

 This is the author accepted manuscript published by IEEE with Creative Commons Attribution Non

Commercial Licence. The final published version is available online at DOI:

https://ieeexplore.ieee.org/document/8674215

SLDPC: Towards Second Order Learning for

Detecting Persistent Clusters in Data Streams

Ammar Al Abd Alazeez Sabah Jassim Hongbo Du

Department of Applied Computing
The University of Buckingham, Buckingham, MK18 1EG, UK

{1405097,sabah.jassim, hongbo.du}@buckingham.ac.uk

Abstract—The main attention of research on data stream clus-
tering algorithms so far has been focused on the adaptation of the
algorithms for static datasets to the data streams and improve-
ments of the existing adapted algorithms. Such algorithms fulfil
the purpose of the first-order learning from data to clusters. This
paper prompts a new question on second-order learning of cluster
models from data streams and presents a learning algorithm that
detects persistent clusters from consecutive clustering snapshots in
data streams. In this work, we first collect a sequence of cluster
snapshots as the output clusters at selected query points and then
identify the persistent clusters within a given timeframe. The
algorithm is evaluated on collections of synthetic datasets. The
experimental results have demonstrated the effectiveness of the
algorithm in detecting such persistent clusters.

Keywords-Data Stream Clustering Algorithms, Persistent
clusters, Clustering of Clusters, Second-order Learning

I. INTRODUCTION

Data stream clustering is defined as a grouping of data in
light of frequently arriving new data chunks for gaining
understanding about underlying group patterns that may change
over time [1]. Depending on the approaches taken, either
incremental learning or two-phase learning, existing algorithms
for data stream clustering either present an up-to-current-time
view of clusters [2] or generate a view of clusters at a user query
point [3]. However, there is no keeping of a historic trail of the
output cluster models over time. If such a historic trail is
maintained, the persistence of certain clusters can be analysed
through a second-order learning, i.e. learning persistent clusters
by mining the clustering outputs collected over a sequence of
time points. Stability of output clusters in static datasets has
been well researched, and has a lot of advantages including
predicting a correct number of clusters, detecting the lack of
structure in the dataset, and assessing the quality of clustering
algorithms [4][5]. However, identifying the persistent clusters
in data streams has not been properly studied.

There are a lot of potential applications that can benefit from
finding persistent clusters in the data streams. Tracking social
media events such as birthdays, tracking objects such as cars
and rockets from video footages, using CCTV cameras in
identifying abnormal objects like unattended bags against a
stable background, and monitoring patients in hospitals are only
a few of many possible examples.

In this paper, we first define the problem of second-order
learning of persistent clusters in data streams. In the problem

context, we argue that data stream clustering can happen on two
levels of processing. At the first level, also known as the online
layer, the first-order learning of clusters is performed by using
existing algorithms such as the prototype-based algorithm
EINCKM presented in [6], and the clustering results are saved.
At the second level, also known as the offline layer, second-
order learning algorithms can be deployed to detect the patterns
of persistent clusters from the saved clustering results produced
at the first level. The paper then presents a simple second-order
learning (SLDPC) algorithm for this purpose. The algorithm
was evaluated on a selected collection of datasets using various
measurements. Experimental results show that the proposed
algorithm is capable of detecting correct persistent clusters. The
modular structure of the proposed algorithm makes it easy to
accommodate future improvements and parallelisations.

The rest of this paper is organised as follows. Section 2
explains the state of the art of the related work in the current
literature. Section 3 formally defines the problem of persistent
cluster detection, and illustrates it with examples. Section 4
describes the proposed SLDPC algorithm. Section 5 presents an
evaluation of the algorithm performance through experiments
using synthesised datasets. Section 6 concludes the work and
outlines the possible future directions of this research.

