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Abstract—The main attention of research on data stream clus-
tering algorithms so far has been focused on the adaptation of the 
algorithms for static datasets to the data streams and improve-
ments of the existing adapted algorithms. Such algorithms fulfil 
the purpose of the first-order learning from data to clusters. This 
paper prompts a new question on second-order learning of cluster 
models from data streams and presents a learning algorithm that 
detects persistent clusters from consecutive clustering snapshots in 
data streams. In this work, we first collect a sequence of cluster 
snapshots as the output clusters at selected query points and then 
identify the persistent clusters within a given timeframe. The 
algorithm is evaluated on collections of synthetic datasets. The 
experimental results have demonstrated the effectiveness of the 
algorithm in detecting such persistent clusters.  

Keywords-Data Stream Clustering Algorithms, Persistent 
clusters, Clustering of Clusters, Second-order Learning  

I. INTRODUCTION 

Data stream clustering is defined as a grouping of data in 
light of frequently arriving new data chunks for gaining 
understanding about underlying group patterns that may change 
over time [1]. Depending on the approaches taken, either 
incremental learning or two-phase learning, existing algorithms 
for data stream clustering either present an up-to-current-time 
view of clusters [2] or generate a view of clusters at a user query 
point [3]. However, there is no keeping of a historic trail of the 
output cluster models over time. If such a historic trail is 
maintained, the persistence of certain clusters can be analysed 
through a second-order learning, i.e. learning persistent clusters 
by mining the clustering outputs collected over a sequence of 
time points. Stability of output clusters in static datasets has 
been well researched, and has a lot of advantages including 
predicting a correct number of clusters, detecting the lack of 
structure in the dataset, and assessing the quality of clustering 
algorithms [4][5]. However, identifying the persistent clusters 
in data streams has not been properly studied.  

There are a lot of potential applications that can benefit from 
finding persistent clusters in the data streams. Tracking social 
media events such as birthdays, tracking objects such as cars 
and rockets from video footages, using CCTV cameras in 
identifying abnormal objects like unattended bags against a 
stable background, and monitoring patients in hospitals are only 
a few of many possible examples.   

In this paper, we first define the problem of second-order 
learning of persistent clusters in data streams. In the problem 

context, we argue that data stream clustering can happen on two 
levels of processing. At the first level, also known as the online 
layer, the first-order learning of clusters is performed by using 
existing algorithms such as the prototype-based algorithm 
EINCKM presented in [6], and the clustering results are saved. 
At the second level, also known as the offline layer, second-
order learning algorithms can be deployed to detect the patterns 
of persistent clusters from the saved clustering results produced 
at the first level. The paper then presents a simple second-order 
learning (SLDPC) algorithm for this purpose. The algorithm 
was evaluated on a selected collection of datasets using various 
measurements. Experimental results show that the proposed 
algorithm is capable of detecting correct persistent clusters. The 
modular structure of the proposed algorithm makes it easy to 
accommodate future improvements and parallelisations. 

The rest of this paper is organised as follows. Section 2 
explains the state of the art of the related work in the current 
literature. Section 3 formally defines the problem of persistent 
cluster detection, and illustrates it with examples. Section 4 
describes the proposed SLDPC algorithm. Section 5 presents an 
evaluation of the algorithm performance through experiments 
using synthesised datasets. Section 6 concludes the work and 
outlines the possible future directions of this research. 

II. RELATED WORK 

A. Clustering of Clusters and Clustering Ensemble  
In many pattern recognition problems, we are dealing with 

cluster analysis of existing clusters [7], such as multi-resolution 
granularity in hierarchical clustering [8]. Existing clusters are 
groups of pattern samples which, due to a priori knowledge, are 
known to belong to the same cluster. Kandt [9] presented a 
system named SEISMO for detecting seismic activity by 
several sensor networks. The characteristics of each detection 
and the time interval between these detections are used to group 
a subset of detections together (subclusters), which correspond 
to an event (cluster). Although clustering of clusters is a kind 
of second-order learning, it is more about grouping data in 
different granularity of abstraction than finding persistent clus-
ters among existing ones. 

