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Abstract 

 

In this thesis we give an overview of the notion of compressed sensing together with some 

special types of compressed sensing matrices. We then investigate the Restricted Isometry 

property and the Null Space property which are two of the most well-known properties of 

compressed sensing matrices needed for sparse signal recovery.  We show that when the 

Restricted Isometry constant is ‘small enough’ then we can recover sparse vectors by 𝑙1-

minimization. Whereas if the Restricted Isometry constant is ‘large’, we show that 𝑙1-

minimization fails to recover all sparse vectors.  
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Chapter 1 

1 INTRODUCTION 

 

Nowadays people live in the centre of a digital revolution that is driving the development and 

deployment of new kinds of sensing systems with ever-increasing accuracy and resolution. 

By looking at the typical way that signals are processed, one finds that signals are captured at 

a rate far from the information rate needed for the traditional technique in which signals are 

sampled at a rate satisfying the Nyquist-Shannon theorem. This theorem (technique) states 

that to avoid losing information when capturing a signal, one must sample the signal two 

times faster than the signal bandwidth (i.e. twice the highest frequency) [2]. On the other 

hand, when it comes to storing this signal, in images or videos for example, eventually a lot 

of the captured information will be thrown away in order to compress the signal to fit the 

available storage/processing capacity. Therefore, only a small proportion of the captured 

signal will be kept as compared with the amount captured. Because of this people started 

asking: can we just measure at the information rate? This is exactly the question that the new 

acquiring paradigm known as compressed sensing is trying to answer [6]. In this thesis, the 

mathematical concepts of compressed sensing, which is a classical problem in linear algebra, 

will be presented first together with some particular applications of this new sensing scheme. 

Furthermore, properties of the sensing matrices (also known as dictionaries) that compressed 

sensing work by will be discussed. We shall also highlight the difficulties that exist, in terms 

of both computation and construction, in designing dictionaries that satisfy these properties. 

Finally, the form of the matrices where compressed sensing theory cannot be verified will be 

discussed in details with some motivations to build compressed sensing matrices. This work 

contains some basic but interesting results, e.g. theorem (2.1) and theorem (2.3) together with 

a detailed exposition of results given in [11] for constructing failing compressed sensing 

matrices. 

1.1 Solution of Linear Equations 

In this chapter we give a brief introduction on solutions of linear equations in general and 

then we focus on the particular case of underdetermined systems where we have infinitely 

many solutions. As a motivational introduction to compressed sensing, we give some real-
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world applications for which the corresponding underdetermined systems have infinitely 

many solutions. 

We start by considering a system of  𝑀 linear equations with 𝑁 unknowns which has the form  

𝑦1 = 𝜑11𝑥1 + 𝜑12𝑥2 + ⋯+ 𝜑1𝑁𝑥𝑁 

𝑦2 = 𝜑21𝑥1 + 𝜑22𝑥2 + ⋯+ 𝜑2𝑁𝑥𝑁 

⋮ 

  𝑦𝑀 = 𝜑𝑀1𝑥1 + 𝜑𝑀2𝑥2 + ⋯+ 𝜑𝑀𝑁𝑥𝑁. 

The above system can also be written in the form of matrices as below:  

 

𝑦1

𝑦2

⋮
𝑦𝑀

 =  

𝜑11
𝜑21

⋮
𝜑𝑀1

𝜑12

𝜑22

⋮
𝜑𝑀2

…
…
⋮
…

𝜑1𝑁

𝜑2𝑁

⋮
𝜑𝑀𝑁

  

𝑥1

𝑥2

⋮
𝑥𝑁

 . 

More concisely we can say that  

                                                                    𝑦 = Φ𝑥                                                             (1.1)                           

where Φ ∈ ℝ𝑀×𝑁 is the coefficient matrix, 𝑥 =  

𝑥1

𝑥2

⋮
𝑥𝑁

 ∈ ℝ𝑁  and 𝑦 =  

𝑦1

𝑦2

⋮
𝑦𝑀

 ∈ ℝ𝑀  are vectors. 

In general, there exist a solution to (1.1) if and only if 𝑦 ∈  ℛ Φ , where ℛ Φ  is the range 

of Φ. If (1.1) has a solution, then we have the following two possibilities: 

1- 𝑀 ≥ 𝑁: The solution is unique iff 𝑁 equals the rank of the coefficient matrix Φ. 

2- 𝑀 < 𝑁, (1.1) has infinitely many solutions.   

The last case is known as an underdetermined system of equations. To sum up, basically 

system (1.1) is either inconsistent (i.e. there is no solution to it) or consistent (i.e. there is a 

solution to the system (unique or infinite)). We are interested in focusing on underdetermined 

systems where there are infinitely many solutions, especially when the number of rows is 

significantly less than the number of columns (i.e. 𝑀 ≪ 𝑁). This interest relates to the 

situation when; we have some data (i.e. a high dimensional vector) and we have some 

measurements (i.e. a linear combination of coordinates) but the number of measurements is 

not enough to reconstruct the original data (or at least it looks like we do not have enough 



3 
 

measurements to figure out what the data is).  This is the principle that Compressed Sensing 

works by. Compressed Sensing is about the conditions under which we can solve the 

underdetermined system and the methods by which we can reconstruct/sense the data. This 

principle of compressed sensing is very important for the applications in which measurements 

are expensive or very limited. 

In the rest of the introduction, we give a brief description of some compressed sensing 

applications. Firstly, we describe the Netflix problem as an instance of recommender systems 

which yields an underdetermined system of equations that can naturally be solved by 

compressed sensing techniques. In the second example, we recast traits that are produced by 

some genes as an underdetermined system which has a special structure that enables applying 

compressed sensing. Lastly, the role of compressed sensing in Magnetic Resonance Imaging 

scanner is discussed.  

The dissertation’s outline is as follows. Chapter 1 is an introduction, presenting solution to 

linear systems of equations, in general, and three examples of compressed sensing 

applications. It also contains some basic definitions and general discussion about 𝑙0-norm and 

𝑙1-norm. The restricted isometry property, which is a sufficient condition that compressed 

sensing matrices should satisfy and its relation with null space property is discussed in 

Chapter 2. Finally chapter 3 interprets matrices that fail to satisfy the Null Space Property, 

and motivations to construct a general form of these matrices. 

1.2 Compressed sensing applications 

The term ‘compressed sensing’ first coined by David Donoho in [12]. It is a field which has 

been growing slowly in the last two decades and exploded in the last six years.  The list of 

real-world applications of compressed sensing growing fast and includes recommender 

systems (e.g. Netflix problem), genetics, Medical Imaging, Signal processing, recovery of 

missing data, computational biology, machine learning and many more. We selected MRI, 

the Netflix problem [1] and genomic to discuss in more detail. 

1.2.1  Netflix Prize 

The Netflix prize
1
 is one of the most famous applications of CS.  The Netflix has thousands 

of movies and millions of customers. The Netflix prize problem is about being able to predict 

                                                           
1
  Netflix is a company that rents out movies to costumers, at the beginning they were sending the movies to 

   the costumers’ home but now they have an online website whereby you can watch thousands of movies. 
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a very large rating matrix whose rows are indexed by movies and columns are indexed by 

costumers and the (𝑖, 𝑗) ratings entry the hypothetical value assigned by customer 𝑖 to the 𝑗-th 

movie. One would like to complete this matrix so that Netflix might recommend titles that 

any particular user is likely to be willing to order. Of course, not every costumer has rented 

all movies in Netflix, therefore only a small fraction of entries are actually known. However, 

if one makes an assumption that most costumers’ rating preference is determined by only a 

small number of characteristics of the movies, (e.g. genre, year, director, actor/actresses etc), 

then the matrix should be of (approximately) low-rank. Hence, we end up with a highly 

underdetermined system of equations that has a special structure where CS paradigm could 

lead to a solution.  

The next example has been paraphrased from [8]. 

1.2.2 Compressed sensing in Genetics 

Another real-world application of CS is in genetics. We begin by considering system (1.1) 

such that 𝑀 ≪ 𝑁 (i.e. number of rows is much less than the number of columns). Doctors are 

interested in finding the location on the genome which is responsible for a trait, for instance 

cholesterol level. For modelling this problem mathematically, assume 𝑦 to be the number of 

measured cholesterol level of patient 𝑖, and Φ be a matrix whose rows (𝑖) present the 𝑖-th 

patients and columns (𝑗) is the locations of genome responsible of producing trait, see figure 

(1). Let us assume locations on the genome that possibly have an influence on cholesterol 

level to be 500,000 and we have only a few thousand people to study. Therefore, it is a highly 

underdetermine system of equations to solve. Nonetheless, there are few genes that might be 

responsible for cholesterol level and in this case we might be able to assume 𝑥 is sparse. Then 

the solution will be sparse as well. Roughly speaking sparse means that there are lots of zeros 

in the solution and we give the formal definition of sparse solution later in this Chapter.  

 

Figure 1: Mathematical model for determining locations on genes that produce trait. 
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1.2.3 Compressed Sensing and Magnetic Resonance Imaging (MRI) 

The theory of compressed sensing was initially inspired by a problem in Medical imaging, 

specifically in Magnetic Resonance Imaging (MRI), see figure (2). The problem was to speed 

up the acquisition time in MRI scanning which has serious limitations. However, the speed at 

which data can be collected in MRI is fundamentally limited by physical (gradient amplitude 

and slew-rate) and physiological (nerve stimulation) constraints. For instance, when a patient 

is inside MRI scanner device, he or she should not move otherwise the image collected by the 

scanner will be blurred. Therefore, many researches are seeking for methods to reduce the 

amount of data acquired without degrading the image quality. In other words, since we 

cannot reduce the relaxation time we might think of taking fewer samples to create a good 

resolution image. Now, since most of MRI images after transforming to an appropriate 

domain are sparse, CS can be used for this purpose. 

 

 

 

 

 

 

 

 

 

 

Figure 2: What is inside Magnetic Resonance Scanning [9]. 

 

  

1.3 𝒍𝟏 -Minimization versus  𝒍𝟎- Minimization 

In this sub-section, we start by defining  𝑙0-norm which we need in order to define the sparse 

solution. Later, the reason behind minimizing  𝑙1-norm instead of  𝑙0-norm will be discussed. 
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We also give an example to show that minimizing 𝑙1-norm may not be the same as 

minimizing to 𝑙0-norm, and present a theorem by E.J.Candes, which states that under some 

conditions (that we discuss later in this chapter) 𝑙1-minimization is equivalent to 𝑙0-

minimization. 

 

Definition (1.1) [ 𝒍𝟎-norm]: 

Let 𝑥 =  

𝑥1

⋮
𝑥𝑁
  ∈ ℝ𝑁  be a vector, then 𝑙0-norm denoted  ∙  𝑙0 , for a vector 𝑥 is  

 𝑥  𝑙0 =   1 𝑖𝑓 𝑥𝑖 ≠ 0, 0 𝑖𝑓 𝑥𝑖 = 0 .

𝑁

𝑖=1

 

Note that 𝑙0-norm is not quite a norm according to the mathematical definition of norm, 

because the following axiom of norm does not hold  

                                                       𝛼𝑣 =  𝛼  𝑣                                                                 

when 𝛼 is a negative scalar, and 𝑣 is an element of a vector space 𝑉.  Next, we define the 

sparsest solution by using definition (1.1). 

Definition (1.2) [Sparsest Solution]: 

The solution of an underdetermined system of equations 𝑦 = Φ𝑥 with the smallest 

(minimum)  𝑙0-norm is called the sparsest solution, and is denoted 𝑥𝑙0
∗  , i.e.  

 𝑥∗ 𝑙0 = min
𝑥∈ℝ𝑁

𝑦=Φ𝑥

 𝑥 𝑙0  .  

Solving an underdetermined system whose solution is sparse is like finding the sparsest 

solution that explains the data. Mathematically, we can cast this as an optimization problem 

where we try to find among all vector 𝑥 such that 𝑦 = Φ𝑥 the one that has the smallest 𝑙0-

norm (i.e. we want to find the smallest number of columns of Φ such that the linear 

combination of these columns yields  y), and it is known to NP-hard problem because no 

deterministic algorithm is known to solve the problem in a polynomial time. Roughly 

speaking, there are two classes of problems, ‘P’ (i.e. easy to find) versus ‘NP’ (i.e. easy to 

check) which is about investigation of which kind of problems can be solve by computers, 

and which types cannot. Basically, P-class problems are "easy" for computers to solve; that 
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is, solutions to these problems can be computed in a reasonable amount of time compared to 

the complexity of the problem. Meanwhile, for NP-hard problems, a solution might be very 

hard to find perhaps requiring an unknown number of years’ worth of computation, but once 

found, it is easily checked
2
. Therefore, instead of minimizing  𝑙0-norm we try to minimize 

what is known as  𝑙1-norm because this is a ‘P’ problem. In this manner, we need to state the 

definition of  𝑙1-norm. 

Definition (1.3) [ 𝒍𝟏-norm]: 

Let 𝑥 =  

𝑥1

⋮
𝑥𝑁
 ∈ ℝ𝑁  be a vector, then  𝑙1-norm for the vector  𝑥 is 

 𝑥 𝑙1 =   𝑥𝑖 

𝑁

𝑖=1

 

and, given a system (1.1)  

 𝑥∗ 𝑙1 = min
𝑥∈ℝ𝑁

𝑦=Φ𝑥

 𝑥 𝑙1    

where 𝑥𝑙1
∗  is a minimization of  𝑙1-norm. In general,  

                                                      𝑥𝑙1
∗ ≠ 𝑥𝑙0

∗  .                                                                        

Let us take an example to illustrate this. Consider the underdetermined system below 

                                          
3  3  3

0 −2 5  5
  

𝑥1

𝑥2

𝑥3

 =  
0
0
 .                                                     (1.2) 

Then the vector 

𝑥 =  
−3
1
2
   

solves the above system. Let Ω =  1  and Ω𝑐 =  2,3  where Ω ⊆  1,2,3  for 𝑁 = 3 and  

                                                           
2
 Clay Mathematics Institute in U.S listed ‘P versus NP’ as one of its millennium problems. 
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𝑥Ω = 𝑥{1} =  
𝑥1

0
0
 . This implies that 𝑥Ω =  

−3
0
0
  and  𝑥Ω𝑐 =  

0
1
2
 . Next, we find 𝑙1-norm and 

𝑙0-norm for both 𝑥Ω  and 𝑥Ω𝑐  . Now,  

 𝑥Ω 𝑙1 = 3   and       𝑥Ω 𝑙0 = 1. 

But  

                                                 𝑥Ω𝑐 𝑙1 = 3    and      𝑥Ω𝑐 𝑙0 = 2 . 

Therefore, 𝑥𝑙1
∗ ≠ 𝑥𝑙0

∗ . In other words, 𝑥𝑙0
∗  is a unique minimizer of (1.2) system but  𝑥𝑙1

∗ = 3 is 

not the unique minimizer of (1.2). We can take 𝑥Ω = −𝑧Ω𝑐  which also minimizes (1.2). This 

implies that 

Φ 𝑧Ω + 𝑧Ω𝑐 = 0. 

Then 

Φ𝑧Ω = −Φ𝑧Ω𝑐  

and now  

y = Φ𝑧Ω . 

Hence  𝑥𝑙1
∗  is not unique in general. Moreover, under some conditions when Φ is 'nice' then 

𝑥𝑙1
∗ = 𝑥𝑙0

∗  [7]. In order to state the theorem whereby  𝑥𝑙1
∗ = 𝑥𝑙0

∗ , we need two definitions which 

are restricted isometry property and sparse vectors. 

Definition (1.4) [𝒌-sparse vectors]: 

Let 𝑥 ∈ ℝ𝑁  be a vector. Then 𝑥 is said to be a 𝑘-sparse vector if  

 𝑥 𝑙0 ≤ 𝑘   

In other words, a vector  𝑥 is said to be 𝑘-sparse if at most 𝑘 coefficients of 𝑥𝑖  are non-zero. 