II. RELATED WORK

A. Clustering of Clusters and Clustering Ensemble
In many pattern recognition problems, we are dealing with

cluster analysis of existing clusters [7], such as multi-resolution
granularity in hierarchical clustering [8]. Existing clusters are
groups of pattern samples which, due to a priori knowledge, are
known to belong to the same cluster. Kandt [9] presented a
system named SEISMO for detecting seismic activity by
several sensor networks. The characteristics of each detection
and the time interval between these detections are used to group
a subset of detections together (subclusters), which correspond
to an event (cluster). Although clustering of clusters is a kind
of second-order learning, it is more about grouping data in
different granularity of abstraction than finding persistent clus-
ters among existing ones.

Cluster ensemble has emerged as a prominent way of
improving robustness, stability, and accuracy of clusters [10]. It
is a process of merging multiple clustering models into a single
consolidated clustering [11]. Fathzadeh and Mokhtari [12]
presented an ensemble fuzzy C-Means (SEFCM) algorithm for

���������	��
��������
�������
�������� 248

data streams. The divide-and-conquer method comprised of
three stages; 1) divide data streams into smaller blocks; 2)
cluster every block using ensemble clustering (EFCM)
algorithm; and 3) combine the concluding clusters using single
linkage to find global clusters across the block clusters. Cluster
ensemble is more about the consensus of different clustering
models, and not really about discovering persistent and stable
clusters although their inputs can be seen as clusters.

B. Stable Clusters
Stable clusters in static data mean when multiple datasets are

sampled from the same distribution, the clustering algorithm is
expected to behave in the same way and produce similar results
[13]. In other words, to find stable clusters in static data, we need
to further analyse the clustering results from each sample to
identify stable ones. There is some degree of similarity but also
a big difference between stable clusters in static data clustering
and persistent clusters in data stream clustering [14][15]. In
static clustering, the stability of clusters is defined over different
versions of clustering, i.e. the stability is not defined over a time
period. However, in data stream clustering algorithms, the data
chunk could be evolved over time, i.e. some old clusters may
disappear, and some new clusters may emerge (concept drift
principle [16]). Our objective is therefore different: we have
already a number of versions of clusterings depend on query
points and the aim is to discover the clusters that stay relatively
fixed.

C. Clustering Learning Approaches
Learning approach in the data streams mining is a wide area

of research. Generally, learning approaches could be divided
into two categories [17]: instance-incremental (or incremental
learning) methods that learn from each example as it arrives and
batch-incremental (or two-phase leaning) methods that gather
examples in batches to train models. He et al. [18] proposed a
general adaptive incremental learning framework that is capable
of learning from continuous raw data, accumulating experience
over time, and using such knowledge to improve future learning
and prediction performance for classification purpose. However,
this work is focusing on improving the output model to adapt to
new incoming data chunks whereas we are aiming to identify
persistent clusters through consecutive clustering snapshots.

There is a big difference between two-phase leaning [3] and
second-order learning for data stream clustering. The two-phase
learning algorithms try to discover final clusters from many
prototype micro-clusters. It is still a first-order learning from
data to clusters. The second-order learning algorithms, on the
other hand, try to find persistent clusters that exist through a
sequence of consecutive clustering results. In other words, it
takes as inputs a sequence of clustering results and identifies as
outputs the clusters that persist over the whole time period.

D. Data Stream Clustering Algorithm EINCKM
EINCKM is an incremental prototype-based algorithm for

clustering data streams [6]. It consists of a generic modular
framework that comprises three main steps Build Clusters,
Merge, and Prune. Build Clusters applies the K-Means method
to identify the clusters from input data chunks, Merge may
combine the newly discovered clusters with some existing ones,

and Prune identifies outlier objects and removes out of date
data points. The algorithm applies a simple heuristic-based
strategy to estimate the number of clusters, a radius-based
scheme to combine overlapped clusters, and a variance-based
technique to detect the outliers. However, this algorithm is
designed to perform first-order clusterings. In other words, it
gives the up-to-current-time snapshot of clustering results.

