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Abstract. This paper introduces a topological approach to detection of image
tampering for forensics purposes. This is based on the emerging Topological
Data Analysis (TDA) concept of persistent homological invariants associated
with certain image features. Image features of interest are pixels that have a
uniform Local Binary pattern (LBP) code representing texture feature descrip-
tors. We construct the sequence of simplicial complexes for increasing sequence
of distance thresholds whose vertices are the selected set of pixels, and calculate
the corresponding non-increasing sequence of homology invariants (number of
connected components). The persistent homology of this construction describes
the speed with which the sequence terminates, and our tamper detection scheme
exploit its sensitivity to image tampering/degradation. We test the performance
of this approach on a sufficiently large image dataset from a benchmark dataset
of passport photos, and show that the persistent homology sequence defines a
discriminating criterion for the morphing attacks (i.e. distinguishing morphed
images from genuine ones).

Keywords: Topological Data Analysis - Persistent homology - Image
tampering - Image morphing

1 Introduction

Digital image morphing is an image tampering attack that form a serious threat to the
security of ID token based verification when applied to face photos. Morphing is the
process of transforming one digital image into another digital image. Several powerful
hardware and software tools are available for creating and manipulating images easily
without leaving any noticeable noises on the digital image and thereby undermining the
authenticity and integrity of digital images. When face images are used as evidence of
person proofs then one can no longer take the authenticity of the face images for
granted. Morphing can also be used to attack face biometric systems with adverse
influence on recognition accuracy as a result of allowing non-authorized persons to
access or pass the recognition system. This presents a serious challenge to the digital
forensics community: how to distinguish a genuine source face image from a morphed
image and prevent subsequent security breaches.

Ferrara et al. in [1] introduced morphing attack as a major security concern which
can bypass all integrity checks (optical and electronic). The study illustrated that,
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Automatic Border Control (ABC) systems as well as human experts can be deceived by
presenting a passport with a morphed face photo on it whereby they concluded that two
persons can share one passport. Morphed images in [1] have been created by the freely
available GNU Image manipulation software v2.8 (GIMP) [2] and the GIMP animation
Package v2.6 (GAP) [3]. To evaluate the recognition systems, they tested the quality of
morph images by two commercial tools: Neurotechnology VeryLook SDK 5.4 and
Luxand Face SDK 4.0.

The morphing described in [1, 4] are time consuming because it requires a manual
retouch for more realistic appearance. To overcome this issue, Makrushin et al. in [5]
proposed an automatic splicing-based morphing algorithm to generate thousands of
visually faultless facial morphs. In general, the quality of morphed images is 2-fold;
(i) morphed images need to be visually faultless to human eyes (i.e. no visible artefacts)
and (ii) morphs should be successfully verified against both source images by automatic
face recognition systems. The splicing morph technique is a result of warping and
alpha-blending of segmented facial regions and seamlessly stitching it back into one of
the input (source) images. This approach is different from the complete morphing
technique which takes the complete facial image to warp and blend including hair and
background. Splicing morph result in a more natural looking image than the complete
morph technique which cause the appearance of spurious shadows. Nonetheless, the
geometry of splicing morphs is taken completely from one source image and it has minor
ghosting artefacts which caused by inaccurate localization of facial landmarks. Also, if
the skin color is different for both source images, a splice morph does not look realistic.
These properties make splicing technique to pass the first morph quality measure,
provided that both source images have similar skin color, but miserable regarding the
second quality measure because splicing adopts geometry from one source image only
and it may not look very similar to the other image. A combined morph technique was
also proposed by [5] to overcome the limitations in the two previous algorithms. It warps
the images into an average position first, then it cuts the facial regions, blending and
finally stitching them back on to the warped image. Poison image editing will be applied
as a final stage to obtain seamless transmission between the facial region and the rest of
the image. Combined morph images have an average geometry and texture from both
source images but has no major ghosting artefacts and skin color has no influence.