In order to be able to define the property which is known as Restricted Isometry Property 

(RIP) we need to define what is known as 𝑙2-norm. 
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Definition (1.4) [ 𝒍𝟐-norm]: 

Let 𝑥 =  

𝑥1

⋮
𝑥𝑁
 ∈ ℝ𝑁  be a vector, then  𝑙2-norm for the vector  𝑥 is 

 𝑥 𝑙2 =   𝑥𝑖2

𝑁

𝑖=1

. 

 Next, we define Restricted Isometry, a property which was first introduced by E. Candes and 

T.Tao in [4]. 

Definition (1.5) [Restricted Isometry Property (RIP)]: 

An 𝑀 × 𝑁 matrix Φ is said to have the restricted isometry property (RIP) of order 𝑘 if there 

exist 𝛿𝑘  ∈ (0,1) such that  

                                    1 − 𝛿𝑘  𝑥 𝑙2 ≤  Φ𝑥 𝑙2 ≤  1 + 𝛿𝑘  𝑥 𝑙2                                       (1.3) 

for all 𝑘-sparse vectors 𝑥. Also, one can define the Restricted Isometry Constant (RIC) as the 

smallest number 𝛿𝑘  such that (1.3) holds for every 𝑘-sparse vector 𝑥.  

Note that in (1.3), Φ is a big matrix such that the number of its rows are much less than the 

number of its columns (i.e. 𝑀 ≪ 𝑁 ). This means that the matrix Φ cannot act like an 

isometry on arbitrary vector because Φ has a huge null space, denoted 𝒩(Φ). In other words, 

there are many 𝑥’s (arbitrary vectors) for which Φ𝑥 will be zero. In terms of RIP definition, 

this means that we cannot have a lower bound in (1.3). But if we assume that the RIC 𝛿𝑘  is 

not too ‘big’ in (1.3), then it means that by selecting 𝑘-columns of Φ then if 𝑥 is 𝑘-sparse we 

want to preserve a norm. Another way of expressing RIP definition is that by extracting 𝑘- 

columns of Φ, sub-matrices will be well-conditioned.  In fact the condition number in (1.3) is 

simply  
1+𝛿𝑘

1−𝛿𝑘
 . Geometrically, RIP gives that 𝑘-columns of Φ are not orthogonal if one 

represent them in space but they are not too far from orthogonal. Therefore, by assuming that 

the solution of (1.1) is 𝑘-sparse then it is possible to recover 𝑥  if the sparse vectors lie away 

from the null space of Φ (𝒩(Φ)) because if  𝒩(Φ) contains sparse vectors then Φ𝑥 = 0 so 

there is nothing we can do. We previously showed that  𝑥𝑙0
∗ ≠  𝑥𝑙1

∗ , but in 2008 E.J. Candes 

showed that  𝑥𝑙1
∗ = 𝑥𝑙0

∗  by the following theorem: 
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Theorem (1.1) (Candes, 2008 [7]): 

If the matrix 𝛷 has the property of RIP with the restricted isometry constant  𝛿2𝑘 <  2 − 1 , 

then for all 𝑘-sparse vectors 𝑥 such that 𝑦 = 𝛷𝑥, the solution of  𝑥𝑙1
∗ = 𝑥𝑙0

∗ . 

In the next chapter, we will discuss proof of theorem (1.1) after providing appropriate 

lemmas that we need to construct the proof. Also, in chapter 2, we discuss a known technique 

for computing RIP and we propose a method in this manner which requires less 

computational cost. Finally, by the end of chapter 2 we see that when the restricted isometry 

constant is small ‘enough’ then we can find a sparse solution (unique sparse solution) of 

system (1.1) by using  𝑙1-minimization. Whereas in chapter 3 we will show that when the 

restricted isometry constant reaches 1 (more concisely when 𝛿2𝑘 ≈ 0.7071) then  𝑙1-

minimization cannot recover all sparse vectors. 
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Chapter 2 

2 Restricted Isometry Property and Null Space Property 

   In this chapter we aim to show that the restricted isometry property does imply the null 

space property (NSP) (the formal definition of null space property will be given later in this 

chapter). This relation will be showed by the following theorem: 

Theorem (2.1) ([10] Devanport et al., Theorem 1.5): Suppose that Φ ∈ ℝ𝑀×𝑁  is a matrix 

satisfying the RIP of order 2𝑘 with the restricted isometry constant (RIC) 𝛿2𝑘  <  2 – 1. Then 

Φ satisfies the NSP of order 2𝑘 with constant  

𝐶 =
 2𝛿2𝑘

1 − (1 +  2)𝛿2𝑘

 . 

The idea of the proof is based on the same approach that given in [10], but we give a full 

explanation of the proof. We shall first prove a few appropriate lemmas and proposition that 

we need to construct the proof of theorem (1.1). The first step is to show that for any vector 

 𝑥, we have  

 𝑥Λ 𝑙2 ≤ 𝐶
 𝑥Λ

𝑐 𝑙1

 𝑘
 

for the case where Λ is the index set corresponding to the 2𝑘 largest entry of 𝑥, Λ
c
 is the 

complement of Λ. Lemma (2.8) is another essential step of the proof states that if a matrix Φ 

has RIP of order 2𝑘  then any nonzero vector 𝑥 ∈ ℝ𝑁  has the following form 

 𝑥Λ 𝑙2 ≤ 𝛼
 𝑥Λ0

𝑐 
𝑙1

 𝑘
+ 𝛽

  Φ𝑥Λ,Φ𝑥  

 𝑥Λ 𝑙2
 

where 𝛼 =
 2𝛿2𝑘

1−𝛿2𝑘
, 𝛽 =

1

1−𝛿2𝑘
 , Λ0 ⊆  1,2,… ,𝑁  and whose cardinality  Λ0 ≤ 𝑘.  In 

particular, we apply lemma (2.8) to the case where 𝑥 ∈ 𝒩(Φ). Then lemma (2.7) will be 

applied to  𝑥Λ0
𝑐 

𝑙1
. The proof of the theorem requires many other technical results about the 

various norms computations. Furthermore, the techniques of computing RIP of matrices will 
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be discussed later in this chapter but we start by proposing a method whereby RIP of a matrix 

can be computed more efficiently in comparison using the definition of RIP. 

Proposition (2.1): Let  𝛷 ∈ ℝ𝑀×𝑁  be a matrix, then 𝛷 has RIP of order 𝑘 if there exist a RIC 

𝛿𝑘 ∈  0,1  such that  

 1 − 𝛿𝑘  𝑥 𝑙2 ≤  𝛴𝑥 𝑙2 ≤  1 + 𝛿𝑘  𝑥 𝑙2   

for all 𝑘-sparse vectors 𝑥, and 𝛴 is the diagonal 𝑀 × 𝑁 matrix whose entries are the first 

singular values of  ΦTΦ. 

We spilt the proof of this proposition in to two cases; firstly we show that when 𝑀 = 𝑁 then 

the problem of computing RIP of matrices will be reduced to computing Eigenvectors, 

secondly for underdetermined systems (i.e. when 𝑀 < 𝑁) we simply construct the inequality 

in proposition (2.1) by considering what is known as Singular Value Decomposition (SVD) 

method together with the fact that two of the matrices that SVD procedure produces are 

preserving norms.  

Finally, we end this chapter by giving a brief discussion about geometrical behaviour of RIP 

of order 1, i.e. when the number of nonzero component of the vector 𝑥 is 1. Then we show 

that when Φ has RIP of order 2𝑘 with 𝛿2𝑘 < 1 then any 𝑘-sparse solution to system (1.1) is a 

unique solution.   

Before going to discuss the relation between RIP and NSP we need to define NSP. For stating 

NSP we need to define some particular notation. In this manner, let  Φ ∈ ℝ𝑀×𝑁   be a given 

matrix, Λ ⊆  1,2,… ,𝑁   and  Λ ≤ 𝑘, then for any vector 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑁) the vector 𝑥Λ is 

obtained from 𝑥 by keeping all coordinates whose indices are in  Λ and replace all other 

coordinates by 0. For instance the subset Λ =  1,3,5,10 . Then the vector 𝑥 according to the 

index set Λ will be as follow:   

𝑥Λ = 𝑥 1,3,5,10 =  𝑥1, 0, 𝑥3, 0, 𝑥5, 0,0,0,0, 𝑥10 , 0,… . 

In words, vector  𝑥Λ contains four non-zero entries in the first, third, fifth and tenth row 

otherwise the entries are all zero up to the twentieth entry. Furthermore, the vector  𝑥 in terms 

of the complement of  Λ (i.e. Λ
𝑐
) will be as follow 

𝑥Λ
𝑐 = 𝑥 2,4,6,7,8,9,11,… =  0, 𝑥2 , 0, 𝑥4, 0, 𝑥6, 𝑥7 , 𝑥8, 𝑥9, 0, 𝑥11 ,… . 
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We now turn to define another property of matrices called the Null space property (NSP). We 

give a definition of NSP and then we discuss the relation between RIP and NSP.  

Definition (2.1) [Null Space Property]: 

An 𝑀 × 𝑁 matrix  Φ is said to have the Null Space Property (NSP) of order 𝑘 for 𝐶 ∈  0,1   

if  

                                                       𝑥Λ 𝑙1 ≤ 𝐶 𝑥Λ
𝑐 𝑙1                                                          (2.1) 

where Λ ⊆  1,2,… ,𝑁 ,  Λ ≤ 𝑘, and 𝑥 ∈ 𝒩(Φ). 

2.1 Relation between RIP and NSP 

In order to be able to state the relation between RIP and NSP, we need a series of lemmas. 

We start by considering the Cauchy-Schwarz inequality and Triangle inequality and we show 

the proof of the second one. 

Lemma (2.1) [Cauchy-Schwarz inequality]: 

For any vectors  𝑥 and 𝑦 in ℝ𝑁  

                                                    𝑥,𝑦  ≤  𝑥 𝑙2 𝑦 𝑙2                                                         (2.2) 

where   𝑥,𝑦  :ℝ𝑁 × ℝ𝑁 → ℝ is the absolute value of the inner product  𝑥,𝑦 . Equality holds 

if and only if 𝑥 and 𝑦 are linearly dependent, i.e. when 𝑥 = 𝑎𝑦 for some scalar 𝑎 then above 

inequality becomes  

  𝑥,𝑦  =  𝑥 𝑙2 𝑦 𝑙2 . 

This lemma will be used later in the proof of lemma (2.5) and lemma (3.2). 

Lemma (2.2):  Let  𝐴 ⊆ 𝐵 ⊆  1,2,⋯ ,𝑁  be two sets, then for any vector 𝑥 ∈ ℝ𝑁  

 𝑥𝐴 𝑙2 ≤  𝑥𝐵 𝑙2  . 

Proof:  𝑥𝐴 𝑙2 =    𝑥𝑖 
2

𝑖∈𝐴  
1

2 ≤    𝑥𝑖 
2

𝑖∈𝐵  
1

2 +    𝑥𝑖 
2

𝑖∈𝐴−𝐵  
1

2 =  𝑥𝐵 𝑙2 . 

Lemma (2.3) [Triangle Inequality]: 

For any 𝑛-vectors 𝑥 ∈ ℝ𝑁 and any norm  ⋅ , 
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 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛 ≤  𝑥𝑖 
𝑛

𝑖=1
 . 

Proof:   The proof follows by mathematical induction. 

∎ 

Next, we show that the cardinality of two disjoint sets is less than or equal to sum of the 

cardinality of the first set and second set minus the cardinality of first set intersect with the 

second one.  

Lemma (2.4):  If 𝐴 and 𝐵 are sets, then  

 A ∪ B =  𝐴 +  𝐵 −  A ∩ B . 

Hence  A ∪ B ≤  𝐴 +  𝐵  if and only if  𝐴 and  𝐵 are disjoint sets.  

Proof: Since the set of elements in both 𝐴 and 𝐵 are  𝐴 − 𝐵 and 𝐵 − 𝐴 respectively, then 

A ∪ B = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴) ∪ (𝐴 ∩ B ). 

Equating the cardinalities of the two sides of above equation, we obtain 

                                      A ∪ B =  𝐴 − 𝐵 +  𝐵 − 𝐴 +  𝐴 ∩ B .                                        (2.3) 

Now  

                                                       𝐴 − 𝐵 =  𝐴 −  𝐴 ∩ B .                                              (2.4) 

Similarly, we have             

                                                  𝐵 − 𝐴 =  𝐵 −  𝐴 ∩ B .                                                   (2.5) 

By plugging equation (2.4) and (2.5) into the right hand-side of equation (2.3) we obtain: 

 A ∪ B =  𝐴 +  𝐵 −  𝐴 ∩ B . 

                                                                                                                   ∎ 

The following lemma describes the relation between 𝑙1-norm and 𝑙2-norm of a 𝑘-sparse 

vector. This lemma will be used later in the proof of theorem (2.1).  
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Lemma (2.5) ([10], lemma 1.2): Consider 𝑥 ∈ Σ𝑘 , where Σ𝑘  is the set of all 𝑘-sparse vectors.  

Then  

                                                    
 𝑥 𝑙1

 𝑘
≤  𝑥 𝑙2  .                                                                  (2.6) 

Proof:  Let 𝒜 =  𝑥1 𝑥2 …  𝑥𝑁  and  ℬ =  𝑠𝑖𝑔𝑛 𝑥1 , 𝑠𝑖𝑔𝑛 𝑥2 ,… , 𝑠𝑖𝑔𝑛(𝑥𝑁)  where 

 𝑠𝑖𝑔𝑛(𝑥):ℝ → ℝ is a function 

𝑠𝑖𝑔𝑛 𝑥 =  

1   𝑖𝑓  𝑥 > 0
−1  𝑖𝑓  𝑥 < 0
 0   𝑖𝑓 𝑥 = 0 

  

therefore  

  𝑠𝑖𝑔𝑛( 𝑥i) 
2

𝑖∈N  ≤ 𝑘 . 

Taking the inner product of  𝒜 and  ℬ gives  

  𝒜,ℬ   =  𝑥1𝑠𝑖𝑔𝑛 𝑥1   +  𝑥2𝑠𝑖𝑔𝑛 𝑥2   + … +  𝑥𝑁𝑠𝑖𝑔𝑛 𝑥𝑁  . 

Because  𝑥 𝑠𝑖𝑔𝑛 𝑥   =  𝑥 , then we can write the above expression as  

  𝒜,ℬ    =  𝑥1  +  𝑥2  + … +  𝑥𝑁 . 

But  𝑥1  +  𝑥2  + … +  𝑥𝑁  =   𝑥𝑖  
𝑁
𝑖=1 , therefore  

     𝒜,ℬ  =   𝑥𝑖   
𝑁
𝑖=1 . 

By the definition of 𝑙1-norm,   𝒜,ℬ  =  𝑥 𝑙1  and apply lemma (2.1) on   𝑥, 𝑦    to obtain  

 𝑥 𝑙1  =   𝒜,ℬ  ≤  𝒜 𝑙2   ℬ 𝑙2  ≤  𝑥 𝑙2   𝑠𝑖𝑔𝑛(𝑥) 𝑙2 . 

Since  𝑠𝑖𝑔𝑛(𝑥) 𝑙2 =    𝑠𝑖𝑔𝑛(𝑥𝑖) 2𝑖∈𝑁 =   (1)𝑖∈𝑁 =   𝑁 ≤  𝑘, then we obtain 

 𝑥 𝑙1  ≤  𝑘  𝑥 𝑙2  

and this implies 

 𝑥 𝑙1

 𝑘
≤  𝑥 𝑙2 . 

∎ 
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Next we show another key lemma which we need in the proof of theorem (2.1). Roughly 

speaking, the next lemma will describe the relation between 𝑙1-norm and 𝑙2-norm in terms of 

the largest index set. 