III. PROBLEM DESCRIPTION

Informally, persistent clusters are those that do not change
much and persist over a period throughout a series of clustering
results with respect to the coming data chunks. More precisely,
persistent clusters can be defined in the following way. Let

a cluster clustering result at a

time point i known as a snapshot where is a cluster. Let

 represent a sequence of clustering snapshots.
Given a time frame , where , and ,
and user-defined thresholds on:

� Centroid change margin , representing the maximum

distance allowed for the centroids of cluster and

.

� Size change margin , representing the maximum

amount of change in cluster sizes between clusters

and .

� Variance (radius) change margin , representing the
maximum amount of change in cluster radius between

 and .

Then the persistent clusters are those s which exist

within the given time frame and the cross-snapshot
differences (i.e. changes) of their centroids, sizes, and variances
are less than or equal to , , and respectively.
Mining such persistent clusters is an automatic process of
discovering all persistent clusters as defined.

Fig. 1 shows an example of persistent cluster discovery. In
the first cluster snapshot (Fig. 1(a)), there are three initial
clusters. In the second snapshot (Fig. 1(b)), the three clusters
from the snapshot one persist with little changes, but the
snapshot shows the creation of a new cluster (cluster 4). In the
third snapshot (Fig. 1(c)), the three persistent clusters still
remain with little changes to the centroids, sizes and variances.
However, cluster 4 disappears, indicating that it is only a
temporary cluster. At the same time, a new cluster (i.e. the new
cluster 4) emerges. In the final snapshot (Fig. 1(d)), the three
persistent clusters still remain in place, but cluster 4 in the
previous snapshot disappears because it is a temporary cluster.
So, finally, three persistent clusters are obtained as the output of
the discovery process. Table 1 describes the snapshots summary
and indicates the persistent clusters (Persistency-Tag with the
highest value in the last snapshot). Note that the N represents the
number of data points in each cluster, μ is the vector value of the
centroids, R is the radius of each cluster, and Persistency-Tag is
the counter of repeated clusters.

���������	��
��������
�������
�������� 249

IV. THE PROPOSED SLDPC ALGORITHM

The general contextual framework of the basic proposed
SLDPC algorithm is depicted in Fig. 2. Against the snapshots
produced by online EINCKM algorithm, the main stages of the
SLDPC algorithm are described as follows:

� Receive consecutive clustering snapshots and user
parameters as inputs.

� Define the persistent clusters for each consecutive pair
of clustering snapshots using the merging strategy.

� Find the final output persistent clusters through the
consecutive clustering snapshots.

Algorithm 1 presents the pseudo-code description of the
basic SLDPC algorithm. The inputs are mainly a sequence of
consecutive snapshots of existing clusters summary C. Each
cluster summary is a tuple , where N is the
number of data points, LS is the linear sum of the data points
and LSS is the sum of squared data points. The inputs also
include the user definition thresholds which include , ,
and (cf. Sec. 3). The output is PS persistent clusters.

For the user convenience, the algorithm takes the first
threshold parameter in terms of how many standard
deviation from the mean of a cluster. Therefore, the user will
decide a real number (e.g. 1, 1.5, 2, etc.), and the algorithm
multiplies the number with the standard deviation of

cluster to determine the absolute distance threshold

between the two centroids. For the same purpose user
convenience, the size change margin threshold parameter
is normally represented as a percentage of change in relation to

the size of cluster . Similarly, the radius change margin

threshold parameter is also represented as a percentage of

change in relation to the radius of cluster .

TABLE 1. Snapshot description

Snap-
shot

Number

No. of
Clus-
ters

Cluster Description

Seq. N μ R Persis-
tency Tag

1 3

1 17 (5,16) 2 1

2 15 (12,1) 2.5 1

3 16 (1,2) 3 1

2 4

1 25 (5.2,17) 3 2

2 24 (13,2) 3.5 2

3 26 (2,3) 4 2

4 40 (13,14) 2 1

3 4

1 42 (5.5,18) 4 3

2 37 (12,2.5) 4.5 3

3 40 (3,4) 5 3

4 35 (-2,12) 3 1

V. EVALUATION AND EXPERIMENTAL RESULTS

The SLDPC algorithm is meant to work with any data
stream clustering solutions and for any scenarios of any dataset
with any number of dimensions as long as the output clusters
can be represented in a summary form as expected by the
algorithm. However, in order to ease the verification of the
results, we decided to use EINCKM algorithm for clustering
data streams because the algorithm describes the clustering

Fig. 2. Outline of the SLDPC algorithm

Algorithm 1 Second Order Learning
Inputs:
 - Consecutive accumulated cluster snapshots summary .