Cluster ensemble has emerged as a prominent way of 
improving robustness, stability, and accuracy of clusters [10]. It 
is a process of merging multiple clustering models into a single 
consolidated clustering [11]. Fathzadeh and Mokhtari [12] 
presented an ensemble fuzzy C-Means (SEFCM) algorithm for 
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data streams. The divide-and-conquer method comprised of 
three stages; 1) divide data streams into smaller blocks; 2) 
cluster every block using ensemble clustering (EFCM) 
algorithm; and 3) combine the concluding clusters using single 
linkage to find global clusters across the block clusters. Cluster 
ensemble is more about the consensus of different clustering 
models, and not really about discovering persistent and stable 
clusters although their inputs can be seen as clusters. 

B. Stable Clusters  
Stable clusters in static data mean when multiple datasets are 

sampled from the same distribution, the clustering algorithm is 
expected to behave in the same way and produce similar results 
[13]. In other words, to find stable clusters in static data, we need 
to further analyse the clustering results from each sample to 
identify stable ones. There is some degree of similarity but also 
a big difference between stable clusters in static data clustering 
and persistent clusters in data stream clustering [14][15]. In 
static clustering, the stability of clusters is defined over different 
versions of clustering, i.e. the stability is not defined over a time 
period. However, in data stream clustering algorithms, the data 
chunk could be evolved over time, i.e. some old clusters may 
disappear, and some new clusters may emerge (concept drift 
principle [16]). Our objective is therefore different: we have 
already a number of versions of clusterings depend on query 
points and the aim is to discover the clusters that stay relatively 
fixed. 

C. Clustering Learning Approaches 
Learning approach in the data streams mining is a wide area 

of research. Generally, learning approaches could be divided 
into two categories [17]: instance-incremental (or incremental 
learning) methods that learn from each example as it arrives and 
batch-incremental (or two-phase leaning) methods that gather 
examples in batches to train models. He et al. [18] proposed a 
general adaptive incremental learning framework that is capable 
of learning from continuous raw data, accumulating experience 
over time, and using such knowledge to improve future learning 
and prediction performance for classification purpose. However, 
this work is focusing on improving the output model to adapt to 
new incoming data chunks whereas we are aiming to identify 
persistent clusters through consecutive clustering snapshots.  

There is a big difference between two-phase leaning [3] and 
second-order learning for data stream clustering. The two-phase 
learning algorithms try to discover final clusters from many 
prototype micro-clusters. It is still a first-order learning from 
data to clusters. The second-order learning algorithms, on the 
other hand, try to find persistent clusters that exist through a 
sequence of consecutive clustering results. In other words, it 
takes as inputs a sequence of clustering results and identifies as 
outputs the clusters that persist over the whole time period. 

D. Data Stream Clustering Algorithm EINCKM 
EINCKM is an incremental prototype-based algorithm for 

clustering data streams [6]. It consists of a generic modular 
framework that comprises three main steps Build Clusters, 
Merge, and Prune. Build Clusters applies the K-Means method 
to identify the clusters from input data chunks, Merge may 
combine the newly discovered clusters with some existing ones,  

and Prune identifies outlier objects and removes out of date 
data points. The algorithm applies a simple heuristic-based 
strategy to estimate the number of clusters, a radius-based 
scheme to combine overlapped clusters, and a variance-based 
technique to detect the outliers. However, this algorithm is 
designed to perform first-order clusterings. In other words, it 
gives the up-to-current-time snapshot of clustering results. 

III. PROBLEM DESCRIPTION 

Informally, persistent clusters are those that do not change 
much and persist over a period throughout a series of clustering 
results with respect to the coming data chunks. More precisely, 
persistent clusters can be defined in the following way. Let 

a cluster clustering result at a 

time point i known as a snapshot where  is a cluster. Let 

 represent a sequence of clustering snapshots. 
Given a time frame , where ,  and , 
and user-defined thresholds on: 

� Centroid change margin , representing the maximum 

distance allowed for the centroids of cluster and 

. 