Lemma (2.6): Let 𝑥 ∈ ℝ𝑁  be a vector and let Λ be a set consisting of the indices of the 

entries with the 2𝑘 largest modului. Let Υ be a subsets of  1,2,… ,𝑁  such that  Λ  = 2𝑘 and 

 Υ  ≤ 2𝑘. Then  

                                                           𝑥Λ 𝑙1 ≥  𝑥Υ 𝑙1                                                          (2.7) 

                                                           𝑥Λ 𝑙2 ≥  𝑥Υ 𝑙2                                                          (2.8) 

                                                                𝑥Λ
𝑐 𝑙2 ≤  𝑥Υ𝑐 𝑙2 

                                                        (2.9) 

Proof:  Consider the definition (1.3) (i.e.𝑙1-norm) 

                                                          𝑥Λ 𝑙1  =   𝑥𝑖 𝑖∈Λ                                                     (2.10) 

                                                          𝑥Υ 𝑙1  =   𝑥𝑖 𝑖∈Υ                                                      (2.11) 

By Comparing (2.10) and (2.11), we can say that the largest magnitude in expression (2.10) is 

greater than the largest magnitude in (2.11) by the assumption that 𝑥Λ has the largest 

modulus. Also, by the definition of 𝑙2-norm  

                                        𝑥Λ 𝑙2 =   𝑥𝑖2
𝑖∈Λ                                                         (2.12)   

                                        𝑥Υ 𝑙2 =   𝑥𝑖2
𝑖∈Υ                                                         (2.13) 

By comparing (2.12) and (2.13), we conclude that the largest element in  𝑥𝑖
2

𝑖∈Λ  is greater 

than or equal to the largest element in  𝑥𝑖
2

𝑖∈Υ , and the second largest element in  𝑥𝑖
2

𝑖∈Λ  is 

greater than the second largest element in  𝑥𝑖
2

𝑖∈Υ  and so on for the rest of elements in both 

(2.12) and (2.13). The reason behind this is because the assumption 𝑥𝛬  with index set Λ that 

has the 2𝑘 largest modulus assures that elements in  𝑥𝑖
2

𝑖∈Λ  are the largest elements. 

Moreover, taking the complement of Λ will produce the 2𝑘 smallest number; i.e.  Λ c will 

have the smallest size. In contrast, the complement of  Υ  is the set  Υ c  > 2𝑘, i.e  Υ c  is 

greater than the 2𝑘 largest element. Therefore,   𝑥Λ
𝑐 𝑙2  ≤   𝑥Υ𝑐 𝑙2 .  

∎ 
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Next we state a general result by lemma (2.7), whereby if we take 𝑙𝑝-norm of a vector (for 

instance 𝑥 ∈ ℝ𝑁) in correspond to two disjoint sets, then 𝑙𝑝-norm of 𝑥 with respect to union 

of the two disjoint sets will be the same as summing 𝑙𝑝-norm of 𝑥 according to the first index 

set and 𝑙𝑝-norm of  𝑥 with respect to the second index set. Before stating lemma (2.7), we 

need to define 𝑙𝑝-norm.  

Definition (2.2) [𝑙𝑝-norm]: Let 𝑥 ∈ ℝ𝑁  be a vector, then 𝑙𝑝-norm for the vector  𝑥 is 

 𝑥 𝑙𝑝 =    𝑥𝑖 
𝑝

𝑁

𝑖=1

 

1
𝑝

 

Lemma (2.7):  Let 𝐴 and 𝐵 be two subsets of  1,2,… ,𝑁  and  𝐴 ∩ 𝐵 = ∅ . Define 𝑥 to be a 

vector in ℝ𝑁  then 

 𝑥𝐴∪𝐵 𝑙𝑝
𝑝 =  𝑥𝐴 𝑙𝑝

𝑝 +  𝑥𝐵 𝑙𝑝
𝑝 . 

Proof: By the definition of 𝑙𝑝  norm 

 𝑥 𝑙𝑝
𝑝 =   𝑥𝑖  

𝑝

𝑁

𝑖=1

 . 

 Because the union of 𝐴 and 𝐵 is the set  1,2,… ,𝑁 , then we can write the 𝑙𝑝- norm of a 

vector 𝑥𝐴∪𝐵  as 

 𝑥𝐴∪𝐵 𝑙𝑝 = (   𝑥𝑖 
𝑝

𝑁

𝑖=1

)
1
𝑝  . 

Since 

(   𝑥𝑖 
𝑝

𝑁

𝑖=1

)
1
𝑝 = (  𝑥1 

𝑝)
1
𝑝 + (  𝑥2 

𝑝)
1
𝑝 + ⋯+ (  𝑥𝑁 

𝑝)
1
𝑝   . 

Then we can re-write  𝑥𝐴∪𝐵 𝑙𝑝
𝑝

 as  

                                         𝑥𝐴∪𝐵 𝑙𝑝
𝑝 =  𝑥1 

𝑝 +  𝑥2 
𝑝 + ⋯+   𝑥𝑁 

𝑝  .                                  (2.14) 
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Now, we will count all the elements in the set 𝐴, and we also count all elements in the set 𝐵 

without counting the repeated elements in both 𝐴 and 𝐵. Now, we can write equation (2.14) 

as follow 

 𝑥𝐴∪𝐵 𝑙𝑝
𝑝 =   𝑥𝑖 

𝑝

𝑖∈𝐴

+   𝑥𝑖 
𝑝

𝑖∈𝐵

 . 

By the definition of 𝑙𝑝-norm:   𝑥𝑖 
𝑝

𝑖∈𝐴 =  𝑥𝐴 𝑙𝑝
𝑝

 and   𝑥𝑖  
𝑝

𝑖∈𝐵 =  𝐵 𝑙𝑝
𝑝

 

Hence 

 𝑥𝐴∪𝐵 𝑙𝑝
𝑝 =  𝑥𝐴 𝑙𝑝

𝑝 +  𝑥𝐵 𝑙𝑝
𝑝 . 

                                                             ∎ 

Next, we state yet another lemma which we need in order to show the relation between RIP 

and NSP. 

Lemma (2.8) ([10], lemma 1.3): Suppose that Φ ∈ ℝ𝑀×𝑁 satisfies the RIP of order 2𝑘, and 

let 𝑥 ∈ ℝ𝑁 , 𝑥 ≠ 0 be arbitrary. Let Λ0 ⊆  1,2,… ,𝑁  such that  Λ0  ≤ 𝑘. Define Λ1 to be the 

set corresponding to the 𝑘 entries of  𝑥Λ0
𝑐  with largest magnitude, and set  Λ = Λ0 ∪ Λ1. 

Then 

 𝑥Λ 𝑙2 ≤ 𝛼
 𝑥Λ0

𝑐 
𝑙1

 𝑘
+ 𝛽

  Φ𝑥Λ,Φ𝑥  

 𝑥Λ 𝑙2
 

Where 𝛼 = 
 2𝛿2𝑘

1−𝛿2𝑘
   , 𝛽 = 

1

1−𝛿2𝑘
   . 

Note that lemma (2.8) holds for arbitrary  𝑥. In order to start stating the theorem which 

illustrates that RIP implies NSP, we need to apply lemma (2.8) to the case where 𝑥 ∈ 𝒩(Φ). 

The proof of this lemma is a technical proof which can be found in [10]. Keep in mind that 

previously we showed a series of lemmas that give us the ability to construct the proof of the 

relation between RIP and NSP, given by theorem (2.1). 

Theorem (2.1) ([10] Devanport et al., Theorem 1.5): Suppose that Φ ∈ ℝ𝑀×𝑁 is a matrix 

satisfying the RIP of order 2𝑘 with the restricted isometry constant (RIC) 𝛿2𝑘  <  2 – 1. Then 

Φ satisfies the NSP of order 2𝑘 with constant  
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𝐶 =
 2𝛿2𝑘

1 − (1 +  2)𝛿2𝑘

 . 

Proof : Suppose 𝑥 ∈ 𝒩(Φ). It is sufficient to show that  

                                                             𝑥Λ 𝑙2 ≤ 𝐶
 𝑥Λ

𝑐 𝑙1

 𝑘
                                                            (2.15)  

holds for the case where Λ is the index set corresponding to the 2𝑘 largest entry of  𝑥 , i.e. 

 Λ  = 2𝑘. (2.15) implies the NSP definition, given by definition (2.1), simply by multiplying 

both sides of (2.15) by  𝑘 then apply lemma (2.5) to the left hand side of (2.15) to get 

 𝑥Λ 𝑙1 ≤  𝑘 𝑥Λ 𝑙2 ≤ 𝐶 𝑥Λ
𝑐 𝑙1 . 

Hence clearly we get (2.15). Another way of expressing (2.15) is that, if   𝑥Λ 𝑙2 ≤ 𝐶
 𝑥

Λ
𝑐 
𝑙1

 𝑘
  

and take 𝐿 ⊆  1,… ,𝑁   such that  𝐿  ≤ 2𝑘 , then by applying lemma (2.5) we obtain 

 𝑥L 𝑙2 ≤  𝑥Λ 𝑙2 ≤ 𝐶
 𝑥Λ𝑐 𝑙1

 𝑘
≤ 𝐶

 𝑥L𝑐 𝑙1

 𝑘
 . 

Hence, clearly  

 𝑥L 𝑙2 ≤ 𝐶
 𝑥L𝑐 𝑙1

 𝑘
 . 

Next, take Λ0 to be the index set corresponding to the 𝑘 largest entry of  𝑥.  

We can apply lemma (2.8) on 𝑥 as follow  

 

  

Since 𝑥 ∈ 𝒩(Φ), then Φ𝑥 = 0. Therefore,  Φ𝑥Λ, Φ𝑥  = 0 and this implies  

𝛽
  Φ𝑥Λ, Φ𝑥  

 𝑥Λ 𝑙2
= 0 . 

Therefore equation (2.16) becomes  

 

 𝑥Λ 𝑙2 ≤ 𝛼
 𝑥Λ0

𝑐 
𝑙1

 𝑘
+ 𝛽

  Φ𝑥Λ ,Φ𝑥  

 𝑥Λ 𝑙2
  

 

(2.16) 
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                    (2.17)                             

Now, Λ1 ⊆ Λ0
𝑐
  and  Λ = Λ0 ∪ Λ1  (by lemma (2.8)). 

Next, in order to be able to use lemma (2.7) on 𝑥Λ0
c  , we need to show that  Λ0

c
 = Λ1 ∪ Λ

c
 

and  Λ1 ∩ Λ
c = ∅. Since Λ1 ∪ Λ1

c =  1,2,… ,𝑁  and Λ0
c
 ∪ Λ1 = Λ0

c
, then the intersection 

between the universal set  1,2,… ,𝑁  and the set  Λ0
c
 ∪ Λ1 will produce the set Λ0

c
 , i.e 

(Λ
1
 ∪ Λ1

c  ) ∩ (Λ0
c
 ∪ Λ1) = Λ0 

c  . 

Now,  Λ0
c
 =  (Λ

1
 ∪ Λ1

c  ) ∩ (Λ1 ∪ Λ0
c ) and by applying the distributive law, we obtain 

 Λ0
c
 = (Λ

1
∩ Λ1 ) ∪ ( Λ1

c ∩ Λ0
c ) . 

Since  Λ1 ∪ Λ1 = Λ1, then we can rewrite  Λ0
c
 as follow 

                                                Λ0
c
 =  Λ1 ∪ (Λ0

c
 ∩ Λ1

c  ) . 

But Λ
c = Λ0

c
 ∩ Λ1

c
 , then  Λ0

c
 = Λ1 ∪ Λ

c
  hence 

                                               Λ0
c
 = Λ1 ∪ Λ

c  .                                                                (2.18) 

Also  Λ1 ∩ Λ
c = Λ1 ∩ (Λ0

c
 ∩ Λ1

c) (because Λ
c = Λ0

c
 ∩ Λ1

c
 ). Next, by applying the 

distributive law, we get 

Λ1 ∩ Λ
c = (Λ

1
∩ Λ0

c ) ∩  Λ1 ∩ Λ1
c . 

Since Λ1 ⊆ Λ0
c
   then (Λ

1
∩ Λ0

c ) =  Λ1 this implies that  

Λ1 ∩ Λ
c  = Λ1  ∩ ∅ = ∅. 

Therefore, 

                                                      Λ1 ∩ Λ
c = ∅.                                                                (2.19) 

Now, equation (2.18) and equation (2.19) enable us to use lemma (2.7) on 𝑥, which implies   

                                                𝑥Λ0
c  

𝑙1
=  𝑥Λ1

 
𝑙1

+   𝑥Λ
c 𝑙1                                             (2.20) 

 𝑥Λ 𝑙2 ≤ 𝛼
 𝑥Λ0

𝑐 
𝑙1

 𝑘
  . 
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which is not equal to zero in general, i.e. Λ1 is the set corresponding to the 𝑘 largest entry of 

Λ0
c
 , this means that Λ

c
 is a non empty set correspond to the other 𝑘 largest entry of Λ0

c
 . 

Next, apply lemma (2.5) on  𝑥Λ1
 
𝑙1

 in equation (2.20) and we get 

                                             𝑥Λ0
c  

𝑙1
 ≤  𝑘  𝑥Λ1

 
𝑙2

 +  𝑥Λ
c 𝑙1  .                                        (2.21) 

Substituting equation (2.21) in equation (2.17) we obtain  

      𝑥Λ 𝑙2 ≤ 𝛼 
 𝑘  𝑥Λ1

 
𝑙2

 +   𝑥Λ
c 𝑙1

 𝑘
 . 

This implies    

 𝑥Λ 𝑙2 ≤ 𝛼 𝑥Λ1
 
𝑙2

+ 𝛼
  𝑥Λ

c 𝑙1

 𝑘
 . 

Next, we subtract  𝛼  𝑥Λ1
 
𝑙2

 from both sides  

 𝑥Λ 𝑙2 − 𝛼 𝑥Λ1
 
𝑙2
≤ 𝛼

  𝑥Λ
c 𝑙1

 𝑘
 . 

 Then by using the fact that  Λ = Λ0 ∪ Λ1 we obtain 

 1 − 𝛼  𝑥Λ 𝑙2 ≤ 𝛼
  𝑥Λ

c 𝑙1

 𝑘
 . 

The assumption 𝛿2𝑘  <  2 – 1 assures that 𝛼 < 1, and thus we may divide by (1 − 𝛼) 

without changing the direction of the inequality  

 𝑥Λ 𝑙2 ≤
𝛼  

(1 −  𝛼)

  𝑥Λ
c 𝑙1

 𝑘
 . 

Hence 

 𝑥Λ l2
≤ C

  𝑥Λ
c 𝑙1

 𝑘
 

where C =
𝛼   

(1 − 𝛼)
=

 2δ2k
1−δ2k

1−( 
𝛼   

(1 − 𝛼)
)

=
 2δ2k

1−(1+ 2)δ2k
  . 

∎ 
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To sum up, RIP does imply the NSP but the converse is not true. Actually, RIP is 

significantly more restrictive. 

2.2 Computing restricted isometry property (RIP)  

The restricted isometry property definition, given by definition (1.5), requires that every 

subset of the columns of Φ with certain cardinality, should behaves approximately like an 

orthonormal system. In this chapter we present a known technique for which the restricted 

isometry property can be computed for any matrix. Likewise, we proposed a method for 

checking restricted isometry property of underdetermined system of equations. 

Computing the restricted isometry property (RIP) of a matrix is about computing the value of 

Φ𝑥 in system (1.3) and then taking the Euclidean norm of it. Basically, if a matrix Φ is a 

square matrix, then computing RIP of Φ is equal with finding the eigenvalues of Φ. Note that 

RIP of a square matrix  Φ ∈ ℝ𝑁×𝑁   is 

 1 − 𝛿𝑘  𝑥 𝑙2 ≤  Φ𝑥 𝑙2 ≤  1 + 𝛿𝑘  𝑥 𝑙2  . 

For an eigenvector 𝑥, Φ𝑥 = 𝜆𝑥 where 𝜆 is the corresponding eigenvalue. Therefore, the 

above inequality becomes  

 1 − 𝛿𝑘  𝑥 𝑙2 ≤  𝜆𝑥 𝑙2 ≤  1 + 𝛿𝑘  𝑥 𝑙2 . 