Different morphing techniques are expected to produce different changes on image
features, and potential digital forensic schemes to detect morphing must identify the
appropriate sensitive features and the nature of resulting changes in order to select
appropriate classifiers. Makrushin et al. in [5] proposed an automatic morph detector
based on Benford features computed from quantized Discrete Cosine Transformation
(DCT) coefficients of JPEG-Compressed images. Frank Benford’s law, roughly, states
that the frequency distribution of leading digits of a set of (natural) numbers is loga-
rithmic. The morphing detector adopted in [5] is based on the hypothesis that unlike
naturally generated data, manipulated data do not obey the Benford’s law. Although
high accuracy in detection of morphed random face images obtained using Benford’s
law, however, they note that using legitimate image processing techniques, one can
create face images with similar Benford feature distribution [5, 6].

In this work, we shall investigate the use of Topological Data Analysis based
schemes that systematically construct the topological shapes associated with a given set
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of specific texture pixels distributed spatially in an image. We shall test the possibility
of using the well-known persistent homology invariant relating to the number of
connected components in the incrementally constructed sequences of shapes as a
morphing predictor. We shall focus on using face images produced by three different
types of morphing schemes (splicing, combined and complete morphing methods). Our
proposed approach is based on the topology of texture descriptors, known as local
binary patterns, of face images.

The rest of the paper organized as follows. Section 2 encompasses the topological
data (image) analysis including recent applications of this emerging scheme. Local binary
patterns are introduced in Sect. 3 as an image texture descriptor to build Rips complexes.
In Sect. 4, our proposed method to detect image tampering introduced together with
experimental results. Finally, Sect. 5 reports the conclusion and future directions.

2 Topological Data/Image Analysis

Topology is a field of mathematics that is concerned with the classification of shapes
(objects) according to their closeness and connectivity properties. In recent years, the
emergence of machine learning for the analysis of Bigdata has energized interest in
utilizing shape and topology of data in complex classification applications. Under-
standing and classifying shape relies on expressing complex shapes in terms of simple
shape building blocks using easy to implement combinatorial construction methods.
Topological Data Analysis is concerned with such challenges [7, 8, 14]. Topologists
have long developed a finite combinatorial process known as simplicial complex,
which can be used to construct the topological shape of datasets of points in any metric
space. Roughly speaking, simplicial complex takes a set of points (0-dimensional
simplices), edges (1-dimensional simplices), triangles (2-dimensional simplices) and
hyper-dimensional triangles and glue them together along their edges and faces to make
complex patterns conveying connectivity and closeness properties. The fundamental
idea behind using topology for data analysis is that via topology, one can extract
shapes, or patterns, from complex high dimensional data sets and then obtaining deep
intuitive understanding about them. Topology has three key properties which enables
extracting patterns, or shapes, possible form high-dimensional data sets. These prop-
erties are; coordinate free, invariant under (small) deformation and compressed rep-
resentation [8]. These three important properties of topology have been discussed in
detail in [7, 8]. Recent application scope of topological data/image analysis includes,
but is not limited to, gait recognition [9, 10, 22], brain artery [20], hurricane and
galaxies analysis [11], dimensionality reduction schemes evaluation [12], classification
of hepatic lesions [21], shape classification using LBP and persistent [13] and many
more.

Topological properties of objects/shapes can be characterized by their homology. In
general, to distinguish distinct objects from one another, one needs to use homology to
measure the number of connected components, loops, and voids of those objects. The
focus of this paper is mainly about computing the number of connected components of
specific uniform LBP patterns from constructed simplicial complexes of face images.
Mathematically, zero homology groups associated with simplicial complexes are
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basically equals to number of connected components. Persistent refers to constructing
more than one simplicial complex from specific LBP patterns using different distance
thresholds. The properties (features) of face images that persist (survive) after changing
these thresholds, which will result in different simplicial complex structures, will be
treated as a true property of that image. In this work, we will focus on computing
persistent homology of Rips complexes as a morph detector constructed from a selected
group of uniform LBP pattern which is the case of having two ones in the LBP code. In
particular, the type of simplicial complex which will be built is known as Vietoris-Rips
simplicial complex (or Rips complex). In order to construct and calculate the corre-
sponding non-increasing sequence of homology invariants of Rips complex one needs
to select a distance threshold (parameter) T as a first step of the construction.