 - User parameters

 : Time frame

 : Threshold of moving the centroids // by default

 : Threshold of cluster size change // by default

 : Threshold of cluster radius change // by default

Outputs:
 PS: Persistent Clusters;

Algorithm Steps:
 1.Repeat for each pair of consecutive snapshots

// dist is a distance function such as Euclidean

 // calculate the percentage

 differences of sizes
 // calculate the percentage differences of radii

 2. Repeat for each cluster

Fig. 1. Example of persistent clusters

Persistent
Clusters

���������	��
��������
�������
�������� 250

output in terms of cluster summaries. All the experiments
have done with the three synthetic datasets generated from
multi-variant Gaussian distribution (DS1, DS2, and DS3) of
100,000, 500,000, and 1,000,000 data points respectively of
two dimensions. The DS1 contains six clusters; DS2 contains
fifteen clusters, and DS3 contains thirty clusters. Clusters in
each of the three datasets have different sizes. Each cluster is
generated randomly by following a normal distribution of a dif-
ferent mean and variance. Fig. 3 shows the scatterplots of DS1.
The details of the normal distributions used for generating the
datasets are given in Appendix 1. Table 2 summarises four
scenarios of different numbers of persistent and non-persistent
clusters (known as temporary clusters). In the first three
scenarios, there are both temporary and persistent clusters. Fig.
4 shows that for DS1 there are three persistent and three
temporary clusters (first scenario), and Fig. 5 illustrates the
evolution of the clusters through a sequence of four snapshots.
In the fourth scenario, however, all clusters are temporary; an
extreme case of concept drift where nothing is persistent.

To evaluate correctness, we used three commonly used
evaluators: purity, entropy, and the sum of squared errors
(SSE). Purity was used in [19], entropy in [20], and SSE in [3].
Purity refers to the proportion of the data points belonging to a
known cluster that are assigned as members of a cluster by the
algorithm. The higher the proportion of purity (between [0, 1])
is, the more certain that the algorithm has found the original
clusters and the better the algorithm is [21]. Entropy reflects
the number of the data points from different known clusters in
the original dataset that are assigned to a cluster by the algo-
rithm. The value of this measure is between [0 ,]

TABLE 2. Suggested scenarios

 Scenario 1 Scenario 2 Scenario 3 Scenario 4
Da-
tase

t

#cl
ust
ers

#Pe
rsis

t

#Tem-
po-
rary

#Pe
rsis

t

#Tem-
po-
rary

#Pe
rsis

t

#Tem-
po-
rary

#Pe
rsis

t

#Tem-
po-
rary

DS1 6 3 3 2 4 1 5 0 6

DS2 15 6 9 3 12 1 14 0 15

DS3 30 10 20 5 25 1 29 0 30

 Fig. 3. Clusters in DS1 Fig. 4. Temporary/Persistent clusters in DS1

where N is the number of known clusters involved. The smaller
value of the entropy is, the fewer members of the known clus-
ters are mixed in the clusters discovered by the algorithm, and
the better the clustering algorithm is [22]. SSE is a commonly
used cluster quality measure. It evaluates the compactness of
the resulting clusters. Low scores of SSE indicates better clus-
tering results as the clusters contain less internal variations [21].
The efficiency of an algorithm was measured by the amount of
time in seconds taken for the algorithm in completing the clus-
tering task.

