The proposed technique has been tested experimentally on natural image
datasets in both spatial and frequency domains. The hybrid technique is used in
two applications which are: 1) recovering missing regions and 2) unwanted
object removal. The experimental results of the proposed hybrid techniques have
been compared with the results obtained from the techniques described in
(Bertalmio et al. 2003) and (Jassim et al. 2018). The results of the proposed
hybrid technique outperform those obtained in (Bertalmio et al. 2003). However,
the results obtained in (Jassim et al. 2018) are more efficient than our hybrid
technique. The quality of inpainting images has been evaluated by traditional
statistical measurements and by the TDA approach. Meanwhile, the proposed
method has failed to recover large missing regions with high texture and

structure in the surrounding areas.

5. Since most of the existing methods cannot recover large missing regions, we
designed a reductionist strategy to reduce the problem to inpainting a relatively
smaller regions. We developed a novel technigue to reconstruct general large
missing regions in the natural images using the seam carving content-aware
resizing procedure. This technique can be used to recover large missing regions
with high texture contents around them. Also, the proposed technique could be
used to remove large objects in natural images. The size of the missing region is
reduced by using the seam carving approach. Next, the TEBI method is used to
recover the missing region. Then the PDE method is used to recover the seam
lines after adding them back to the inpainted image. This technique has been
tested on many natural images with visually acceptable results. The proposed
technique has succeeded in reconstructing the corners, edges, and line ends in
the missing regions. Our results exhibit high-quality inpainting with very low
errors. The qualities of the inpainted images that were obtained by using the
proposed technique have been checked by traditional statistical measurements
and the TDA approach. Furthermore, the proposed technique shows better
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performance than the EBI and TEBI methods without the resizing approach, as
in (Criminisi et al. 2004).

To sum up, the answers to the research questions that arose in section 1.3 have now
been given in chapters 3, 4, 5, 6 and 7.

8.2 Ongoing and Future Research Directions

The work reported in this thesis not only demonstrated the viability of the adaptive PDE
technique along with other inpainting techniques to overcome the problem of large
missing regions in the natural images. However, several potential research directions
have been identified for further exploration. Future work for this research includes
immediate work to address the identified limitations of our current work, follow-up
investigations, and new approaches and methods for inpainting. The immediate future

work includes the following:

1. As explained before, the hybrid technique is a combination of three main
components, each of which includes several methods. Furthermore, finding the
best combination among the available methods is still an open task. In the future,
many experiments should be conducted to accomplish this. On the other hand,
the step of segmentation of textured images will further improve the results on
images with large variability in texture types might not be correctly handled by
the TEBI step without segmentation. Different parameter selections at the image
decomposition stage might also be needed for images containing textures at
many different scales. This opens the door for future investigations in PDE-
based inpainting and TEBI combined with using decomposition method to split
the image into more than two parts (e.g., texture and structure in a series of

images at different scales).

2. Expand the research on the TDA issues. Besides ULBP landmark points, that we
used to quantify TDA measures, one can also use operators like local derivative
pattern (Baochang Zhang et al. 2010), to build simplicial complexes and
consequently extract topological features, and then use the TDA approach to
study the quality of the inpainted image and also to study the efficacy of
inpainting techniques.
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3. The work of TEBI method can also be extended to check the suitability of the
TEBI method (Jassim et al. 2018) when the size of the missing region is more
than 25% of that of the whole image. Computational complexity needs to be
further reduced while retaining the quality of inpainting based on testing other

definitions for priority function and patch matching.

4. In relation to the seam-carving procedure, other definitions of energy functions
that avoid content changing, can be explored for dealing with even larger

missing areas.

5. Automatic detection of inpainting based forgery images is a very challenging
project that we have some evidences that it could benefit from using TDA. In
collaboration with Buckingham colleagues, we recently conducted pilot study to
test an innovative TDA-bases scheme to detect inpainting-tampered images
(using the EBI method). The limited experimental results were promising when
applied to natural and eyeglasses images. Collaborative research will be
continued to refine the first version schemes and to extend this work in detecting
the suspicious (inpainted) regions in the forged images, by studying the
coherence between the blocks in the inpainted images and the original images
(Yang et al. 2017), (Jian Li et al. 2015), and (Chang et al. 2013).