� Size change margin , representing the maximum 

amount of change in cluster sizes between clusters  

and . 

� Variance (radius) change margin , representing the 
maximum amount of change in cluster radius between 

 and . 

Then the persistent clusters are those s which exist 

within the given time frame  and the cross-snapshot 
differences (i.e. changes) of their centroids, sizes, and variances 
are less than or equal to , , and  respectively. 
Mining such persistent clusters is an automatic process of 
discovering all persistent clusters as defined. 

Fig. 1 shows an example of persistent cluster discovery. In 
the first cluster snapshot (Fig. 1(a)), there are three initial 
clusters. In the second snapshot (Fig. 1(b)), the three clusters 
from the snapshot one persist with little changes, but the 
snapshot shows the creation of a new cluster (cluster 4). In the 
third snapshot (Fig. 1(c)), the three persistent clusters still 
remain with little changes to the centroids, sizes and variances. 
However, cluster 4 disappears, indicating that it is only a 
temporary cluster. At the same time, a new cluster (i.e. the new 
cluster 4) emerges. In the final snapshot (Fig. 1(d)), the three 
persistent clusters still remain in place, but cluster 4 in the 
previous snapshot disappears because it is a temporary cluster. 
So, finally, three persistent clusters are obtained as the output of 
the discovery process. Table 1 describes the snapshots summary 
and indicates the persistent clusters (Persistency-Tag with the 
highest value in the last snapshot). Note that the N represents the 
number of data points in each cluster, μ is the vector value of the 
centroids, R is the radius of each cluster, and Persistency-Tag is 
the counter of repeated clusters. 
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IV. THE PROPOSED SLDPC ALGORITHM 

The general contextual framework of the basic proposed 
SLDPC algorithm is depicted in Fig. 2. Against the snapshots 
produced by online EINCKM algorithm, the main stages of the 
SLDPC algorithm are described as follows: 

� Receive consecutive clustering snapshots and user 
parameters as inputs. 

� Define the persistent clusters for each consecutive pair 
of clustering snapshots using the merging strategy. 

� Find the final output persistent clusters through the 
consecutive clustering snapshots. 

Algorithm 1 presents the pseudo-code description of the 
basic SLDPC algorithm. The inputs are mainly a sequence of 
consecutive snapshots of existing clusters summary C. Each 
cluster summary is a tuple , where N is the 
number of data points, LS is the linear sum of the data points 
and LSS is the sum of squared data points. The inputs also 
include the user definition thresholds which include , , 
and  (cf. Sec. 3). The output is PS persistent clusters. 

For the user convenience, the algorithm takes the first 
threshold parameter  in terms of how many standard 
deviation from the mean of a cluster. Therefore, the user will 
decide a real number (e.g. 1, 1.5, 2, etc.), and the algorithm 
multiplies  the  number  with  the  standard  deviation  of  

cluster  to determine the absolute distance threshold 

between the two centroids. For the same purpose user 
convenience, the size change margin threshold parameter  
is normally represented as a percentage of change in relation to 

the size of cluster . Similarly, the radius change margin 

threshold parameter  is also represented as a percentage of 

change in relation to the radius of cluster . 