MATLAB 2017b was used to implement the SLDPC
algorithm and the experiment framework. For the first, second,
and third scenarios as mentioned, we split a given dataset into
two parts: the persistent clusters and the temporary clusters. We
selected data chunks randomly from the persistent clusters and
snapshot-wise data points from the temporary clusters. The idea
behind the random selection of the data points is to investigate
the behaviour of the algorithm when there is no control on the
sequence of data points, i.e. we did not select specific data
points from particular groups in the original datasets. In order
to minimise the effect of the random choice of data points, the
experiments were repeated 100 times, and the average was
calculated.

All the experiments were run on a machine equipped with
2.30 GHz 4 cores Intel(R) Core(TM) i5-4590 CPU and 16 GB
memory. The operating system was Windows7.

A. Experimental Results
Fig. 6 illustrate the performance evaluation of SLDPC

algorithm. As shown in Fig. 6, differences between the
scenarios across the synthetic datasets are only marginal, the
algorithm performs consistently across the synthesised datasets
in all scenarios.

Fig. 6(a) shows that the level of purity is high across all
scenarios when comparing the persistent output clusters from
the SLDPC algorithm against the known persistent clusters in
the ground truth (the synthesised datasets with known clusters).
This is caused by the stringent merge strategy deployed in both
EINCKM and SLDPC algorithms and the exclusion of some
data points as outliers by using the filtering technique in
EINCKM. With a small number of persistent clusters, e.g. in
scenario 3 the level of purity is lower than those for the
scenarios with more persistent clusters. Both entropy
measurements and SSE measurement as shown in Fig. 6(b) and
(c) are relatively low deu to the effective pruning strategy of the

Fig. 5. DS1-Scenario_1

���������	��
��������
�������
�������� 251

(a) The purity measurement

(b) The entropy measurement

(c) The SSE measurement

(d) The efficiency measurement

Fig. 6. Performance measurements

EINCKM algorithm. Removing the outliers prevent including
them into different persistent clusters. The execution time for
the SLDPC algorithm to find the final persistent clusters is also
very short. The empirical results show a linear growth of time
in relation to the dataset size (see Fig. 6(d)).

B. Discussion
The most noticeable nature of the SLDPC algorithm is its

simplicity and efficiency in discovering persistent clusters. The
main principle behind the algorithm is to maintain a vote to each
cluster. Only the clusters with sufficient votes remain as
persistent clusters. The constraint of the basic algorithm is that
it assumes the input clusters are represented as cluster
summaries which tend to be applied only to spherical shaped
clusters. Therefore, the algorithm works well with prototype-
based and model-based algorithms. Currently, the algorithm
might not apply to cluster inputs that are represented in other
forms of structures (such as data point based representation of
clusters by density-based algorithms).

Regarding parameters representing thresholds, we set the
default values , and to . Deciding

 parameter is not trivial. There are number of ways to
define it. For instance, we could use absolute distance between
two centroids, but this number is very hard for the user to find.
By refering to the normal distribution and statistic theory
regarding the significant difference we decid to rely on the
number of STDs to determine this particular threshold. Setting
this threshold is challenging, therefore, need further
investigation. We set the default value of cluster size
change and the cluster radius change depending on
the heuristics. However, such default values may not apply to a
certain dataset, and hence we leave the user to define the
appropriate thresholds for the parameters.

We understand the importance of the threshold values to the
final outputs of persistent clusters in the problem definition. To
further this consideration, we can introduce two more threshold
parameters. The first additional parameter is the number of
snapshots within the time frame . This parameter allows

the discovery of persistent clusters not in all the snapshots in the
snapshot sequence , but rather among snapshots of the
sequence. Another addtional threhsold parameter we can
introduce is the persistency rate that specifies the rate of
persistency across the snapshots; the persistent clusters does not
have to appear in every snapshot, but percent of the
snapshots. Both parameters are meant to increase the flexibility
of the algorithm in producing the persistent clusters that are
variants from the standard definition.