Computing eigenvalues does not make any sense other than square matrices. Thus, to 

determine the RIP of non-square matrices, we need to know what is called as Singular Value 

Decomposition (SVD). For non-square matrices we are interested in the case where the 

number of rows is less than the number of columns. But before discussing the SVD of 

matrices, we need another definition known as singular value. 

Definition (2.3) [Singular value]: 

Let Φ ∈ ℝ𝑀×𝑁 matrix, then the singular values 𝜎1 ,𝜎2 ,… ,𝜎𝑁  of  Φ are the square roots of the 

eigenvalues 𝜆1, 𝜆2,… , 𝜆𝑁  of  Φ𝑇Φ,  arranged in a decreasing order, i.e. 

𝜎𝑖 =  𝜆𝑖  for 1 ≤ 𝑖 ≤ 𝑁. 

Next, we define the singular value decomposition of any 𝑀 × 𝑁 matrix by using definition 

(2.3). Then we propose another method for computing RIP that needs less computation in 

comparison with singular value decomposition method which may have computational 

implications. 
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Definition (2.4) [Singular value decomposition (SVD)]: 

Let Φ be an 𝑀 × 𝑁 matrix with rank 𝑟. Then there exist an 𝑀 × 𝑁 matrix  Σ =  
𝐷 0
0 0

 ,where  

𝐷 is the diagonal matrix whose diagonal entries are the first  𝑟 singular values of Φ, and there 

exist an  𝑀 × 𝑀 orthogonal matrix  𝑈 and an 𝑁 × 𝑁 orthogonal matrix  𝑉 such that  

                                                          Φ = 𝑈Σ𝑉𝑇                                                                 (2.22) 

where 𝑈 = [𝑢1 … 𝑢𝑀] such that  𝑢𝑖 =
1

𝜎𝑖
Φ𝑣𝑖  for 𝑖 = 1,… ,𝑁 and 𝑉 = [𝑣1 … 𝑣𝑁] are 

orthonormal basis of  ℝ𝑁  for eigenvectors of  Φ𝑇Φ , and 𝑉𝑇  is the transpose of  𝑉.  

To illustrate SVD in more detail, we select an underdetermined matrix which we are 

interested in and compute its Singular value decomposition. Roughly speaking, we can find 

SVD of any matrix through the following 5-step algorithm: 

 

 

 

 

 

 

 

 

 

 

 

 

 

U =  u1 u2 ⋯ u𝑀   and  V =  v1 v2 ⋯ v𝑁  

Step (1): Compute  M = ΦTΦ , where Φ is an input matrix. 

Step (2): Compute the Eigenvalue and Eigenvectors of  M. 

Step (3): Determine the singular values of  M  and then sort them in a decreasing 

order.  

Step (4): Compute  U , V and Σ  where  U and V are orthogonal 𝑀 × 𝑀 and 𝑁 × 𝑁 

matrices respectively, such that 

where  ui =
1

𝜎𝑖
Φv𝑖  for 1 ≤ 𝑖 ≤ 𝑁 and 𝜎𝑖 ≠ 0 , vi  is the unit eigenvector 

and 𝜎𝑖  is the singular value. 

Step (5): Computing the matrix  Φ = UΣVT  where Σ is the diagonal 𝑀 × 𝑁 matrix 

whose entries are the first singular values of  M.  
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Example: If A =  
3 2 2
2 3 −2

  then the SVD of A is  

A = UΣVT =  

−1

 2
1

 2

1

 2
−1

 2

   
5 0 0
0 3 0

  

 
 
 
 
 
−2

3

2

3

1

3
1

 18

−1

 18

4

 18
−1

 2

1

 2
0  
 
 
 
 

. 

Computing the RIP of underdetermined system is about computing the Euclidean norm of 

( UΣVT𝑥) in (1.3) because by substituting (2.22) back in (1.3) we end up with the following 

inequality 

                                  1 − 𝛿𝑘  𝑥 𝑙2 ≤  UΣVT𝑥 𝑙2 ≤  1 + 𝛿𝑘  𝑥 𝑙2  .                              (2.23) 

 Finally, we conclude a proposition (given by proposition (2.1)), whereby we can compute 

SVD of underdetermined matrices in a better way in comparison with (2.23). Next, we give 

the proof of proposition (2.1). 

Proof (of Proposition 2.1): Let Φ ∈ ℝ𝑀×𝑁  be a given RIP matrix of order 𝑘 with 𝛿𝑘 ∈  0,1  

such that   

                                      1 − 𝛿𝑘  𝑥 𝑙2 ≤  Φ𝑥 𝑙2 ≤  1 + 𝛿𝑘  𝑥 𝑙2 .                                 (2.24) 

If Φ = UΣVT  is the SVD decomposition of Φ then 

 Φ𝑥 𝑙2 =  UΣVT𝑥 𝑙2 . 

Since U, V are orthogonal matrices, then they are preserving norms such that  

 𝑈𝑥 𝑙2 =  (Ux)2 

for some vector  𝑥 ∈ ℝ𝑁 , and we are now calculating (Ux)2 whereby we can rewrite above 

formula as  

                                                      (U𝑥 ∙ U𝑥)
1

2  

and the last formula can be written as  

(𝑥𝑇  UTU𝑥)
1

2  . 

Since U is orthogonal (i.e. UTU = 𝐼  where 𝐼 is the identity matrix), we obtain 
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                                                     (𝑥 𝑥)
1

2 =  𝑥 𝑙2   . 

Thus  

                                                            U𝑥 𝑙2 =  𝑥 𝑙2                                                        (2.25) 

and similarly 

                                                          VT𝑥 𝑙2 =  𝑥 𝑙2  .                                                     (2.26) 

By using (2.25) and (2.26) we get 

 Φ𝑥 𝑙2 =  UΣVT𝑥 𝑙2 =  UΣ𝑥 𝑙2 =  Σ𝑥 𝑙2 . 

As we previously mentioned that U, V are orthogonal matrices, therefore they are both 

preserving norm. Hence, (2.24) becomes  

 1 − δk  𝑥 𝑙2 ≤  Σ𝑥 𝑙2 ≤  1 + δk  𝑥 𝑙2  . 

 ∎ 

Next we are going to discuss the geometrical behaviour of RIP and uniqueness of the sparse 

solution of system (1.1). 

2.3 Geometrical behaviour of RIP  

The shape of the set of matrices that has RIP of order 1 is a result of multiplying an annulus 

by itself N-times by the following theorem. 

Theorem (2.3): Let  𝑀𝛿 ,1 be a set of all matrices which have the RIP of order 1 and a 

restricted isometry constant (RIC) 𝛿𝑘 ,then  

𝑀𝛿 ,1 = 𝔇 𝛿1 × 𝔇 𝛿1 × …× 𝔇(𝛿1)                   
𝑁−𝑡𝑖𝑚𝑒𝑠

 

where 𝔇(𝛿1) is the annulus  𝑥 ∈ ℝ𝑁|  1− 𝛿𝑘 ≤  𝑥 𝑙2 ≤  1 + 𝛿𝑘  . In other words, the 

matrix’s columns are in 𝔇 𝛿1 × 𝔇 𝛿1 × …× 𝔇(𝛿1)                   
𝑁−𝑡𝑖𝑚𝑒𝑠

. 

Proof:  Since 𝑀𝛿 ,1 has RIP of order 1, then by definition of RIP  ∃𝛿𝑘 ∈ (0,1) such that  

                             1 − 𝛿𝑘  𝑥 𝑙2 ≤  Φ𝑥 𝑙2 ≤  1 + 𝛿𝑘  𝑥 𝑙2                                            (2.27) 
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for all 𝑥 ∈ Σ1 =  𝑥|  𝑥 𝑙0 ≤ 1 . 

Now, let 𝑥𝑞 =

 
 
 
 
 
0
0
⋮
1
⋮
0 
 
 
 
 

  

In other words,  𝑥𝑞  is a vector which has only one non-zero element in the q
th

 column. 

Therefore,  𝑥𝑞 𝑙2
=  (1)2 = 1 and equation (2.27) becomes 

 1 − 𝛿𝑘 ≤  Φ𝑥𝑞 𝑙2
≤  1 + 𝛿𝑘 . 

It implies that 

 1 − 𝛿𝑘 ≤  𝑞𝑡  column of Φ  𝑙2 ≤  1 + 𝛿𝑘 . 

Then there is a map between the matrix Φ and the annulus such that the first column in the 

matrix Φ maps the point in the first annulus and the second column in the matrix Φ maps the 

point in the second annulus and so on. 

 

 

 

 

  

Figure 3: Annulus 

 

Finally, by theorem (2.4) we show that if there is a sparse solution of the system (1.1) then it 

is a unique sparse solution but before that we need a lemma whereby we show that 𝑙0-norm 

has the property of sub-linearity. 

Lemma (2.9) [sub-linearity of zero-norm]: For any vectors  𝑥 and 𝑦 in ℝ𝑁  

 𝑥 + 𝑦 𝑙0 ≤  𝑥 𝑙0 +  𝑦 𝑙0 . 

qth entry 

 

 1 − 𝛿𝑘  

 
      1 + 𝛿𝑘  

⊆ ℝ𝑀 
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Proof: We start by re-writing the definition of  𝑙0-norm as follow: 

 𝑥 𝑙0 =   𝑥𝑖 

𝑁

𝑖=1

 

where  ∙ : ℝ → ℝ is a function 

                                                             𝑥 =  
1    𝑖𝑓 𝑥 ≠ 0 
0   𝑖𝑓  𝑥 = 0  

   .     

Now, in the case where both 𝑥 and 𝑦 are zero it is obvious that     

 𝑥 + 𝑦 =  𝑥 + [𝑦]. 

Whereas if one of them not zero, i.e. if 𝑥 ≠ 0 or 𝑦 ≠ 0 then   

 𝑥 + 𝑦 ≤  𝑥 + [𝑦]. 

Taking the summation of the above inequality implies 

 𝑥 + 𝑦 𝑙0 ≤  𝑥 𝑙0 +  𝑦 𝑙0  

                                                                                              ∎ 

Next, we proof the uniqueness of sparse solution of system (1.1) by the following theorem. 

Theorem (2.4) [8]: Let Φ be an 𝑀 × 𝑁 matrix which has RIP of order 2𝑘 with the RIC     

𝛿2𝑘  < 1, then any 𝑘-sparse solution of system (1.1) is the unique such solution. 

Proof: Suppose we have two 𝑘-sparse solutions of  𝑦 = Φ𝑥 , say 𝑥1 and 𝑥2 then 

   Φ𝑥1 = Φ𝑥2 = 𝑦 which implies  Φ𝑥1 − Φ𝑥2 = 0 and Φ(𝑥1 − 𝑥2) = 0 

Now, because  𝑥1 and 𝑥2 are both 𝑘-sparse solution of  𝑦 = Φ𝑥, then one can apply lemma 

(2.9) as follow 

 𝑥1 + (−𝑥2) 𝑙0  ≤  𝑥1 𝑙0  + (− 𝑥2 𝑙0 ). 

Then 

 𝑥1 + (−𝑥2) 𝑙0  ≤  𝑥1 𝑙0   + (− 𝑥2 𝑙0 )  ≤ 𝑘 + 𝑘 = 2𝑘 
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which means (𝑥1 − 𝑥2) is 2𝑘-sparse solution of 𝑦 = Φ𝑥. Therefore, we can apply the 

restricted isometry property definition because we concluded that  𝑥1 − 𝑥2 is 2𝑘-sparse and 

we just take the lower bound of the RIP inequality because the lower bound is crucial, i.e. 

                               (1 − 𝛿2𝑘)  𝑥1  −  𝑥2 𝑙2  ≤  Φ(𝑥1 − 𝑥2) 𝑙2 .                                        (2.28) 

Previously we assumed that 𝛿2𝑘 < 1 which means that (1 − 𝛿2𝑘) is a positive quantity. 

Therefore, if we divide both sides of equation (2.28) by (1 − 𝛿2𝑘) then the sign of the 

inequality is not going to change, as follow  

(1 −  𝛿2𝑘)  𝑥1  −  𝑥2 𝑙2
(1 −  𝛿2𝑘)

≤
 Φ(𝑥1 − 𝑥2) 𝑙2  

(1 −  𝛿2𝑘)
 

and we obtain  

 𝑥1  −  𝑥2 𝑙2 ≤
 Φ(𝑥1 − 𝑥2) 𝑙2

(1 −  𝛿2𝑠)
. 

Since  Φ(𝑥1 − 𝑥2) = 0 , then we get   𝑥1  −  𝑥2 𝑙2  ≤ 0 

But, by the definition of norm  𝑥1  −  𝑥2 𝑙2 ≥ 0 iff  𝑥1 − 𝑥2 = 0 which implies 

      𝑥1 − 𝑥2 = 0   iff  𝑥1 = 𝑥2 .                                                                                   

∎ 
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Chapter 3 

 In this chapter we aim to construct matrices with the restricted isometry constant close to 

1

 2
≈ 0.7071 where sparse recovery (𝑙1-minimization) fails to at least one 𝑘-sparse vector. 

The goal is to understand how much improvement is possible over the best known positive 

results which relate restricted isometry constant to sparse 𝑙1 -recovery. We give an exposition 

of  M. E. Davies and R. Gribonval’s result in [11] but we specialise to 𝑙1-recovery instead of 

𝑙𝑝-recovery that was generally dealt with in [11]. Also we extend the proofs of lemmas and 

propositions that are given in [14]. In their paper, Davies and Gribonval showed that when 

RIC 𝛿2𝑘  close to 
1

 2
  then there exist matrices such that 𝑙1-recovery cannot recover all sparse 

vectors by the following theorem: 

Theorem (3.1)[ Davies and Gribonval [11] ]:  For any 𝜀 > 0 there exist an integer 𝑘 and  a 

matrix Φ with  RIC 𝛿2𝑘 ≤
1

 2
+ 𝜀 for which 𝑙1-recovery fails on some 𝑘-sparse vector. 

The main idea of the proof of theorem (3.1) is to first reduce the search for the failing 

matrices that we are interested in to what are called minimally redundant row orthonormal 

matrices. By minimally redundant matrices we mean, a matrix Φ ∈ ℝM×N  such that           

M = N − 1. A row orthonormal matrix means that the rows of the matrix are orthonormal. In 

order to find matrices for which the 𝑙1-minimization fails to recover at least one 𝑘-sparse 

vector with small RIC 𝛿2𝑘 , we will be looking for 𝑙1-failing matrices with largest possible 

asymmetric RIC 𝜎2𝑘
2  ( we give the definition of Asymmetric RIC 𝜎2𝑘

2  later in this chapter, by 

definition 3.2). Then the 𝑙1-failing matrices with largest 𝜎2𝑘
2  can be searched within the 

restricted set of 𝑙1-failing minimally redundant row orthonormal matrices. Furthermore, for 

the minimally redundant row orthonormal matrices, 𝜎2𝑘
2  is completely determined by the unit 

vector 𝑧 which spans the null space of the matrix Φ, i.e. 𝒩(Φ). We then recast the problem 

of selecting 𝑙1-failing minimally redundant row orthonormal matrices with maximal 𝜎2𝑘
2  to an 

optimization problem where we wish to select a unit norm vector 𝑧 that allows 𝑙1-failing 

recovery for 𝑘-sparse vectors. This modification can be done by changing the signs and 

swapping appropriate columns of the matrix Φ. Finally we show how to construct the matrix 

Φ from the vector 𝑧.  
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 Because of theorem (2.1), RIP is one of the commonly used frameworks for sparse recovery 

via 𝑙1-minimization. E.Candes in [7] showed that if RIC 𝛿2𝑘 <  2 − 1 = 0.4142  then every 

𝑘-sparse vector can be uniquely recovered via 𝑙1-minimization. Later, this bound has been 

improved by Foucart and Lai in [13] to  𝛿2𝑘 < 0.4531 and then to  𝛿2𝑘 < 0.472 in [3]. 