 
TABLE 1. Snapshot description 

Snap-
shot 

Number 

No. of 
Clus-
ters 

Cluster Description 

Seq. N μ R Persis-
tency Tag 

1 3 

1 17 (5,16) 2 1 

2 15 (12,1) 2.5 1 

3 16 (1,2) 3 1 

2 4 

1 25 (5.2,17) 3 2 

2 24 (13,2) 3.5 2 

3 26 (2,3) 4 2 

4 40 (13,14) 2 1 

3 4 

1 42 (5.5,18) 4 3 

2 37 (12,2.5) 4.5 3 

3 40 (3,4) 5 3 

4 35 (-2,12) 3 1 

V. EVALUATION AND EXPERIMENTAL RESULTS 

The SLDPC algorithm is meant to work with any data 
stream clustering solutions and for any scenarios of any dataset 
with any number of dimensions as long as the output clusters 
can be represented in a summary form as expected by the 
algorithm. However, in order to ease the verification of the 
results, we decided to use EINCKM algorithm for clustering 
data  streams  because  the  algorithm  describes  the  clustering 

 

Fig. 2. Outline of the SLDPC algorithm 

Algorithm 1 Second Order Learning   
Inputs:  
  - Consecutive accumulated cluster snapshots summary . 

  - User parameters 

      : Time frame  

      : Threshold of moving the centroids // by default  

      : Threshold of cluster size change // by default  

      : Threshold of cluster radius change // by default  

Outputs:  
    PS: Persistent Clusters; 

Algorithm Steps: 
    1.Repeat for each pair of consecutive snapshots 

// dist is a distance function such as Euclidean  

             // calculate the percentage 

                                                                                                                       differences of sizes 
              // calculate the percentage differences of radii 
                
           
             
           
     2. Repeat for each cluster 
            
          

 
Fig. 1. Example of persistent clusters 

Persistent  
Clusters 
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output in terms of cluster summaries.  All  the  experiments  
have done with the three synthetic datasets generated from 
multi-variant Gaussian distribution (DS1, DS2, and DS3) of 
100,000, 500,000, and 1,000,000 data points respectively of 
two dimensions. The DS1 contains six clusters; DS2 contains 
fifteen clusters, and DS3 contains thirty clusters. Clusters in 
each of the three datasets have different sizes. Each cluster is 
generated randomly by following a normal distribution of a dif-
ferent mean and variance. Fig. 3 shows the scatterplots of DS1. 
The details of the normal distributions used for generating the 
datasets are given in Appendix 1. Table 2 summarises four 
scenarios of different numbers of persistent and non-persistent 
clusters (known as temporary clusters). In the first three 
scenarios, there are both temporary and persistent clusters. Fig. 
4 shows that for DS1 there are three persistent and three 
temporary clusters (first scenario), and Fig. 5 illustrates the 
evolution of the clusters through a sequence of four snapshots. 
In the fourth scenario, however, all clusters are temporary; an 
extreme case of concept drift where nothing is persistent. 

To evaluate correctness, we used three commonly used 
evaluators: purity, entropy, and the sum of squared errors 
(SSE). Purity was used in [19], entropy in [20], and SSE in [3]. 
Purity refers to the proportion of the data points belonging to a 
known cluster that are assigned as members of a cluster by the 
algorithm. The higher the proportion of purity (between [0, 1]) 
is, the more certain that the algorithm has found the original 
clusters and the better the algorithm is [21].  Entropy reflects 
the number of the data points from different known clusters in 
the original dataset that are assigned to a cluster by the algo-
rithm.  The  value  of  this  measure   is   between  [0 , ] 

TABLE 2. Suggested scenarios 

  Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Da-
tase

t 

#cl
ust
ers 

#Pe
rsis

t 

#Tem-
po-
rary 

#Pe
rsis

t 

#Tem-
po-
rary 

#Pe
rsis

t 

#Tem-
po-
rary 

#Pe
rsis

t 

#Tem-
po-
rary 

DS1 6 3 3 2 4 1 5 0 6 

DS2 15 6 9 3 12 1 14 0 15 

DS3 30 10 20 5 25 1 29 0 30 

         

       Fig. 3. Clusters in DS1     Fig. 4. Temporary/Persistent clusters in DS1 

where N is the number of known clusters involved. The smaller 
value of the entropy is, the fewer members of the known clus-
ters are mixed in the clusters discovered by the algorithm, and 
the better the clustering algorithm is [22]. SSE is a commonly 
used cluster quality measure. It evaluates the compactness of 
the resulting clusters. Low scores of SSE indicates better clus-
tering results as the clusters contain less internal variations [21]. 
The efficiency of an algorithm was measured by the amount of 
time in seconds taken for the algorithm in completing the clus-
tering task. 