VI. CONCLUSION AND FUTURE WORKS

This paper prompted a problem of second-order learning for
persistent clusters in data streams, and presented the SLDPC
algorithm for detecting such persistent clusters by analysing a
sequence of snapshots of clustering results. The key ideas of the
algorithm is to assign a vote to clusters that do not change much,
and then collect those clusters. The evaluation results have
shown that the algorithm produces correct and good quality
clusters with low time complexity. The algorithm emphasises
on simplicity and adaptivity for future improvement.

Our future work will focus on enhancing the algorithm.
Firstly, we will work towards tailoring the algorithm to suit
other cluster input representations. Secondly, we will
investigate introducing degrees of fuzziness in user-defined
thresholds and reducing the needs for user-defined thresholds if
possible. Finally, we will further investigate discovering the
patterns of periodic changes in cluster models besides
persistency. In discovering periodic changes and persistent
hidden group patterns can have a wide range of applications
such as climate changes.

ACKNOWLEDGEMENT

The first author wishes to thank the University of Mosul and
Government of Iraq/Ministry of Higher Education and Research
(MOHESR) for funding him to conduct this research at the
University of Buckingham.

REFERENCES

[1] Yogita and D. Toshniwal, “Clustering Techniques for Streaming Data –
A Survey,” 3rd IEEE International Advance Computing Conference
(IACC), pp. 951–956, 2012.

[2] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering Data
Streams,” IEEE FOCS Conference, pp. 359–366, 2000.

[3] C. Aggarwal, J. Han, J. Wang, and P. Yu, “A Framework for Clustering
Evolving Data Streams,” Proceedings of the 29th VLDB Conference,
Germany, pp. 1–12, 2003.

[4] U. Luxburg, “Clustering Stability: An Overview,” arXiv:1007.1075v1,
now-the essence of knowldge, pp. 1–41, 2010.

[5] S. Saha and S. Bandyopadhyay, “A New Measure of Stability of
Clustering Solutions: Application to Data Partitioning,” 2009
International Conference on Adaptive and Intelligent Systems, 2009.

[6] A. Al Abd Alazeez, S. Jassim, and H. Du, “EINCKM: An Enhanced
Prototype-based Method for Clustering Evolving Data Streams in Big
Data,” Proceedings of the 6th International Conference on Pattern
Recognition Applications and Methods, no. Icpram, pp. 173–183, 2017.

[7] T. Gao, A. Li, and F. Meng, “Research on Data Stream Clustering Based
on FCM Algorithm,” Scince Direct, Elsvier, Procedia Computer Science,
vol. 122, pp. 595–602, 2017.

[8] J. de Andrade Silva, E. R. Hruschka, and J. Gama, “An evolutionary
algorithm for clustering data streams with a variable number of clusters,”

���������	��
��������
�������
�������� 252

Expert Systems with Applications, vol. 67, pp. 228–238, 2017.

[9] K. Kandt and W. H. Drive, “Second-order conceptual clustering of
temporal events,” 1990 IEEE International Conference on Systems, Man,
and Cybernetics Conference Proceedings, vol. 000, pp. 599–604, 1990.

[10] R. Ghaemi, N. Sulaiman, H. Ibrahim, and N. Mustapha, “A Survey :
Clustering Ensembles Techniques,” Engineering and Technology, vol. 38,
no. February, pp. 636–645, 2009.

[11] T. M. Alqurashi, “Clustering Ensemble Method,” Thesis, University of
East Angglia, School of Computer Science, 2017.

[12] P. Zhang, X. Zhu, J. Tan, and L. Guo, “Classifier and cluster ensembles
for mining concept drifting data streams,” Proceedings - IEEE
International Conference on Data Mining, ICDM, pp. 1175–1180, 2010.

[13] N. Sauvageot et al., “Stability-based validation of dietary patterns
obtained by cluster analysis,” Nutrition Journal, vol. 16, no. 1, p. 4, 2017.