Therefore, the main question that arises here is: how large we can set 𝛿2𝑘 ≤ 1 so that we can 

recover every 𝑘-sparse vector via 𝑙1-recovery? By the end of this chapter we show that 

𝛿2𝑘  cannot be bigger than 0.7071. 

3 Matrices that fail to satisfy the null space property 

 

In this chapter we are interested in sparse solutions to system (1.1), i.e. 

                                                              𝑦 = Φ𝑥                                                                   (3.1) 

where Φ ∈ ℝM×N  such that 𝑀 < 𝑁, and 𝑥Ω  denotes a vector that is equal to some 𝑥 on some 

index set Ω and zero elsewhere. Furthermore, the vector 𝑥Ω  is  Ω -sparse and we say that the 

support of the vector  𝑥 lies within Ω whenever  𝑥Ω = 𝑥. In chapter 2, we introduced the NSP, 

given by definition (2.3), whereby for any non-zero vector 𝑧 ∈ 𝒩(Φ) and a constant 

𝐶 ∈ (0,1) we had 

  𝑧Ω 𝑙1 ≤ 𝐶 𝑧Ωc 𝑙1  . 

This implies that  

                                                          zΩ 𝑙1 <  zΩc 𝑙1                                                          (3.2) 

is also true that any vector 𝑦 whose support lies within Ω, can be uniquely recovered by the 

following optimization problem 

                                   𝑥𝑙1
∗ = min𝑥 𝑥 𝑙1  such that  Φ𝑥 = y.                                                 (3.3) 

Furthermore, this particular definition of NSP (i.e. (3.3)) is tight because the inequality (3.2) 

does not hold for some z ∈ 𝒩(Φ) then the vector  𝑥 ≔ 𝑧Ω  is supported on Ω but it is not the 

unique minimiser for (3.3), for instance we can take another vector to minimize (3.3) such as 

𝑥 = −𝑧Ω𝑐 . Then Φ 𝑧Ω + 𝑧Ω𝑐 = Φz = 0 and Φ𝑧Ω = −Φ𝑧Ωc = Φ𝑥 . This is a property that 

we will call ‘𝑙1 failure’ from now on, i.e. when  
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  𝑧Ω 𝑙1 ≥  𝑧Ωc 𝑙1 . 

Actually, in the worst case scenario we have  

 𝑥  𝑙1 =  𝑧Ωc 𝑙1 <   𝑧Ω 𝑙1 =   𝑥 𝑙1 . 

In this chapter we will work with a slightly stronger condition than the usual RIP, introduced 

in chapter 2, by considering the Unit Spectral Norm Matrix and later we define the 

asymmetric RIC. 

Definition (3.1) [Spectral norm]: 

Let Φ ∈ ℝM×N  be a matrix and let a vector 𝑥 ∈ ℝ𝑁 . Then the spectral norm of Φ is 

|||Φ||| ∶= sup
𝑥≠0

 Φ𝑥 𝑙2
 𝑥 𝑙2

. 

Then Unit spectral norm matrices are matrices with  

|||Φ||| = 1 . 

Definition (3.2): [Asymmetric RIC] 

Let Φ ∈ ℝM×N  be a unit spectral norm matrix. Then the asymmetric RIC 𝜎𝑘
2 Φ  is defined by 

𝜎𝑘
2 Φ ≔ min

𝑥Ω≠0, Ω ≤ k

 Φ𝑥Ω 𝑙2
 𝑥Ω 𝑙2

 

We begin by a lemma which shows how the asymmetric RIC relates to previously defined 

RIC definition when the matrix in the question is rescaled. 

Lemma (3.1): Let Φ ∈ ℝM×N  be a unit spectral norm matrix and 𝜎𝑘
2 Φ  be the asymmetric 

RIC. Define  Ψ𝑘  ∶=  
2

1+𝜎𝑘
2 Φ 

 Φ  as a re-scaled matrix of 𝜎𝑘
2 Φ . Then the RIC of a re-scaled 

matrix Ψ𝑘  , 𝛿𝑘  Ψ𝑘  satisfies 

𝛿𝑘  Ψ𝑘 ≤
1 − 𝜎𝑘

2 Φ 

1 + 𝜎𝑘
2 Φ 

 

Proof: We start by considering the definition of asymmetric RIC together with unit spectral 

norm matrix definition to obtain 
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𝜎𝑘
2 Φ  𝑥 𝑙2

2 ≤  Φ𝑥 𝑙2
2 ≤  𝑥 𝑙2

2 . 

Multiplying above inequality by 𝜆2 we obtain 

                                         𝜆2𝜎𝑘
2 Φ  𝑥 𝑙2

2 ≤ 𝜆2 Φ𝑥 𝑙2
2 ≤ 𝜆2 𝑥 𝑙2

2  .                                     

But the RIC is the smallest number 𝛿𝑘  such that  

                            1 − 𝛿𝑘  𝑥 𝑙2
2 ≤  Φ𝑥 𝑙2

2 ≤ (1 + 𝛿𝑘) 𝑥 𝑙2
2                                               

holds for every 𝑘-sparse vector y allowing rescaling. In order to find the RIC we need to find 

𝛿𝑘(Ψ𝑘) such that  

                                  𝜆2𝜎𝑘
2 Φ =  1 − 𝛿𝑘(Ψ𝑘)                                                                  (3.4) 

and  

                                 𝜆2 =  1 + 𝛿𝑘(Ψ𝑘)  .                                                                           (3.5) 

After substituting  𝜆2 =
2

1+𝜎𝑘
2 in (3.4) and (3.5) we get two simultaneous equations 

                                       
2𝜎𝑘

2 Φ 

1 + 𝜎𝑘
2 Φ 

=  1 − 𝛿𝑘 Ψ𝑘                                                                        (3.6) 

                                     
2

1 + 𝜎𝑘
2 Φ 

=  1 + 𝛿𝑘 Ψ𝑘  .                                                                       (3.7) 

Then from the above two equations we obtain the rescaled RIC 𝛿𝑘 Ψ𝑘  as follow: 

From equation (3.6) 

2𝜎𝑘
2 Φ 

1 + 𝜎𝑘
2 Φ 

=  1 − 𝛿𝑘 Ψ𝑘   

which implies 

𝛿𝑘 Ψ𝑘 = 1 −
2𝜎𝑘

2 Φ 

1 + 𝜎𝑘
2 Φ 

=
1 − 𝜎𝑘

2 Φ 

1 + 𝜎𝑘
2 Φ 

. 

On the other hand, from equation (3.7) 
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𝛿𝑘 Ψ𝑘 =
2

1 + 𝜎𝑘
2 Φ 

− 1 =
1 − 𝜎𝑘

2 Φ 

1 + 𝜎𝑘
2 Φ 

. 

Then the RIC 𝛿𝑘 Ψ𝑘   is  

𝛿𝑘 Ψ𝑘 =
1 − 𝜎𝑘

2 Φ 

1 + 𝜎𝑘
2 Φ 

  . 

Hence the RIC is smallest constant so that 

𝛿𝑘(Ψ𝑘) ≤
1 − 𝜎𝑘

2(Φ)

1 + 𝜎𝑘
2(Φ)

 . 

∎ 

Our goal is to construct matrices where 𝑙1-recovery fails for at least one 𝑘-sparse vector and 

in order to find 𝑙1-failing matrices with minimum RIC 𝛿2𝑘 , we will be searching for 𝑙1-failing 

matrices with the largest 𝜎2𝑘
2 . We now reduce the search for 𝑙1-failing matrices to minimally 

redundant unit spectral norm matrices by proposition (3.1).  

The proposition below shows that 𝑙1-failing unit spectral norm matrices with largest 𝜎2𝑘
2  (𝑘 is 

an integer such that 2𝑘 < 𝑁 ) can be searched within the restricted set of minimally 

redundant row orthonormal matrices where 𝑙1-minimization fails to recover at least one 

sparse vector. Furthermore, proposition (3.1) shows that minimally redundant row 

orthonormal matrices are optimal among unit spectral norm matrices. 

Proposition (3.1) [ Davies and Gribonval [11], Proposition 1]: Let Φ ∈ ℝM×N  be an arbitrary 

unit spectral norm matrix which is 𝑙1-failing for some 𝑘-sparse vector with M < 𝑁, then there 

exists a minimally redundant row orthonormal (unit spectral norm) matrix Φ∗ ∈ ℝ(N−1)×N  

which is 𝑙1-failing for the same 𝑘-sparse vector such that for every 𝑚 

𝜎𝑚
2 (Φ) ≤ 𝜎𝑚

2  Φ∗ . 

Proof: We start by applying slightly a different form of the singular value decomposition on 

Φ whereby we obtain Φ = VΣUT  where V ∈ ℝM×M  and  UT  ∈ ℝM×N  are row orthonormal, 

and Σ ∈ ℝM×M  is a diagonal matrix whose entries are singular values of Φ. Since Φ has a unit 

spectral norm then  

|||Φ||| = |||𝑉𝛴𝑈𝑇||| = 1 
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 but 𝑉and 𝑈𝑇are preserve norm because 𝑉 and 𝑈𝑇 are row orthonormal , i.e. 

 𝑉𝑥 𝑙2 =  𝑥 𝑙2   for all 𝑥 ∈ ℝM . Hence  

|||Φ||| = |||𝑉𝛴𝑈𝑇||| = |||𝛴||| = 1 

and for any vector 𝑥 and any index set Ω , we have 

 Φ𝑥Ω 𝑙2
2  =   𝑉𝛴𝑈𝑇𝑥Ω 𝑙2

2  =  𝛴𝑈𝑇𝑥Ω 𝑙2
2  ≤  𝑈𝑇𝑥Ω 𝑙2

2 . 

 

Therefore  

 Φ𝑥Ω 𝑙2
2

 𝑥Ω 𝑙2
2 ≤

 𝑈𝑇𝑥Ω 𝑙2
2

 𝑥Ω 𝑙2
2  . 

Now, since Φ is 𝑙1-failing for some 𝑘-sparse vector, then there exists some failing vector 

z ∈ 𝒩(Φ) and an index set Ωk  of size 𝑘 such that  

                                                         zΩ𝑘 𝑙1
 ≥  zΩ𝑘

c 
𝑙1

                                                      (3.8) 

Now let W ∈ ℝN×(N−M−1) be a matrix such that the rows of 𝑊 forms an orthonormal basis of 

the orthogonal complement to {𝑧,𝑈} (note that the rows of  𝑊 forms an orthonormal basis to 

the orthogonal complement of rows of 𝑈 ).  

Since z ∈ 𝒩(Φ) then Φz = 𝑉𝛴𝑈𝑇𝑧 = 0. Also, since 𝑉𝛴 ≠ 0 because 𝑉𝛴 is an invertible 

matrix. Therefore, the only way that Φz = 0 is that 𝑈𝑇𝑧 = 0, i.e. 𝑧 is orthonormal to the rows 

of  𝑈. Therefore, the columns of {𝑧,𝑈, W} forms an orthonormal basis over ℝN  whereby we 

can write any 𝑥Ω ∈ ℝ
Nas: 

𝑥𝛺  = 𝑎𝑧 + 𝑈𝑏 + Wc 

 for some 𝑎 ∈ ℝ, 𝑏 ∈ ℝM  and c ∈ ℝN−M−1. Next, define the minimally redundant row 

orthonormal matrix Φ∗ ∶=  𝑈, W T ∈ ℝ(N−1)×N  . Since 𝑈 and W are row orthonormal and the 

spectral norm of both of them is one, then spectral norm of Φ∗ is one too, i.e.  

|||Φ∗||| = 1 

and 
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         Φ∗𝑥Ω 𝑙2 =   𝑈, W T𝑎𝑧 𝑙2  +   𝑈, W T𝑈𝑏  𝑙2 +   𝑈, W TWc 𝑙2 .                            (3.9) 

Moreover, for any 𝑥Ω  we have  

                                                   
 Φ𝑥Ω 𝑙2

2

 𝑥Ω 𝑙2
2 ≤

 𝑈T𝑥Ω 𝑙2
2

 𝑥Ω 𝑙2
2 .                                                                 (3.10) 

So we compute the right hand side of the above inequality:  

 𝑈T𝑥Ω 𝑙2
2 =  𝑈T𝑎𝑧 +  𝑈T𝑈𝑏 +  𝑈TWc 𝑙2

2 . 

We previously showed that 𝑈𝑇𝑧 vanishes, and 𝑈𝑇𝑈 = 𝐼𝑀×𝑀 . Also, since every row of  W is 

orthogonal to {𝑧,𝑢1,… ,𝑢2} (by orthogonal complement property) then  W𝑖 , 𝑧 = W𝑖
𝑇𝑧 = 0. 

Similarly,  W𝑖 ,𝑈 = W𝑖
𝑇𝑈 = 0. Then  

 𝑈T𝑥Ω 2
2 =  𝑈T𝑎𝑧 +  𝑈T𝑈𝑏 +  𝑈TWc 2

2 =  0 + 𝐼𝑏 + 0 2
2 =  𝑏 2

2 

Now we compute the denominator of (4.10), i.e.  

 𝑥Ω 𝑙2
2 =  𝑎𝑧 𝑙2

2 +  𝑈𝑏 𝑙2
2 +  Wc 𝑙2

2  . 

Since 𝑧  is orthogonal vector, then  𝑎𝑧 𝑙2
2 = 𝑎2 and 𝑈 is row orthonormal such that 

 𝑈𝑏 𝑙2
2 =  𝑏 𝑙2

2  where 𝑏 ∈ ℝM . Also, since 𝑊 is row orthonormal then  Wc 𝑙2
2 =  c 𝑙2

2 . 

Thus we can write the value of  𝑥Ω 𝑙2
2  as  

 𝑥Ω 𝑙2
2 = 𝑎2 +  𝑏 𝑙2

2 +  c 𝑙2
2 . 

Then the inequality (3.10) becomes  

 Φ𝑥Ω 𝑙2
2

 𝑥Ω 𝑙2
2 ≤

 𝑈T𝑥Ω 𝑙2
2

 𝑥Ω 𝑙2
2 =

 𝑏 𝑙2
2

𝑎2 +  𝑏 𝑙2
2 +  c 𝑙2

2  

By adding  c 𝑙2
2  to the right hand side numerator in the above inequality we get 

 Φ𝑥Ω 𝑙2
2

 𝑥Ω 𝑙2
2 ≤

 𝑈T𝑥Ω 𝑙2
2

 𝑥Ω 𝑙2
2 =

 𝑏 𝑙2
2

𝑎2 +  𝑏 𝑙2
2 +  c 𝑙2

2 ≤
 𝑏 𝑙2

2 +  c 𝑙2
2

𝑎2 +  𝑏 𝑙2
2 +  c 𝑙2

2  

Since  WTW = 𝐼(𝑁−𝑀−1)×(𝑁−𝑀−1) , then (3.9) becomes  

 Φ∗𝑥Ω 𝑙2
2 =  𝑏 𝑙2

2 +  c 𝑙2
2  
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then we obtain  

 Φ𝑥Ω 𝑙2
2

 𝑥Ω 𝑙2
2 ≤

 𝑈T𝑥Ω 𝑙2
2

 𝑥Ω 𝑙2
2 =

 𝑏 𝑙2
2

𝑎2 +  𝑏 𝑙2
2 +  c 𝑙2

2 ≤
 𝑏 𝑙2

2 +  c 𝑙2
2

𝑎2 +  𝑏 𝑙2
2 +  c 𝑙2

2 =
 Φ∗𝑥Ω 𝑙2

2

 𝑥Ω 𝑙2
2  

Hence  

𝜎𝑚
2 (Φ) ≤ 𝜎𝑚

2  Φ∗  

Note that we concluded that Φ∗𝑧 = 0, hence z is in the null space of Φ∗ which is 𝑙1-failing 

for at least one 𝑘-sparse vector. 