MATLAB 2017b was used to implement the SLDPC 
algorithm and the experiment framework. For the first, second, 
and third scenarios as mentioned, we split a given dataset into 
two parts: the persistent clusters and the temporary clusters. We 
selected data chunks randomly from the persistent clusters and 
snapshot-wise data points from the temporary clusters. The idea 
behind the random selection of the data points is to investigate 
the behaviour of the algorithm when there is no control on the 
sequence of data points, i.e. we did not select specific data 
points from particular groups in the original datasets. In order 
to minimise the effect of the random choice of data points, the 
experiments were repeated 100 times, and the average was 
calculated. 

All the experiments were run on a machine equipped with 
2.30 GHz 4 cores Intel(R) Core(TM) i5-4590 CPU and 16 GB 
memory. The operating system was Windows7. 

A. Experimental Results 
Fig. 6 illustrate the performance evaluation of SLDPC 

algorithm. As shown in Fig. 6, differences between the 
scenarios across the synthetic datasets are only marginal, the 
algorithm performs consistently across the synthesised datasets 
in all scenarios.  

Fig. 6(a) shows that the level of purity is high across all 
scenarios when comparing the persistent output clusters from 
the SLDPC algorithm against the known persistent clusters in 
the ground truth (the synthesised datasets with known clusters). 
This is caused by the stringent merge strategy deployed in both 
EINCKM  and  SLDPC  algorithms  and  the  exclusion  of some 
data points as outliers by using the filtering technique in 
EINCKM. With a small number of persistent clusters, e.g. in 
scenario 3 the level of purity is lower than those for the 
scenarios with more persistent clusters. Both entropy 
measurements and SSE measurement as shown in Fig. 6(b) and 
(c) are relatively low deu to the effective pruning strategy of the  

 

 
 

Fig. 5. DS1-Scenario_1 
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(a) The purity measurement 

 
(b) The entropy measurement 

 
(c) The SSE measurement 

 
(d) The efficiency measurement 

Fig. 6. Performance measurements 

EINCKM algorithm. Removing the outliers prevent including 
them into different persistent clusters. The execution time for 
the SLDPC algorithm to find the final persistent clusters is also 
very short. The empirical results show a linear growth of time 
in relation to the dataset size (see Fig. 6(d)). 

B. Discussion 
The most noticeable nature of the SLDPC algorithm is its 

simplicity and efficiency in discovering persistent clusters. The 
main principle behind the algorithm is to maintain a vote to each 
cluster. Only the clusters with sufficient votes remain as 
persistent clusters. The constraint of the basic algorithm is that 
it assumes the input clusters are represented as cluster 
summaries which tend to be applied only to spherical shaped 
clusters. Therefore, the algorithm works well with prototype-
based and model-based algorithms. Currently, the algorithm 
might not apply to cluster inputs that are represented in other 
forms of structures (such as data point based representation of 
clusters by density-based algorithms).  

Regarding parameters representing thresholds, we set the 
default values ,  and  to . Deciding 

 parameter is not trivial. There are number of ways to 
define it. For instance, we could use absolute distance between 
two centroids, but this number is very hard for the user to find. 
By refering to the normal distribution and statistic theory 
regarding the significant difference we decid to rely on the 
number of STDs to determine this particular threshold. Setting 
this threshold is challenging, therefore, need further 
investigation. We set the default value of cluster size 
change  and the cluster radius change  depending on 
the heuristics. However, such default values may not apply to a 
certain dataset, and hence we leave the user to define the 
appropriate thresholds for the parameters. 