Then gradually increasing 7', higher dimensional simplices will be constructed. For
sufficiently small 7, only zero dimensional simplices will be obtained and for suffi-
ciently large T, a single high dimensional simplex (object) will be constructed. The
features that are surviving after changing the threshold are considered to be true fea-
tures conveying information about morphing face images. The features that are not
persistent by gradually increasing the threshold considered to be noise [7, 19]. This
approach is known as persistent homology where at each distance threshold, homology
invariants will be computed for the image of interest to make decision about being a
morph or a genuine photo image.

3 Local Binary Patterns (LBP)

Local Binary pattern is an image texture descriptor which has been first introduced by
Ojala et al. [15], but since then a variety of versions have been investigated and used in
pattern recognition with considerable success. Given any image I, the original LBP
generates a new image by associating with each pixel an 8-bit binary code determined
by comparing its value with that of its 8 neighbors in a 3 x 3 window surrounding it in
a clockwise order as illustrated in Fig. 1. The process works by first subtracting the
central pixel value from the 8 neighboring pixels, and starting from the top left corner
neighbor each cell is assigned O or 1 depending whether the subtraction outcome is
negative or not. The LBP codes can be converted back to their decimal values rep-
resenting the central pixel (x.,y.) using Egs. (1) and (2), below:

i=7

LBP(x:,y:) = > o(Pi — Po)2' (1)
i=0

where P; is the neighbouring grey value pixels, P, is the centre grey value pixel and the
function a(x) is as follow:

)= { o 20 @
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Fig. 1. Local binary operator

Applying above procedure on the block matrix will result in getting the binary
string 11110000 (decimal = 15), see Fig. 1.

Local texture information, such as edges, lines, spots and flat regions are associated
with certain types of LBP codes named, by Ojala et al. as uniform patterns referring to
8-bit circular bytes that contain either O or 2 bitwise transitions from 1 to 0 and from 0
to 1. For example, 11111111 (O-transition) and 00111111 (2-transitions) are uniform
codes while 10111010 is non-uniform as it has 6 transitions. A circular 8-bit string are
uniform if it contains a single run of 1’s of a fixed length k, withk =0, 1, 2, ... 8. Itis
not difficult to show that the LBP of any monochrome image consists of 58 distinct
uniform patterns. Ojala et al. [15], experimentally demonstrated that 90.6% of all LBP
patterns in texture images are uniform and postulated that the histogram of the uniform
LBP patterns is useful as a discriminating feature in image classification applications.
Ahonen et al. [16], Shan et al. [17], and Meng et al. [18] have used the histogram of the
uniform LBP bins as discriminating features for face recognition and facial expression
recognition. Indeed, currently variations of this LBP-based scheme is adopted widely in
a variety of pattern recognition schemes whenever image texture is an important image
feature for the relevant application.

In this paper, we investigate the use of topological invariants of Rips simplicial
complexes associated with uniform LBP pixels at different distance thresholds for the
detection of morphing attacks on passport photos. Image tampering and morphing in
particular is expected to result in a variety of changes to the position of the different
uniform LBP codes which in return result in changing the corresponding simplicial
complexes. The fact that over 90% of the LBP codes of a face image are expected to be
uniform, constructing and quantifying the homological invariants of their Rips com-
plexes is a rather daunting task. Instead, investigating the complexes constructed from
specific and closely related groups of uniform codes is a more tractable task. Excluding,
the two rather trivial uniform LBP codes of 0000000 and 11111111, the remaining 56
uniform codes can be divided into 7 groups of uniform codes where each group
consists of codes with the same number of 1’s. Each of the 7 groups consists of 8 LBP
codes that can all be generated from a single one by rotation. By examining several
images we noted some interesting statistical relations between uniform codes across the
7 groups, which may be exploited to determine the sensitivity of their topological
invariants to image tampering. Figure 2, below illustrates this idea by showing the
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Splicing morph

Rips complex when there is 2 ones in Rips complex when there is 2 ones in Rips complex when there is 2 ones in Rips complex when there is 2 ones in
LBP code for source image LBP code for combine morph LBP code for complete morph LBP code for splicing morph

Fig. 2. Sensitivity of topological invariants to morphing

simplicial complexes constructed from the positions of a single uniform LBP code for
an original image and its 3 different morphs with another face image.