∎ 

Next, by the proposition below we show that for the minimally redundant row orthonormal 

matrices, the asymmetric RIC 𝜎𝑘
2(Φ) is completely determined by the unit vector 𝑧 which 

spans the null space 𝒩(Φ).  

Proposition (3.2) [ Davies and Gribonval [11], Proposition 2]:  

Let Φ ∈ ℝ(N−1)×N  be a minimally redundant row orthonormal matrix, and let 𝑧 ∈ ℝN  with 

 z 𝑙2 = 1 be a vector which spans  𝒩(Φ). Denoting Ω𝑚  the set indexing the 𝑚 largest 

components of  𝑧 we have for every 𝑚  

𝜎𝑚
2  Φ = 1 −  zΩ𝑚  𝑙2

2
 

Proof: Since 𝑧 is in the null space of  Φ  then Φ𝑧 = 0 and Φ is row orthonormal whereby the 

columns of {𝑧, ΦT} forms an orthonormal basis in ℝN . Therefore, we can write any vector 𝑥  

as : 

                                                                 𝑥 = 𝑎𝑧 + ΦT𝑏                                                    (3.11) 

where 𝑎 ∈ ℝ and 𝑏 ∈ ℝ(N−1) and  Φ𝑥 = Φ𝑧𝑎 + ΦΦT𝑏 but Φ𝑧 = 0 and ΦΦT = 𝐼 then 

Φ𝑥 = 𝑏 

and  

                                                                Φ𝑥 𝑙2
2 =  𝑏 𝑙2

2 .                                                                (3.12) 

If 𝑥 has a unit norm then 
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                                               1 =  𝑥 𝑙2
2 = 𝑎2 +  𝑏 𝑙2

2 .                                                     (3.13) 

But 

𝑎2 =  𝑎 2 =  𝑎 𝑧Tz + 𝑏𝑇Φ𝑧 2 =   𝑎 𝑧T + 𝑏𝑇Φ z 2 =  𝑥Tz 2 =  z𝑥 2 =   𝑧, 𝑥  2 

 where 𝑥 has the form of (3.11). By using (3.12) together with the value of 𝑎2 we can write 

(3.13) as 

1 =  𝑥 𝑙2
2 = 𝑎2 +  𝑏 𝑙2

2 =   𝑧, 𝑥  2 +  Φ𝑦 𝑙2
2  

hence  

                                              Φ𝑥 𝑙2
2 = 1 −   𝑧, 𝑥  2.                                                         (3.14) 

Finally, to find the asymmetric RIC of  ΦΩ, we need to solve the problem  

𝜎𝑚
2  Φ = min

Ω, Ω ≤𝑚
min
𝑥Ω

 𝑥Ω =1

 Φ𝑥Ω 𝑙2
2   . 

By using (3.14) we obtain  

min
Ω, Ω ≤ 𝑚

min
𝑥Ω

 𝑥Ω =1

 Φ𝑥Ω 𝑙2
2 = 1 − max

Ω, Ω ≤ 𝑚
max
𝑥Ω

 𝑥Ω =1

  z, 𝑥Ω  
2    

then  

𝜎𝑚
2  Φ =    1 − max

Ω, Ω ≤𝑚
max
𝑥Ω

 𝑥Ω =1

  𝑧, 𝑥Ω   
2 .  

In other words, we need to find the unit vector  𝑥Ω
∗  that is maximally correlated with 𝑧. For a 

given  Ω  that satisfies with 𝑥Ω
∗ =

zΩ

 zΩ  𝑙2
 , whereby   z, 𝑥Ω   

2 =  zΩ 𝑙2
2 . Hence, the best  Ω is 

the one that captures the  𝑘  largest components of 𝑧 because asymmetric RIC 𝜎𝑘
2 Φ  is the 

minimum of  Φ𝑥Ω 𝑙2
2 which obtains by subtracting the result of maximum inner product 

between  𝑧 and  𝑥Ω  from one. 

     ∎ 

Next, we introduce a technical lemma which we need in order to explain the structure of 

optimal 𝑧 in the null space. 
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Lemma (3.1) [ Davies and Gribonval [11], lemma 2]: Let u1 > v1 ≥ v2 > u2 ≥ 0  such that 

u1 + u2 = v1 + v2 . Then  

u1
2 + u2

2 > v1
2 + v2

2. 

Proof: Let J(u1, u2) = u1
2 + u2

2 , and we have  u1 + u2 = v1 + v2 which implies 

u2 = v1 + v2 − u1. 

Substituting the last equation in 𝐽 we get 

J u1, u2 u1  = u1
2 +  v1 + v2 − u1 

2. 

This implies  

J u1, u2 u1  = 2(u1
2 − u1 v1 + v2 + v1v2) + (v1

2 + v2
2). 

Hence  

J u1, u2 u1  = 2 u1 − v1  u1 − v2 + (v1
2 + v2

2) 

which is strictly positive by the assumption u1 > v1 ≥ v2 ≥ 0 . 

∎ 

Keep in mind, our original problem which was to select a minimally redundant row 

orthonormal matrices with largest 𝜎2𝑘
2 . Then by proposition (3.2), minimally redundant row 

orthonormal matrices with largest 𝜎2𝑘
2  is completely determined by a unit vector 𝑧 which 

spans the null space of Φ. Characterizing the unit vector 𝑧 with largest 𝜎2𝑘
2  can be modified in 

to an optimization problem where we wish to determine the form of the optimal vector 𝑧.  

 Up to column permutation of Φ and sign changes we can assume that  𝑧𝑖 ≥ 𝑧𝑖+1 ≥ 0 and the 

𝑙1-failing assumption is that  zΩ2𝑘
 
𝑙1

2
≥  zΩ2𝑘

𝑐  
𝑙1

2

. When 𝑧 is 𝑙1-failing for some Ω𝑘  , then it 

is 𝑙1-failing for 𝑘-largest entry of 𝑧Ω𝑘 . 

 In other words, consider a matrix Φ and a vector  𝑧 that solves  Φ, i.e. Φz = 0, then by 

swapping any 2 appropriate columns of  Φ and changing signs then  𝑧𝑖 ≥ 𝑧𝑖+1 ≥ 0. We take 

an example to illustrate what we said about swapping the columns of Φ more clearly.  
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Consider  Φ =  
1 0 2
1 1 2

  then =  
2
0
−1

  ∈ 𝒩(Φ)., i.e. Φ𝑧 = 0. Now, swap 2 appropriate 

columns of Φ (in this example we must swap columns 2 and 3), then  Φ′ =  
1 2 0
1 2 1

  and 

then 𝑧′ =  
2
−1
0
  ∈ 𝒩(Φ′). Multiply the second column of Φ′  by (-1) then Φ′′ =  

1 −2 0
1 −2 1

 . 

Thus,  𝑧′ =  
2
1
0
  solves Φ′′  and 𝑧1 = 2, 𝑧2 = 1 and 𝑧3 = 0 then we obtain that 𝑧𝑖 ≥ 𝑧𝑖+1 ≥ 0 

as we claimed. Note that Φ′′  is minimally redundant because the number of its rows is one 

less than the number of its columns and it is rows are orthonormal because swapping columns 

the inner product is still zero. Also when Φ has unit spectral norm, then swapping columns 

does not change the unit spectral norm property of  Φ′′ . 

By defining 𝛬0 =  1,… ,𝑚 ,𝛬1 = {𝑚 + 1,… ,𝑘} and 𝛬2 = {𝑘 + 1,… ,𝑁} we can turn our 

problem of finding the largest 𝜎2𝑘
2  Φ   into an optimisation problem, given by lemma (3.2), 

whereby we wish to select a unit vector  𝑧  that allows 𝑙1-failing reconstruction for 𝑘-sparse 

vector while minimizing  𝑧Ω𝑘 𝑙2

2
.  The next lemma shows that one only has to consider a 

simple form for the optimal vector  𝑧. Furthermore, this optimization problem below is 

equivalent to the problem that we are interested in, i.e. the problem of finding the largest 

asymmetric RIC 𝜎2𝑘
2 . By proposition (3.2) finding the largest asymmetric RIC 𝜎2𝑘

2  of the 

matrix Φ can be determined by (1 −  𝑧𝛺𝑚  𝑙2

2
) where  𝑧 𝑙2

2 = 1 which is constraint (3.17) in 

lemma (3.2). We can write the unit vector z in terms of Λ0,Λ1 and Λ2 as follow: 

 𝑧 𝑙2
2 =  𝑧𝛬0

 
𝑙2

2
+  𝑧𝛬1

 
𝑙2

2
+  𝑧𝛬2

 
𝑙2

2
= 1. 

This implies  

 𝑧𝛬0
 
𝑙2

2
+  𝑧𝛬1

 
𝑙2

2
= 1 −  𝑧𝛬2

 
𝑙2

2
. 

By proposition (3.2), minimizing the function, J(z), (defined below in (3.15)) is equivalent 

with minimizing  𝑧𝛬0
 
𝑙2

2
+  𝑧𝛬1

 
𝑙2

2
=  𝑧Ω𝑘 𝑙2

2
. The 𝑙1-failing inequality can be interpreted in 

terms of Λ0,Λ1 and Λ2 as 

 𝑧𝛬0
 
𝑙1
≥  𝑧𝛬0

𝑐 
𝑙1

=  𝑧𝛬1∪𝛬2
 
𝑙1
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and by lemma (2.8) this implies 

 𝑧𝛬0
 
𝑙1
≥  𝑧𝛬1

 
𝑙1

+  𝑧𝛬2
 
𝑙1

. 

Hence  

 𝑧𝛬1
 
𝑙1

+  𝑧𝛬2
 
𝑙1

 𝑧𝛬0
 
𝑙1

   ≤ 1 

which is constraint (3.16) in the lemma below. Finally, as we previously discussed the form 

of unit vector  z can be assumed as  zi ≥ zi+1 ≥ 0 which is constraint (3.18) in the lemma 

below. By previous analysis the problem of selecting 𝑙1-failing minimally redundant row 

orthonormal unit spectral norm matrix Φ becomes an optimization problem as shown below. 

Lemma (3.2) [Davies and Gribonval [11], lemma 3]:  

 Consider 𝑘 ≥ 2m and let  z∗ ∈ ℝN  be a solution to the following optimization problem: 

                                         Minimise:   J 𝑧 ∶= 
 𝑧𝛬0 𝑙2

2
+ 𝑧𝛬1 𝑙2

2

 𝑧𝛬2 𝑙2

2                                            (3.15) 

                                           Subject to:        
 𝑧𝛬1 𝑙1

+ 𝑧𝛬2 𝑙1
 𝑧𝛬0 𝑙1

   ≤ 1                                       (3.16)                       

                                                                                𝑧 𝑙2
2 = 1                                                (3.17) 

                                                    and               𝑧𝑖 ≥ 𝑧𝑖+1 ≥ 0                                             (3.18) 

Then 𝑧∗ is piecewise flat (by flat we mean that the elements have the same value), and has the 

form: 

                                                   𝑧∗ = [𝛼,… ,𝛼     
𝑚

,𝛽,… ,𝛽     
𝐿

, 𝛾, 0,… ,0]T                                   (3.19) 

for some constants 𝛼 > 𝛽 > 𝛾 ≥ 0 and some L such that 𝑘 + 1 ≤ 𝑚 + 𝐿 ≤ 𝑁.  

Proof: Firstly, due to the continuity of  J 𝑧  and the compactness of the constraint set, an 

optimum  𝑧∗ is guaranteed to exist. This is because a continuous function on a compact set 

always attains its minimum and maximum value. Then by the contradiction we prove that the 

shape of 𝑧∗ is flat. 
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We split the proof into three parts, firstly we show that 𝑧𝛬0

∗  is flat, then we show that 𝑧𝛬1

∗ is flat 

as well and finally by proving 𝑧𝛬2

∗  is flat we will conclude that z∗ has the claimed form in 

(3.19). By using the lower bound of Lemma (2.5), we have  

                                                            𝑧𝛬0

∗  
𝑙2
≥ 𝑚−1/2 𝑧𝛬0

∗  
𝑙1

                                         (3.20)  

where 𝑚 is the order of sparsity. In terms of Lemma (2.5), the equality holds when 𝑥 and 𝑦 

are linearly dependent and we obtain  

  𝑥,𝑦  =  𝑥 𝑙2 𝑦 𝑙2   

and then by using the above formula for proving the lower bound of Lemma (2.5) we get the 

equality in (3.20). In other words, the equality holds only if  𝑧𝑖
∗ = 𝑚−1 𝑧𝛬0

∗  
𝑙1

for all 𝑖 ∈ 𝛬0, 

which means that 𝑧𝛬0

∗  is flat. Next, we define 𝑧′  by 𝑧𝛬1∪𝛬2

′ = 𝑧𝛬1∪𝛬2

∗  and  𝑧𝑖
′ = 𝑚−1 𝑧𝛬0

∗  
𝑙1

 we 

then rescale the vector 𝑧′  to make it feasible, i.e. let 𝑧′′ =
𝑧 ′

 𝑧 ′  𝑙2
 and later we must show that 

𝑧′′  is satisfies the constraints (3.16), (3.17) and (3.18). Firstly, (3.17) holds as  𝑧′′  is a unit 

vector. Secondly, we shall prove that  𝑧′′   is satisfies (3.16), in other words if we could show 

that  𝑧′  is satisfying (3.16) then z′′  is satisfies (3.16) too because (3.16) is a scale invariant 

constraint, now by using the assumption  𝑧𝛬1∪𝛬2

′ = 𝑧𝛬1∪𝛬2

∗  we obtain  

 𝑧𝛬1

′  
𝑙1

=  𝑧𝛬1

∗  
𝑙1

 

and 

 𝑧𝛬2

′  
𝑙1

=  𝑧𝛬2

∗  
𝑙1

. 

Let 𝑧𝛬0

′ = (𝛼,… ,𝛼) where we have 𝑚 number of 𝛼’s in 𝑧𝛬0

′  , and by computing the 𝑙1-norm 

of  𝑧𝛬0

′  we get:  

 𝑧𝛬0

′  
𝑙1

= 𝑚𝛼 = 𝑚 𝑚−1 𝑧𝛬0

∗  
𝑙1
 . 

By the assumption  𝑧𝑖
∗ = 𝑚−1 𝑧𝛬0

∗  
𝑙1

 where 𝑖 ∈ 𝛬0. We end up with 

 𝑧𝛬0

′  
𝑙1

=  𝑧𝛬0

∗  
𝑙1

. 

Hence 𝑧′  is satisfies (3.16), i.e.  
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 𝑧𝛬1

′  
𝑙1

+  𝑧𝛬2

′  
𝑙1

 𝑧𝛬0

′  
𝑙1

=
 𝑧𝛬1

∗  
𝑙1

+  𝑧𝛬2

∗  
𝑙1

 𝑧𝛬0

∗  
𝑙1

≤ 1 

As 𝑧∗ is feasible. Finally, to show that 𝑧𝑖
′′ ≥ 𝑧𝑖+1

′′ ≥ 0 we need to show that 𝑧𝑖
′ ≥ 𝑧𝑖+1

′ ≥ 0 as  

𝑧𝑖
′′ ≥ 𝑧𝑖+1

′′ ≥ 0  if and only if  𝑧𝑖
′ ≥ 𝑧𝑖+1

′ ≥ 0 as the constraint (3.18) is scale invariant.  