[14] A. Rinaldo and R. Nugent, “Stability of Density-Based Clustering,”
Journal of Machine Learning Research, vol. 13, pp. 905–948, 2012.

[15] T. Lange, V. Roth, M. L. Braun, and J. M. Buhmann, “Stability-Based
Validation of Clustering Solutions,” Neural Computation, vol. 16, no. 6,
pp. 1299–1323, 2004.

[16] P. Chaovalit, “Clustering Transient Data Streams By Example And By
Variable,” Thesis, University of Maryland, Department of Information
Systems, 2009.

[17] D. Puschmann, P. Barnaghi, and R. Tafazolli, “Adaptive Clustering for
Dynamic IoT Data Streams,” IEEE Internet of Things Journal, vol. 4, no.
1, pp. 64–74, 2017.

[18] H. He, S. Chen, K. Li, and X. Xu, “Incremental learning from stream
data,” Neural Networks, IEEE Transactions …, vol. 22, no. 12, pp. 1901–
1914, 2011.

[19] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” Proceedings of the Sixth SIAM
International Conference on Data Mining, vol. 2006, pp. 328–339, 2006.

[20] Y. Zhao and G. Karypis, “Technical Report Criterion Functions for
Document Clustering: Experiments and Analysis,” University of
Minnesota, Department of Computer Science / Army HPC Research
Center/ Technical Report, pp. 1–30, 2001.

[21] J. Silva, E. Faria, R. Barros, E. Hruschka, and A. Carvalho, “Data Stream
Clustering : A Survey,” ACM Computing Surveys (CSUR), pp. 1–37,
2013.

[22] H. L. Nguyen, Y. K. Woon, and W. K. Ng, “A survey on data stream
clustering and classification,” Knowledge and Information Systems,
Springer, pp. 535–569, 2015.

APPENDIX I

The following tables show the details and specify the distribu-

tion of each of the three synthesized datasets.

TABLE 1: Parameters details of DS1.

C Mean STD Size X Y
C1 5 7 2 20000

C2 16 7 3 11000

C3 5 -7 1.5 15000

C4 -5 7 3 18000

C5 -16 7 1 5000

C6 -5 -7 2.5 31000

TABLE 2: Parameters details of DS2.

C Mean STD Size X Y
C1 20 20 2 20000

C2 5 40 1.5 26000

C3 30 19 1.1 34000

C4 12 40 2.5 9000

C5 25 30 2.4 31000

C6 -15 37 3.5 66000

C7 -25 43 1.8 29000

C8 1 67 1.2 15000

C9 15 55 2.9 17000

C10 -2 54 2.3 40000

C11 -20 55 3.9 13000

C12 15 75 3.8 60000

C13 20 65 0.9 50000

C14 -7 80 4.1 20000

C15 -25 75 2.7 70000

TABLE 3: Parameters details of DS3.

C Mean STD Size
X Y

C1 7 7 2.5 80000

C2 30 7 3.5 11000

C3 -11 7 1.9 350000

C4 -35 7 3.9 29000

C5 45 7 1.1 12900

C6 7 30 3.4 3000

C7 32 30 2.2 50000

C8 -15 30 3.1 7000

C9 -30 30 1.2 6000

C10 50 30 3.3 17000

C11 -15 60 1.2 9000

C12 45 60 5.9 20000

C13 10 60 6.4 10000

C14 -50 60 7.9 1000

C15 75 60 1.7 43000

C16 1 105 7.5 40000

C17 25 105 1.3 16500

C18 -35 105 4.4 35000

C19 -60 105 2.4 4000

C20 60 105 7.7 19000

C21 5 150 6.4 50000

C22 30 150 0.9 12000

C23 -30 150 4.4 80000

C24 -60 150 2.4 5000

C25 60 150 5.5 8000

C26 7 190 3.6 25000

C27 25 190 0.8 7100

C28 -20 190 4.2 2500

C29 -50 190 2.8 3500

C30 50 190 5.6 43500

���������	��
��������
�������
�������� 253

	Jassim
	SLDPC