6. .Finally, we shall also investigate recent attempts to use Convolutional Neural
Network (CNN) deep learning inpainting algorithms to explore their
performances in comparisons to the traditional schemes discussed in this thesis.
In this respect and in order to mimic some kind of efficient machine learning, we
also plan to modify the EBI scheme by not relaxing the search for exemplar
patches within the image itself and instead using dictionaries of images patches
constructed randomly from a large dataset of images (Laube et al. 2018), (Varga
& Sziranyi 2017) and (Dong et al. 2015).
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APPENDICES

A.  Evaluation of performance of PDE algorithms
Experiment 1: Evaluation of performance of PDE algorithms using the TDA approach
in the inpainted regions of natural images in ten inpainting domains in both spatial and

frequency domains at threshold T=10, these algorithms described in chapter Chapter 4.
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Figure A-1: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations
in G1 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the
number of CCs inpainted regions in the spatial domain Right column: Average of the number of
CCs inpainted regions in the frequency domain.
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Figure A-2: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations
in G2 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the
number of CCs inpainted regions in the spatial domain Right column: Average of the number of
CCs inpainted regions in the frequency domain.
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Figure A-3: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations
in G4 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the
number of CCs inpainted regions in the spatial domain Right column: Average of the number of
CCs inpainted regions in the frequency domain.
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Figure A-4: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations
in G5 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the
number of CCs inpainted regions in the spatial domain Right column: Average of the number of
CCs inpainted regions in the frequency domain.
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Figure A-5: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations
in G7 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the
number of CCscomponents inpainted regions in the spatial domain Right column: Average of
the number of CCs inpainted regions in the frequency domain.
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Experiment 2: Evaluation of performance of PDE algorithms using the TDA approach

in the inpainted regions of face images in ten inpainting domains in both spatial and

frequency domains at threshold T=10, these algorithms described in chapter 4.
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Figure A-6: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations
in G1 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the
number of CCs inpainted regions in the spatial domain Right column: Average of the number of
CCs inpainted regions in the frequency domain.
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Figure A-7: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations
in G2 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the
number of CCs inpainted regions in the spatial domain Right column: Average of the number of
CCs inpainted regions in the frequency domain.
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Figure A-8: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations
in G4 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the
number of CCs inpainted regions in the spatial domain Right column: Average of the number of
CCs inpainted regions in the frequency domain.
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Figure A-9: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations
in G5 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the
number of CCs inpainted regions in the spatial domain Right column: Average of the number of
CCs inpainted regions in the frequency domain.
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Figure A-10: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations
in G7 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the
number of CCs inpainted regions in the spatial domain Right column: Average of the number of
CCs inpainted regions in the frequency domain.
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B.  Evaluation of performance of EBI methods
Evaluation of performance of EBI methods using the TDA approach in the inpainted
regions of high and low-information natural images in five inpainting domains at

threshold T=15, these algorithms described in chapter 5.
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Figure B-1: Evaluation of performance of EBI techniques using TDA approach at 8 iterations
in G1 at threshold T=15 for 5 inpainting cases of high and low-information natural images. Left
column: Average of the number of CCs inpainted regions in low-information natural images.
Right column: Average of the number of CCs inpainted regions in high-information natural
images.