We initialized our TDA based investigations by focusing first on homological
invariants of the sequence of simplicial complexes associated with the group of 2-ones
uniform LBP codes depicted in Fig. 3. This group is known to be associated with the
geometric structure of an end of a line, and hence it is expected to play a significant role
as image discriminating feature. In the rest of the paper, we shall investigate the

ATV T T VanVoaVos Vg
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Fig. 3. Uniform LBP group of 2-Ones where dark nodes indicate the position of 1.

sensitivity to morphing attacks of the threshold-dependent simplicial complexes con-
structed from this group of uniform LBP codes.

4 Proposed Method

In this section, we describe the two main components of our topological proposal to
detect image tampering. The first component is the procedure for constructing the
threshold-dependent sequence of simplicial complexes associated with any input set of
pixel points in an image. The second component describes our simplified analyses of
the corresponding sequence of a chosen topological invariants for detecting image
tampering. And we present the results of our experiments on relevant database of face
images, where we chose each of the uniform 2-ones LBP pixel points, and the number
of connected components as the topological invariant.
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4.1 Construction of Rips Simplicial Complexes

Given a set of selected image pixel positions P = {p,(x1, y,), p»(X2, ¥2), - - -,
Pu(Xn, ¥,)}- First compute the Euclidian distance between all pairs of points in the set,
and determine the minimum and maximum distance values T,,, and T,... In the
interval [Ty, Trax] select k equidistant thresholds {T; = Ty, T2, -+, Te = Topax}-
For simplicity we fix k = 30 for the purpose of persistent computation, but this number
could be changed if need be. Start by iteratively constructing a simplicial complex by
joining each pairs of points in P if the distance ¢ between them satisfy the relation
Ty <t < T; wherei=2, ..., k. Compute the number cc; of connected components.
If cc; = 1 then stop else increment I and repeat. The output from this procedure is the
sequence (cc, ccy, CCy, .. .cck), Where cc; = #(P) and ccx = 1 represents the ter-
minating threshold. Note that, different point sets may have different threshold intervals
and different length sequences.

This procedure yields a sequence of graphs consisting of the 0-simplicies repre-
sented by the set P and the 1-simplices representing the added edges. At each step, this
construction only generates 1-skeleton of the full Rips simplicial complex which is
sufficient for the current purpose, but the full complex requires the addition of all
possible higher dimensional simplices. For example, every 3 points form a 2-simplex if
they are connected to each other by edges of length less than or equal to the given
threshold. Note that, when the full complex is constructed, it is possible to use homology
based tools to compute the number of distinct shape features within the complex.

4.2 Analysis of the Resulting Topological Invariants

Our ultimate tamper/morphing detection would be based on a supervised machine
learning scheme that would be trained with a set of sequences, output from the previous
step, computed for the Rips simplicial complexes of uniform 2-ones LBP point sets
extracted from a set of original and morphed images. Note that, for each image there
would be 8-sequences of invariants each representing one of 2-ones LBP rotations. For
our proof of concept experiments, we adopted a simplified classification model by
confining our analysis to the second entry (i.e. cc,) of the sequences rather than all the
entries. This will allow us to build a simple similarity function and a naive classifier for
each of the 8 rotation and then use majority rule at the testing stage. The simple
classifier is based on the distributions of the cc, values for a training set of original and
morphed images.

We trained and tested performance of the classifier(s) using morphed images from
the Utrecht face photo database which have been created by [5]. The training was based
on, 28 images (14 original and 14 morphed) for each morphing schemes, and calculated
the averages and standard deviations of the cc, values in each class for each of the 8
rotations of the uniform 2-ones LBP point set. Table 1, below, displays the results
obtained for the original images and the 3 morphing schemes.
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Table 1. Statistics of connected components (14 original and 14 morphed) images for 2-ones
LBP at 7,