We understand the importance of the threshold values to the 
final outputs of persistent clusters in the problem definition. To 
further this consideration, we can introduce two more threshold 
parameters. The first additional parameter is the number of 
snapshots  within the time frame . This parameter allows 

the discovery of persistent clusters not in all the snapshots in the 
snapshot sequence , but rather among snapshots of the 
sequence. Another addtional threhsold parameter we can 
introduce is the persistency rate  that specifies the rate of 
persistency across the snapshots; the persistent clusters does not 
have to appear in every snapshot, but  percent of the 
snapshots. Both parameters are meant to increase the flexibility 
of the algorithm in producing the persistent clusters that are 
variants from the standard definition. 

VI. CONCLUSION AND FUTURE WORKS 

This paper prompted a problem of second-order learning for 
persistent clusters in data streams, and presented the SLDPC 
algorithm for detecting such persistent clusters by analysing a 
sequence of snapshots of clustering results. The key ideas of the 
algorithm is to assign a vote to clusters that do not change much, 
and then collect those clusters. The evaluation results have 
shown that the algorithm produces correct and good quality 
clusters with low time complexity. The algorithm emphasises 
on simplicity and adaptivity for future improvement. 

Our future work will focus on enhancing the algorithm. 
Firstly, we will work towards tailoring the algorithm to suit 
other cluster input representations. Secondly, we will 
investigate introducing degrees of fuzziness in user-defined 
thresholds and reducing the needs for user-defined thresholds if 
possible. Finally, we will further investigate discovering the 
patterns of periodic changes in cluster models besides 
persistency. In discovering periodic changes and persistent 
hidden group patterns can have a wide range of applications 
such as climate changes. 
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APPENDIX I 

The following tables show the details and specify the distribu-

tion of each of the three synthesized datasets. 

TABLE 1: Parameters details of DS1. 

C Mean STD Size X Y 
C1 5 7 2 20000 

C2 16 7 3 11000 

C3 5 -7 1.5 15000 

C4 -5 7 3 18000 

C5 -16 7 1 5000 

C6 -5 -7 2.5 31000 

 

 

 

 

 

TABLE 2: Parameters details of DS2. 

C Mean STD Size X Y 
C1 20 20 2 20000 

C2 5 40 1.5 26000 

C3 30 19 1.1 34000 

C4 12 40 2.5 9000 

C5 25 30 2.4 31000 

C6 -15 37 3.5 66000 

C7 -25 43 1.8 29000 

C8 1 67 1.2 15000 

C9 15 55 2.9 17000 

C10 -2 54 2.3 40000 

C11 -20 55 3.9 13000 

C12 15 75 3.8 60000 

C13 20 65 0.9 50000 

C14 -7 80 4.1 20000 

C15 -25 75 2.7 70000 

TABLE 3: Parameters details of DS3. 

C Mean STD Size 
X Y 

C1 7 7 2.5 80000 

C2 30 7 3.5 11000 

C3 -11 7 1.9 350000 

C4 -35 7 3.9 29000 

C5 45 7 1.1 12900 

C6 7 30 3.4 3000 

C7 32 30 2.2 50000 

C8 -15 30 3.1 7000 

C9 -30 30 1.2 6000 

C10 50 30 3.3 17000 

C11 -15 60 1.2 9000 

C12 45 60 5.9 20000 

C13 10 60 6.4 10000 

C14 -50 60 7.9 1000 

C15 75 60 1.7 43000 

C16 1 105 7.5 40000 

C17 25 105 1.3 16500 

C18 -35 105 4.4 35000 

C19 -60 105 2.4 4000 

C20 60 105 7.7 19000 

C21 5 150 6.4 50000 

C22 30 150 0.9 12000 

C23 -30 150 4.4 80000 

C24 -60 150 2.4 5000 

C25 60 150 5.5 8000 

C26 7 190 3.6 25000 

C27 25 190 0.8 7100 

C28 -20 190 4.2 2500 

C29 -50 190 2.8 3500 

C30 50 190 5.6 43500 
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