280



Appendix

TDA-EBI methods, Low tnformation images, Casel, T<15, G2 TDA-EBI nwthods, High infornmtion maeges, Casel, T-15, G2
b x
3 3
!n !m
£ ® Ovighaal 2y # Ovigiusl
v * Crimamnl v * Crimah|
§ " * Asupurn % 1o * Asupors
) *Dag E < *Dag
v = Proposed TERI v *Prgowd TER
® ] -
R RI RS R B R R7 s Rl RI R} L2 RS R6 R B
Rotatieasof LB Rotations of LEI
TDA-ER wethods, Low information mages, Case2, T<15, G2 TDA-EBI methods, High nformation lmages, Case2, T=15, G2
Ll &
- =S
z
iy i.w
!' b3 » Origuat s » Oviginal
; »n * Crimiain ; n *Criminnd
F R * Awap o % 14 * Aowpam
i 10 " Dag ; " «Dvng
o4 = Propowd TEM “ 3 *Progewd TEN
a - - - 0
RI Rl K R R R R R: R R R M R B R R
Retations ol LBP Rotasous of LBP
TDA-EBI methods, Low informuarion lmages, Cased, T<15 G2 TDA-EBI methods, High mformation tmages. Cased, T-18, G2
@ @
‘i L) i »
] 1]
2 E
g ] ® Origmal i  Ovighml
i * Criminmi S * Criminsd
‘t‘ 15 * Anppam ‘: 1* ¥ Apapam
! 0 *Dvag E w0 *Dag
S s #Propasd TERI v s = Propessd TEBI
L) 0
RI R R e R ® R R L R R M R B R R
Rotathons of LEP Romtons of LBP
TDA-FHI methods, Low infornstion lmages, Cased, T=15, G2 TDA-EBI methods, High mformstion lmsges, Cased, T<15, G2
s »
i 0 BN
i i
‘!m .ln-mu ! - i
80
3 Fu * Cominbl
g * Aawpam ! = Anupas
3 10 "Deag : 0 * Daag
G s *Propased TERE - s * Proposel TERS
0 ] . .
Rl R B M B B R B R R R M R B B R
Rotatioes of LEP Rotatmns of LEP
TDAEBI methods, Low information mmages, CaseS, T-15, G2 TDAEBI methods, High mformation msages, Cases, T-15, G2
» o
E % 'g!"xs
%" »Orghl E » #Origal
'; 15 * Criminial ; 15 # Crimamini
i " ¥ Asupam Tw * Aaspun
| R * Dy ! » Doy
“ # Propased TEM ¢ * Proposed TER
. 0
Rl R e R4 RS RS R RS n R n 12 Rs R ® RS
Rotations of LEP Retations of LEP

Figure B-2: Evaluation of performance of EBI techniques using TDA approach at 8 iterations
in G2 at threshold T=15 for 5 inpainting cases of high and low-information natural images. Left
column: Average of the number of CCs inpainted regions in low-information natural images.
Right column: Average of the number of CCs inpainted regions in high-information natural
images.
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Figure B-3: Evaluation of performance of EBI techniques using TDA approach at 8 iterations
in G3 at threshold T=15 for 5 inpainting cases of high and low-information natural images. Left
column: Average of the number of CCs inpainted regions in low-information natural images.
Right column: Average of the number of CCs inpainted regions in high-information natural
images.
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Figure B-4: Evaluation of performance of EBI techniques using TDA approach at 8 iterations
in G5 at threshold T=15 for 5 inpainting cases of high and low-information natural images. Left
column: Average of the number of CCs inpainted regions in low-information natural images.
Right column: Average of the number of CCs inpainted regions in high-information natural
images.

283



Appendix

TDA-EBI methods, Low nformation lomges, Casel, T-18, G6 TDA-EBI methods, High bformation lomges, Casel, T=15, G6
o b ]
1 18 1 "
il )
§ i } H <
1 1 S Ovigml 8 7 Orighast
n « Crimists “h #Criminkd
Ty I
’ 5 * Appan 2 i ¥ \nspam
iy "Dz iy *Dwg
v = Propesel TEHI v 2 Py opoud TEBE
" 0
R R B M R B R R RI R R B B R ® N
Rotations of LEP Rotasansof LEP
TDA-EBI methods, Low information tmges, Case2, T<15, G6 TDAEBI seethods, High nformation lmages, Case2, T<15, G6
. 15
iw 2
]
i:.« - 3 )
iw  Origisal » ® Original
v * Crimisis b * Criminis
TS & ! 15
E Asupmn v * Aaupam
 Kad *Dug g0 *Deag
V) # Prepsced TEUI ds ¥ Propowd TERI
. 0 - . 8 LS E L
R R B M BB B B R Rii R R R R W R RS
Rotatioes of LEF Rotatsous of LBP
TDA-EBI methods, Low infermation mages, Casel, T-15, G6 TDA-EBL mwthods, High Wonmatico bmages, Cased, T<15, G6
s »
i ] ; »
PR 2
iy 0rigad !m # Original
v * Criminisi v * Crinsaid
T Y
H * Anupam < * \supam
: 10 Et ! " R
s ® Propeend TERE oS # Propased TER
0 - - - - 0
RI R R R RS R R Rs RI R R B B R K =R
Rotatoss of LEP Retations of LEP
TDA-EBI methods, Low informstion musges, Cased, 1=15, Go TDA-EBI methods, High mformation mages, Cased, T-15, G6
28 *
i 0 g »
L :
gls " vigmal %’ 1 ® Original
v  Criminini . ® Crisminisi
§ n " Amipun § » * Asupan
e *Damg 8. * Deng
e 7 e -
] * Pragowd TER v * Propesnl TERE
0 - - - e 0 - - -
Rl R R R R R R Rl R R M R B R R
Rolations of LEP Rotstions of LEP
TDA-EBI methods, Low inffermation mmages, CaseX, 114 Go TDA-EBI methods, High fnformation tmages, CaseS, 1=15, Go
» 2
i i»
H H
i 15 # Orignal s # Ovigial
; » Criminid . ® Criminis
g * Ampus s # Asupen
o
v * Progosed TEBI “ " Progosd TEBI
0 0
Ri @ R R B W R RS R R B M B B R
Rotations of LEP Rotatious of LIP