LBP code | Original Splicing Combined | Complete
morphed morph morph

Mean | Std. |Mean | Std. | Mean | Std. | Mean | Std.
00000011 | 16.23 | 14.19 1 60.13 | 13.33 | 66.83 | 5.91 | 31.58 | 8.94
00000110 | 20.31 | 14.62 | 57.73 | 14.47 | 61.83 | 6.48 | 36.83 | 10.58
00001100 | 21.92|16.63 | 64.27 | 13.07 | 68 4.67 | 38.75 | 8.87
00011000 | 22.31 | 13.18 | 65.87 | 12.68 | 69 7.32141.08 | 8.66
00110000 | 24 15.80160.4 |10.50|69.58 |4.50|37.92|11.60
01100000 | 22.86|17.90 |60.6 |11.91|73.58 |7.43|37.08 |9.01
11000000 | 18.66 | 13.97 | 61.8 | 10.77 | 64.42 | 6.84 | 35.58 | 5.93
10000001 | 22.46 | 16.87 | 62.67 | 11.62 | 69.42 | 6.39 | 38.08 | 10

The results in this table, show that across all rotations the average cc, values for the
original images are well below those calculated for the morphed images. Taking into
account the corresponding standard deviations, we see that the best separation gap is
achieved by the combined morphing scheme followed by those achieved by the
splicing morphing, and the complete morphing resulted in significantly lower gaps. The
positions of the considered texture features of 2-ones LBP pixels in human face images
do not vary significantly, for a proof of concept it is reasonable to suppose that the cc,
values are normally distributed. At later stages of this research work more sophisticated
statistical measures will be used and larger number of images needs to be tested to
determine the actual distribution of the cc, values.

The above assumption, although not completely necessary, allows us to use known
facts about normal distributions to determine with good accuracy the probability that an
input image belongs to either class (genuine or morphed). In fact, for each rotation we
can classify an input image we simply need to find the position of its cc, value in
relation to the overlap regions between the two distributions as depicted in Fig. 4.

When classifying any input image, we use all eight rotations and use majority
voting to make the final decision on the class of image. Whenever the result of voting
was a draw of 4 then it is an ‘undecided’ case.

mul = 60.13, sigma1l = 13.32
mu2=16.23, sigma2=14.19

Fig. 4. Distributions of cc, values for and the training set of morphed and genuine images
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4.3 Testing Experiments

We tested our hypothesis on a large number of face images from the Utrecht face
database, excluding the 28 images in the training set. Morphed images in our experi-
ment have been created by Makrushin et al. [5]. We randomly selected 100 images (38
original and 62 morphed) and calculated the cc, values for the 8 rotations of the 2-ones
LBP pixels and classified them as describe above. For splicing morphing scheme, our
method correctly classified 98% of the images. Incorrectly classified images were
original images in this case. In the case of combined morph approach, 99% of the input
testing images were correctly classified and unlike the splicing technique, misclassified
images were morphed images. Unfortunately, around 60% accuracy was achieved with
the complete morphing scheme and most misclassified images are morph images.

These testing results, demonstrates the viability of using TDA based classification
to automatically detect morphing attacks. More testing are needed to confirm these
results and other invariants might have to be incorporated to get high accuracy rates for
all existing morphing schemes.

5 Conclusion

We introduced a new topological data analysis based approach to investigate image
tampering and in particular to detect known morphing attacks on passport face photo
images. The idea was conceived as a result of observations made on a variety of
changes in image texture as a result of morphing two original images, and the growing
evidence of success of the TDA concept of persistent homology on classification and
clustering of textured geometric shapes. We noted a variety of changes of topological
invariants of threshold dependent simplicial complexes constructed for uniform LBP
image pixel points as a result of morphing. We conducted a proof of concept experi-
ment to test the viability of using TDA for detecting image tampering, and we conclude
that the noted changes on the various topological invariants is rich potential of using
TDA for the detection of image tampering and to build digital forensics tools. The
significantly high accuracy, albeit of limited experimental work, of a morphing
detection scheme that uses only the invariance of connected components, as a face
related texture descriptor, has shown the potential for success of TDA based approach
beyond any doubts.

The next step in this work would be to consolidate our investigations by conducting
a much wider experimental work to test and prove the validity of the proposed inno-
vative hypothesis exploiting the huge potential offered by a variety of persistent
homology invariants for a mix of different groups of uniform LBP point sets as well as
other image texture descriptors.
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