In order to show that  z𝑖
′ ≥ z𝑖+1

′ , we shall take all possibilities that 𝑖 might take, i.e. when 

𝑖 < 𝑚 , 𝑖 = 𝑚 and 𝑖 > 𝑚. In the case of  𝑖 < 𝑚, 𝑧𝑖
′ = 𝑧𝑖+1

∗  because we flattened z′  by 

dividing it by its length. When 𝑖 = 𝑚, 𝑧𝑖
′ ≥ 𝑧𝑚

∗  by the fact that flatten vector is greater than 

(or equal) to the smallest entry (element) of the same vector before flattening it, i.e. let 𝑥 be a 

set of numbers, then min 𝑥 ≤ average 𝑥 . This implies that 

𝑧𝑚
′ ≥ 𝑧𝑚

∗ ≥ 𝑧𝑚+1
∗  

But 𝑧𝑚+1
′ = 𝑧𝑚+1

∗ , hence 𝑧𝑚
′ ≥ 𝑧𝑚+1

′  . Lastly, in the case of  𝑖 > 𝑚, we previously assumed 

that  𝑧𝛬1∪𝛬2

′ = 𝑧𝛬1∪𝛬2

∗  whereby we concluded that  𝑧′  is feasible. 

Next, it will be shown that 𝑧𝛬1

∗  is flat with all entries equal to 𝑧𝑘+1
∗ =  𝑧𝛬2

∗  
𝑙∞

. By 

contradiction, assume that 𝑧𝑖
∗ ≠ 𝑧𝑘+1

∗  for some 𝑖 ∈ 𝛬1 and then construct 𝑧′  by letting 

𝑧𝛬0∪𝛬2

′ = 𝑧𝛬0∪𝛬2

∗  and 𝑧𝑖
′ = 𝑧𝑘+1

∗  for all 𝑖 ∈ 𝛬1. By rescaling, 𝑧′′ =
𝑧 ′

 𝑧 ′  𝑙2
 then we must show 

that 𝑧′′  is feasible, i.e. 𝑧′′   must satisfy constraints (3.16),(3.17) and (3.18). It is obvious that 

 𝑧′′  𝑙2
2 = 1 because 𝑧′′  is a unit vector and thus (3.17) holds. By the assumption 

𝑧𝛬0∪𝛬2

′ = 𝑧𝛬0∪𝛬2

∗  

we obtain 

 𝑧𝛬0

′  
𝑙1

=  𝑧𝛬0

∗  
𝑙1

 and  𝑧𝛬2

′  
𝑙1

=  𝑧𝛬2

∗  
𝑙1

 

Also since 𝑧𝑖
′ = 𝑧𝑘+1

∗  ∀ 𝑖 ∈ 𝛬1 , then  𝑧𝛬1

′  
𝑙1

=  𝑚𝑎𝑥(𝑧𝛬2

∗ ) 
𝑙1

and we conclude  

 𝑧𝛬1

′  
𝑙1

+  𝑧𝛬2

′  
𝑙1

 𝑧𝛬0

′  
𝑙1

≤ 1. 

hence  
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 𝑧𝛬1

′′  
𝑙1

+  𝑧𝛬2

′′  
𝑙1

 𝑧𝛬0

′′  
𝑙1

≤ 1.  

Thus constraint (3.16) holds for 𝑧′′ . As we mentioned previously 𝑧𝑖
′′ ≥ 𝑧𝑖+1

′′ ≥ 0  if and only 

if 𝑧𝑖
′ ≥ 𝑧𝑖+1

′ ≥ 0 which means that in order for 𝑧′′  to satisfy (3.18) we shall prove that 𝑧′  

satisfies (3.18).To do that we investigate all possible cases that  𝑖  might have as follow: 

 When 𝑖 < 𝑚, then 𝑧𝛬0

′ = 𝑧𝛬0

∗  because we assumed that 𝑧𝛬0∪𝛬2

′ = 𝑧𝛬0∪𝛬2

∗  which implies that 

 𝑧𝛬0

′ = 𝑧𝛬0

∗ . If 𝑖 = 𝑚, then 𝑧𝑚
′ = 𝑧𝑚

∗  and since 𝑘 + 1 > 𝑚  we obtain 

𝑧𝑚
′ = 𝑧𝑚+1

∗ . 

Whereas if 𝑖 ≤ 𝑘 then 𝑧𝑖
′ = 𝑧𝑘+1

∗  since all  𝑖 ∈ 𝛬1. Finally, in the case of  𝑖 ≥ 𝑘 + 1, by the 

assumption 𝑧𝛬0∪𝛬2

′ = 𝑧𝛬0∪𝛬2

∗ we obtain 𝑧𝑖
′ = 𝑧𝑖

∗.Therefore, by the above analysis we conclude  

𝑧𝑖
′ ≥ 𝑧𝑖+1

′ ≥ 0 which leads to 𝑧𝑖
′′ ≥ 𝑧𝑖+1

′′ ≥ 0. 

We are now going to describe the shape of  𝑧𝛬2

∗ . Let 𝑗 be the smallest index such that 𝑧𝑗
∗ < 𝑧𝑘

∗  

and 𝑙 be the largest index such that 𝑧𝑙
∗ > 0. Suppose that 𝑗 ≠ 𝑙, otherwise we already have the 

form in (3.19). Next, construct 𝑧′  with non-increasing, positive entries such that 𝑧𝑖
′ = 𝑧𝑖

∗ for 

all 𝑖 ≠ {𝑗, 𝑙} as follow: 

C1: if  𝑧𝑗
∗ + 𝑧𝑙

∗ ≤ 𝑧𝑘
∗  , we set: 

𝑧𝑙
′ = 0 and 𝑧𝑗

′ = 𝑧𝑗
∗ + 𝑧𝑙

∗ 

C2: if  𝑧𝑗
∗ + 𝑧𝑙

∗ > 𝑧𝑘
∗  , we set: 

      𝑧𝑗
′ = 𝑧𝑘

∗  and 𝑧𝑙
′ = 𝑧𝑗

∗ + 𝑧𝑙
∗ − 𝑧𝑘

∗ . 

At the beginning, by C1 and C2 we obtain that  𝑧′ 𝑙1 =  𝑧∗ 𝑙1  as follow: 

 𝑧′ 𝑙1 =   𝑧𝑖
′  

𝑁

𝑖=1

=  𝑧𝑖
′

𝑁

𝑖=1

=  𝑧𝜁
′

𝜁

+ 𝑧𝑗
′ + 𝑧𝑙

′  

where =  1,… ,𝑁 − {𝑗, 𝑙} . If we are in the C1 case; 

 𝑧𝜁
′

𝜁

+ 𝑧𝑗
′ + 𝑧𝑙

′ =  𝑧𝜁
′

𝜁

+  𝑧𝑗
∗ + 𝑧𝑙

∗ + 0 =  𝑧𝜁
′

𝜁

+ 𝑧𝑗
∗ + 𝑧𝑙

∗ =  𝑧∗ 𝑙1 . 
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Figure 4: We flattened 𝒛𝚲𝟎
′  and  𝒛𝚲𝟏

′ , and we want to show that the vector 𝒛𝚲𝟐
′  contains one element which is not equal 

to  𝒛𝒌
∗  or 𝟎. 

 

In C2, Since  𝑧𝑙
′ > 0 then  

 (𝑧𝜁
′

𝜁

+ 𝑧𝑗
′ + 𝑧𝑙

′) =  𝑧𝑖
∗

𝑁

𝑖=1

=  𝑧∗ 𝑙1  

hence  

                                                    𝑧′ 𝑙1 =  𝑧∗ 𝑙1 .                                                               (3.21) 

Furthermore, lemma (3.1) implies that  𝑧𝛬2

′  
𝑙2

>  𝑧𝛬2

∗  
𝑙2

 as follow: 

 Let 𝑢1 = 𝑧𝑗
′ , 𝑢2 = 𝑧𝑙

′ , 𝑣1 = 𝑧𝑗
∗ and 𝑣2 = 𝑧𝑙

∗ then we need to show that 

(𝑧𝑗
′)2 + (𝑧𝑙

′)2 > (𝑧𝑗
∗)2 + (𝑧𝑙

∗)2. 

In other words, we shall show that 𝑧𝑗
′ > 𝑧𝑗

∗ ≥ 𝑧𝑙
∗ > 𝑧𝑙

′ ≥ 0 in terms of both C1 and C2. We 

start by showing that 𝑧𝑗
′ > 𝑧𝑗

∗ as follow: 

 In C1, since 𝑧𝑙
∗ > 0 then 𝑧𝑗

′ > 𝑧𝑗
∗ because 𝑧𝑗

′ = 𝑧𝑗
∗ + 𝑧𝑙

∗. Whereas in C2, since 𝑧𝑗
′ = 𝑧𝑘

∗  and by 

the assumption 𝑧𝑗
∗ < 𝑧𝑘

∗  we end up with 𝑧𝑗
′ > 𝑧𝑗

∗.  

Furthermore, 𝑧𝑗
∗ ≥ 𝑧𝑙

∗ since 𝑧𝑖
∗ ≥ 𝑧𝑖+1

∗ . Finally, 𝑧𝑙
∗ > 𝑧𝑙

′  as follow: 

 

 

𝑧𝑗
′  

m+1 

𝑧𝑙
′  

𝑘 
𝑧Λ2

′  

𝑧Λ1

′  

𝑧Λ0

′  

m 
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In C1, since 𝑧𝑙
∗ > 0 and 𝑧𝑙

′ = 0 thus 𝑧𝑙
∗ > 𝑧𝑙

′ . In C2, it is given that 𝑧𝑙
′ = 𝑧𝑙

∗ + 𝑧𝑗
∗ − 𝑧𝑘

∗ , 

so 𝑧𝑗
∗ − 𝑧𝑘

∗   must be less than zero in order to obtain 𝑧𝑙
′ <  𝑧𝑙

∗. But 𝑧𝑗
∗ < 𝑧𝑘

∗ then 𝑧𝑗
∗ − 𝑧𝑘

∗  is less 

than zero and thus 𝑧𝑙
∗ > 𝑧𝑙

′  as claimed. Finally, 𝑧𝑙
′ ≥ 0 as follow:   

In C1, we already assumed that  𝑧𝑙
′ = 0 whereas in C2 the constructed 𝑧𝑙

′ > 0. Therefore,  

𝑧𝑗
′ > 𝑧𝑗

∗ ≥ 𝑧𝑙
∗ > 𝑧𝑙

′ ≥ 0 and then by lemma (3.1) we obtain  

(𝑧𝑗
′)2 + (𝑧𝑙

′)2 > (𝑧𝑗
∗)2 + (𝑧𝑙

∗)2. 

Hence  

 𝑧𝛬2

′  
𝑙2

>  𝑧𝛬2

∗  
𝑙2

. 

This implies that 𝐽 𝑧′ < 𝐽(𝑧∗) (by the fact that we divide  𝑧𝛬0
 
𝑙2

2
+  𝑧𝛬1

 
𝑙2

2
 by a greater 

quantity which is  𝑧𝛬2

′  
𝑙2

 in comparison with dividing  𝑧𝛬0

∗  
𝑙2

2
+  𝑧𝛬1

∗  
𝑙2

2
 by a smaller 

quantity which is  𝑧𝛬2

∗  
𝑙2

). Again we rescale to make the vector z′  feasible, i.e. let 𝑧′′ =
𝑧 ′

 𝑧 ′  𝑙2
  

which satisfies the constraints (3.16),(3.17) and (3.18) as follow: 

By using (3.21) we have  

 𝑧𝛬1

′  
𝑙1

+  𝑧𝛬2

′  
𝑙1

 𝑧𝛬0

′  
𝑙1

=
 𝑧𝛬1

∗  
𝑙1

+  𝑧𝛬2

∗  
𝑙1

 𝑧𝛬0

∗  
𝑙1

   ≤ 1. 

Thus constraint (3.16) holds. It is obvious that constraint (3.17) holds as  𝑧′′  is a unit vector. 

There is only one constraint left that 𝑧′  must satisfy which is constraint (3.18). It has been 

assumed that  

                                         𝑧𝑖
′ = 𝑧𝑖

∗    ∀ 𝑖 ≠ {𝑗, 𝑙}                                                                   

So we need to investigate the cases below in order to show z′  has the form of (3.18): 

                                                     𝑧𝑗−1
∗ ≥ 𝑧𝑗

′                                                                        (3.22) 

                                                     𝑧𝑗
′ ≥ 𝑧𝑗+1

∗                                                                         (3.23) 

                                                     𝑧𝑙−1
∗ ≥ 𝑧𝑙

′                                                                         (3.24) 
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                                                     𝑧𝑙
′ ≥ 𝑧𝑙+1

∗                                                                         (3.25) 

Furthermore, for all cases above from (3.22 - 3.25) we need to consider each case in both C1 

and C2. Starting with (3.22) in C1, we already have  𝑧𝑗−1
∗ ≥ 𝑧𝑗

∗, 𝑧𝑗
∗ < 𝑧𝑘

∗  and 𝑧𝑙
∗ > 0. This 

implies that   

                                                  𝑧𝑗−1
∗ ≥ 𝑧𝑘

∗ ≥ 𝑧𝑗
′ .                                                                 (3.26) 

This is because we assumed 𝑗 to be the smallest index and thus (3.22) holds in C1. Moving on 

to verify (3.22) in C2, since 𝑧𝑗
′ = 𝑧𝑘

∗  and  𝑧𝑗−1
∗ ≥ 𝑧𝑗

∗ then 

𝑧𝑗−1
∗ ≥ 𝑧𝑘

∗ = 𝑧𝑗
′ > 𝑧𝑗

∗. 

This implies  𝑧𝑗−1
∗ ≥ 𝑧𝑗

′  and then (3.22) holds in C2 as well. Next, (3.23) will be verified in 

both C1 and C2 as follow: 

In general, we have 

 𝑧𝑗−1
∗ ≥ 𝑧𝑗

∗ ≥  𝑧𝑗+1
∗ ≥ 𝑧𝑙

∗ ≥ 0 

and the assumption 𝑧𝑘
∗ ≥ 𝑧𝑗

∗ + 𝑧𝑙
∗ in C1 implies 

 𝑧𝑗−1
∗ ≥ 𝑧𝑗

∗ ≥ 𝑧𝑗
∗ + 𝑧𝑙

∗ ≥  𝑧𝑗+1
∗ ≥ 𝑧𝑙

∗ ≥ 0. 

But 𝑧𝑗
∗ + 𝑧𝑙

∗ = 𝑧𝑗
′  then we obtain  

 𝑧𝑗−1
∗ ≥ 𝑧𝑗

∗ ≥ 𝑧𝑗
′ ≥  𝑧𝑗+1

∗ ≥ 𝑧𝑙
∗ ≥ 0. 

Hence 𝑧𝑗
′ ≥  𝑧𝑗+1

∗  , i.e. (3.23) holds in C1. On the other hand, in C2, 𝑧𝑗
′ = 𝑧𝑘

∗  and it is given 

that  

𝑧𝑘
∗ > 𝑧𝑗

∗ ≥ 𝑧𝑗+1
∗  

thus 𝑧𝑗
′ ≥  𝑧𝑗+1

∗  and (3.23) holds in C2. To confirm (3.24) in both C1 and C2. In C1, 𝑧𝑙
′ = 0 

and since  𝑧𝑗−1
∗ ≥ 𝑧𝑙

∗ ≥ 0 then it is clear that 𝑧𝑙
′ ≤  𝑧𝑗−1

∗ . Thus (3.24) holds in C1. Also, in C2 

we have 𝑧𝑙
′ = 𝑧𝑙

∗ + 𝑧𝑗
∗ − 𝑧𝑘

∗ but 𝑧𝑗
∗ − 𝑧𝑘

∗  is negative since 𝑧𝑗
∗ < 𝑧𝑘

∗  , then 𝑧𝑙
′ ≤ 𝑧𝑙

∗ and it is 

given that 𝑧𝑙
∗ ≤ 𝑧𝑙−1

∗  thus   

𝑧𝑙
′ < 𝑧𝑙

∗ ≤ 𝑧𝑙−1
∗ . 
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This implies  𝑧𝑙
′ ≤ 𝑧𝑙−1

∗  then (3.24) holds in C2. Finally, (3.25) holds in both C1 and C2 as 

follow: 

In C1, 𝑧𝑙
′ = 0 and since 𝑧𝑙

∗ > 0 ≥ 𝑧𝑙+1
∗  then 𝑧𝑙

∗ > 0 = 𝑧𝑙
′ ≥ 𝑧𝑙+1

∗ . Thus 𝑧𝑙
′ ≥ 𝑧𝑙+1

∗  ,i.e. (3.25) 

holds in C1. Furthermore, in C2  zl
′ < zl

∗ and we have 𝑧𝑙
∗ ≥ 𝑧𝑙+1

∗  , therefore  𝑧𝑙
∗ > 𝑧𝑙

′ ≥ 𝑧𝑙+1
∗  

whereby (4.25) holds in C2.  