Figure B-5: Evaluation of performance of EBI techniques using TDA approach at 8 iterations
in G6 at threshold T=15 for 5 inpainting cases of high and low-information natural images. Left
column: Average of the number of CCs inpainted regions in low-information natural images.
Right column: Average of the number of CCs inpainted regions in high-information natural
images.
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C. Evaluation of performance of Hybrid techniques
Evaluation of performance of hybrid techniques using the TDA approach in the
inpainted regions of natural images in five inpainting domains in both spatial and
frequency domains at threshold T=10, these algorithms described in chapter 6.
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Figure C-1: Evaluation of performance of hybrid techniques using TDA approach at 8
iterations in G1 at threshold T=10, for 5 inpainting cases of natural images. Left column:
Average of the number of CCs inpainted regions in the spatial domain. Right column: Average
of the number of CCs inpainted regions in the Frequency domain.
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Figure C-2: Evaluation of performance of hybrid techniques using TDA approach at

8

iterations in G2 at threshold T=10 for 5 inpainting cases of natural images. Left column:
Average of the number of CCs inpainted regions in the spatial domain. Right column: Average
of the number of CCs inpainted regions in the Frequency domain.
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Figure C-3: Evaluation of performance of hybrid techniques using TDA approach at 8
iterations in G3 at threshold T=10 for 5 inpainting cases of natural images. Left column:
Average of the number of CCs inpainted regions in the spatial domain. Right column: Average
of the number of CCs inpainted regions in the Frequency domain.
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Figure C-4: Evaluation of performance of hybrid techniques using TDA approach at 8
iterations in G4 at threshold T=10 for 5 inpainting cases of natural images. Left column:
Average of the number of CCs inpainted regions in the spatial domain. Right column: Average
of the number of CCs inpainted regions in the Frequency domain.
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Figure C-5: Evaluation of performance of hybrid techniques using TDA approach at 8
iterations in G7 at threshold T=10 for 5 inpainting cases of natural images. Left column:
Average of the number of CCs inpainted regions in the spatial domain. Right column: Average
of the number of CCs inpainted regions in the Frequency domain.
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D. Evaluation of performance of proposed technique based on
seam carving

Evaluation of performance of proposed technique for large missing regions using the
TDA approach in the inpainted regions of natural images in five inpainting domains at
threshold T=10, these algorithms described in chapter 7.
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Figure D-1: Evaluation of performance of the proposed technique using the TDA approach at 8
iterations in G2 at threshold T=10 for 5 inpainting cases of natural images.
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Figure D-2: Evaluation of performance of the proposed technique using the TDA approach at 8

iterations in G3 at threshold T=10 for 5 inpainting cases of natural images.
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Figure D-3: Evaluation of performance of the proposed technique using the TDA approach at 8
iterations in G4 at threshold T=10 for 5 inpainting cases of natural images.
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Figure D-4: Evaluation of performance of the proposed technique using the TDA approach at 8
iterations in G6 at threshold T=10 for 5 inpainting cases of natural images.
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Figure D-5: Evaluation of performance of the proposed technique using the TDA approach at 8
iterations in G7 at threshold T=10 for 5 inpainting cases of natural images.
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