 

 

 

 

 

 

 

Figure 5: Shape of the optimal vector  𝒛. 

 

To sum up, by the above analysis we can conclude that 𝑧𝛬2

∗  can only have one element not 

equal to 𝑧𝑘
∗ or 0. This concludes the proof that 𝑧∗ must have the claimed form in (3.19) with 

parameters 𝛼 ≥ 𝛽 > 𝛾 ≥ 0 and 𝑘 + 1 ≤ 𝑚 + 𝐿 ≤ 𝑁. 

∎ 

Next, we calculate the largest asymmetric restricted isometry constant 𝜎2𝑘
2 . To do so, we need 

to evaluate optimal 𝛼,𝛽, 𝛾,𝑚 and  𝐿. Next lemma will be used later to proof theorem (3.2) . 

Lemma (3.3) [Davies and Gribonval [11], lemma 4]:  

Consider 2𝑘 < 𝑁, and 𝜂1 =  2 − 1. Let  𝑧 ∈ ℝ𝑁  be of the form (3.19) with 𝛼 > 𝛽 > 𝛾 ≥ 0 

and 𝑘 + 1 ≤ 𝐿 ≤ 𝑁 − 𝑘, and assume that z satisfies (3.17) with 

                                                        
 𝑧𝛬1 𝑙1

+ 𝑧𝛬2 𝑙1
 𝑧𝛬0 𝑙1

= 1.                                                     (3.27) 

Then  

 𝑧Ω2𝑘
 
𝑙2

2
≥ 2𝜂1. 

Proof:  We start the proof by defining both  L′  and  𝜂 as follow 

𝛼 

𝛽 

𝛾 
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                                                             𝐿′ ∶= 𝐿 +  
𝛾

𝛽
   

                                                                     𝜂 ∶=
𝑘

𝐿′
                                                                           (3.28) 

Since 𝛽 > 𝛾  then 𝐿 ≤ 𝐿′ < 𝐿 + 1 and the 𝑙1-failing equality constraint (3.27) reads  

𝑚𝛼 = (𝑘 + 1 −𝑚)𝛽 + 𝛾 

and  𝑘 + 1 −𝑚 = 𝐿, then  

𝑚𝛼 = 𝐿𝛽 + 𝛾 

Dividing the last equation by 𝛽 , we obtain  

𝛽 =
𝑚

𝐿′
 𝛼. 

By (3.28) we obtain   

𝛽 = 𝜂𝛼. 

Since  𝑧 𝑙2
2 = 1, then it implies 

  𝑧𝛬0
 
𝑙2

2
+   𝑧𝛬1

 
𝑙2

2
+   𝑧𝛬2

 
𝑙2

2
= 1. 

Since   𝑧𝛬0
 
𝑙2

2
= 𝑚𝛼2,   𝑧𝛬1

 
𝑙2

2
= 𝐿𝛽2 and  𝑧𝛬2

 
𝑙2

2
= 𝛾2, then  

𝑚𝛼2 + 𝐿𝛽2 + 𝛾2 = 1. 

We can re-write the above last equation as follow 

𝑚𝛼2 + 𝐿𝛽2 +  
𝛾

𝛽
 𝛽2 −  

𝛾

𝛽
 𝛽2 + 𝛾2 = 1. 

This implies  

𝑚𝛼2 + (𝐿 +
𝛾

𝛽
)𝛽2 −  

𝛾

𝛽
 𝛽2 + 𝛾2 = 1. 

Since 𝐿 +
𝛾

𝛽
= 𝐿′ then we obtain 
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                                     𝑚𝛼2 + 𝐿′𝛽2 = 1 +  
𝛾

𝛽
 𝛽2 − 𝛾2 ≥ 1                                            (3.29) 

with equality when 𝛾 = 0. Substituting 𝛽 = 𝜂𝛼 and 𝐿′ =
𝑚

𝜂
  in (3.29) we get: 

𝑚𝛼2 +
𝑚

𝜂
 𝜂𝛼 2 ≥ 1 

then  

                                                         𝑚𝛼2 ≥ (1 + 𝜂)−1                                                    (3.30) 

and it follows that  

 𝑧𝛺2𝑘
 
𝑙2

2
= 𝑚𝛼2 + 𝑚𝛽2 = 𝑚𝛼2 + 𝑚 𝜂2𝛼2 = 𝑚𝛼2 1 + 𝜂2 . 

By (3.30), we get  

                                                               𝑧𝛺2𝑘
 
𝑙2

2
≥
 1 + 𝜂2 

 1 + 𝜂 
                                                         (3.31) 

Differentiating the right hand side and equating to zero, i.e. let 𝜛 =
 1+𝜂1

2 

(1+𝜂1)
, then 

𝑑𝜛

𝑑𝜂
=
𝜂1

2 + 2𝜂1 − 1

(1 + 𝜂1)2
. 

We observe that the zero of the derivative indeed yields a minimum, therefore  

𝜂1
2 + 2𝜂1 − 1 = 0 

and then 𝜂1 =  2 − 1. Substituting the value of  𝜂1 in (3.31) gives: 

 𝑧𝛺2𝑘
 
𝑙2

2
≥ 2 2 − 2 = 2𝜂1 . 

This implies  

 𝑧𝛺2𝑘
 
𝑙2

2
≥ 2𝜂1 

∎ 

By previous lemmas and propositions we construct minimally redundant row orthonarmal 

matrices whereby there exists a sparse vector which cannot be recovered by solving (3.3). In 
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their paper particularly theorem 3 in [11], Davies and Gribonval proved a more general result 

whereby they showed how one can construct successful candidate matrix for 𝑙1-recovery by 

assuming above lemmas and propositions.  

Theorem (3.2) [Davies and Gribonval [11], Theorem 3]:  

Consider 0 < 𝜂1 < 1 be the unique positive solution of  

𝜂1
2 + 2𝜂1 − 1 = 0 

i.e.𝜂1 =  2 − 1. Then for every 𝜀 > 0, there exist integers 𝑘 ≥ 1,𝑁 ≥ 2𝑘 + 1 and a 

minimally redundant row orthonormal matrix Φ ∈ ℝ(𝑁−1)×𝑁 with: 

𝜎2𝑘
2  Φ ≥ 1 − 2𝜂1 − 𝜀 

for which there exist a 𝑘-sparse vector which cannot be uniquely recovered by 

solving   𝑧Ω 𝑙1 <  𝑧Ωc 𝑙1 . 

Proof: Consider a unit spectral norm matrix Φ. Assume that Φ is 𝑙1-failing for some 𝑘-sparse 

vector. Then, by proposition (3.1), ∃ Φ∗ ∈ ℝ(𝑁−1)×𝑁 where  Φ∗ is a minimally redundant row 

orthonormal (unit spectral norm) matrix which is 𝑙1-failing for the same 𝑘-sparse vector such 

that 

𝜎2𝑘
2  Φ ≤ 𝜎2𝑘

2  Φ∗  

Also, by proposition (3.2),  

𝜎2𝑘
2  Φ∗ ≤ 1 −  𝑧Ω2𝑘

 
𝑙2

2
 

Where 𝑧 is a unit vector which spans the null space 𝒩 Φ∗ . Since Φ∗ is 𝑙1-failing, then after 

proper re-indexing and taking the absolute value, 𝑧 satisfies the constraints (3.16),(3.17) and 

(3.18). Therefore by lemma (3.2) 𝑧 has the form of (3.19) and by lemma (3.3)  

                                                       𝑧Ω2𝑘
 
𝑙2

2
≥ 2𝜂1  .                                                           (3.32) 

Note that 𝜂1 is the largest lower bound. Now, for every 𝜀 > 0, 2𝜂1 + 𝜀 will be the new lower 

bound. By contradiction, suppose that there is not such a bound then (3.32) becomes  

  𝑧Ω2𝑘
 
𝑙2

2
≤ 2𝜂1 + 𝜀. 

This produces a minimally redundant row orthonormal unit spectral norm matrix Φ1
∗ with 

𝜎2𝑘
2  Φ1

∗ ≥ 1 −  2𝜂1 + 𝜀  

which is 𝑙1-failing for some 𝑘-sparse vector.  

∎ 
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Finally, we show that when RIC  𝛿2𝑘 ≈ 0.7071 then the 𝑙1-recovery fails to recover all 𝑘-

sparse vectors. This indicates that there is a limited room over the best known result of  for 

which all 𝑘-sparse vectors can be recovered by 𝑙1-recovery when  𝛿2𝑘 ≈ 0.4531. 

Proof (of Theorem 4.1):  In order to find 𝑙1-failing matrices with smallest RIC  𝛿2𝑘  , we will 

be looking for the 𝑙1-failing matrices with the largest asymmetric RIC 𝜎2𝑘
2 .  By theorem (3.2), 

we have    𝜎2𝑘
2  ≥ 3 − 2 2 − 𝜀 . Using lemma (3.1) for the rescaled matrix, Ψ2𝑘  , we have 

Ψ2𝑘 ≔ ( 
2

1 + 𝜎2𝑘
2 (Φ)

)
1
2Φ 

whereby the rescaled RIC,  𝛿2𝑘 Ψ2𝑘 , is  

 𝛿2𝑘 Ψ2𝑘 ≤
1 − 𝜎2𝑘

2  Φ 

1 + 𝜎2𝑘
2  Φ 

 . 

Assume that 𝜎2𝑘
2 = 3 − 2 2 , then substituting this value of 𝜎2𝑘

2  in the above inequality we 

obtain  

 𝛿2𝑘 Ψ2𝑘 ≤
1 − 3 + 2 2

1 + 3 − 2 2
=
−2 + 2 2

4 − 2 2
=
 2 − 1

2 −  2
=

1

 2
 . 

Then  

                                                              𝛿2𝑘 ≤
1

 2
.                                                                             (3.33) 

 

But subtracting a positive quantity from 𝜎2𝑘
2  which is 𝜀, means we add a positive quantity (i.e. 

𝜀) to the right hand side of (3.33) whereby  𝛿2𝑘  will not be equal to 
1

 2
. Hence  

 𝛿2𝑘 <
1

 2
+ 𝜀 

such that for every 𝜀 > 0 there exist matrices Ψ2𝑘   where 𝑙1-recovery can fail. 

∎ 

After we theoretically showed that one can construct 𝑙1-failing minimally redundant row 

orthonormal unit spectral norm matrices, we next try to construct an example of a matrix that 

has these properties. Before going to discuss the procedure of building up 𝑙1-failing matrices, 

we need a theorem known as Gram-Schmidt theorem. Below we state Gram-Schmidt then by 

using this theorem we go through the procedure of constructing 𝑙1-failing matrices. 

Theorem (3.4) (Gram-Schmidt): Consider a vector 𝑣 in a finite dimensional inner product 

space 𝑉. Then there exist a set of orthonormal basis that contain vector 𝑣. 
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3.1 Constructing 𝒍𝟏-failing matrices 

In this sub-section we try to give a general procedure for constructing 𝑙1-failing matrices. 

Building up 𝑙1-failing matrices from the unit vector 𝑧 have not been discussed deeply in [11]. 

Whereas here we somehow show that one can construct these matrices (i.e. 𝑙1-failing 

matrices) in a general form. To do that we need to use what is known as Gram-Schmidt 

theorem, given by theorem (3.4), for constructing a set of orthonormal basis from the unit 

vector 𝑧. 

Proposition (3.3): Let 𝑧 ∈ ℝ𝑁  be a vector which has the form of (3.19). Then we can 

construct a minimally redundant row orthonormal unit spectral norm matrix Φ  that contain 

𝑧 such that Φ ∈ ℝ(𝑁−1)×𝑁 . 

Proof: Select vector 𝑧 in a way that has the form of (3.19). Then use the Gram-Schmidt 

procedure to create a set of orthonormal basis, say {𝑢1,𝑢2 ,… ,𝑢𝑁−1}, such that 𝑧 = 𝑢1 is the 

first orthonormal vector in that set. Then select the rows of matrix Φ to be the transpose of 

the orthonormal basis vectors above, i.e.  

Φ =  

𝑧𝑇

𝑢2
𝑇

⋮
𝑢𝑁−1
𝑇

 

(𝑁−1)×𝑁

. 

Firstly, Φ is minimally redundant as the number of its rows is equal to the number of its 

columns minus 1. Secondly, Φ is row orthonormal as we constructed the rows of Φ by Gram-

Schmidt process. Finally, multiplying Φ by one of its rows, then the result of taking 

Euclidean norm of this multiplication and dividing it by the norm the row will be 1. In other 

words, in order to show that Φ is a unit spectral norm then Φ must satisfy definition (3.1), i.e. 

|||Φ||| = sup
𝑥≠0

 Φ𝑥 𝑙2
 𝑥 𝑙2

= 1 

 where 𝑥 is the transpose of one of the rows of Φ. It is clear that  𝑥 𝑙2 = 1 as it is created by 

Gram-Schmidt procedure. Also, because we selected a row which is orthonormal with all of 

the rows of Φ to multiply Φ by, then the result of taking norm of this multiplication will be 1. 

Finally we end up with a matrix Φ which has the property of minimally redundant row 

orthonormal unit spectral norm whereby 𝑙1-recovery can fail. 

∎ 

To make this procedure clearer, we take an example and we go through each step that we 

claimed above. 

Let Φ ∈ ℝ3×4 be our given matrix. Then we select the vector 𝑧  such that it has the following 

form 
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z =

 
 
 
 
  3/4

1/ 12

1/ 12

1/ 12 
 
 
 
 

∈ ℝ4 

where 𝑧 has the form of (3.19). In other words, 𝐿 = 2 and 𝑚 = 1 where 𝑘 ≥ 2𝑚 = 2 then 

𝑘 + 1 = 3 ≤ 𝑚 + 𝐿 = 3 ≤ 𝑁 = 4. 

Now, z is a unit norm and it has the form of (3.19). Next apply the Gram-Schmidt procedure. 

Let 𝑣1 = 𝑧, and 𝑣2 =  

1
0
0
0

 , 𝑣3 =  

0
1
0
0

 and 𝑣4 =  

0
0
1
0

  are three standard basis of ℝ4. According 

to the Gram-Schmidt theorem, we assume that the first orthonormal vector 𝑢1  is the same as 

the first vector in the inner product space which is 𝑧, i.e.  

𝑢1 = 𝑣1 = 𝑧 =

 
 
 
 
  3/4

1/ 12

1/ 12

1/ 12 
 
 
 
 

. 

Also , the second orthonormal vector 𝑢2 can be obtained by  

𝑢2 = 𝑣2 −
 𝑢1, 𝑣2 

 𝑢1, 𝑢1 
𝑢1 . 

Since  𝑢1, 𝑢1 = 1 and  𝑢1, 𝑣2 =  3/4, then the above formula can be written as 

𝑢2 =  

1
0
0
0

 +

 
 
 
 
 
−3

−4 

−1/4
−1/4
−1/4  

 
 
 
 

=  

1/4
−1/4
−1/4
−1/4

 . 

Then we normalize 𝑢2, i.e. 𝑢2 =
𝑢2

 𝑢2 
 such that  

𝑢2 = 2 ×  

1/4
−1/4
−1/4
−1/4

 =  

1/2
−1/2
−1/2
−1/2

 . 

This implies that  𝑢2 = 1.  Next we find the third orthonormal vector 𝑢3 as follow: 

𝑢3 = 𝑣3 −
 𝑢1, 𝑣3 

 𝑢1,𝑢1 
𝑢1 −

 𝑢2, 𝑣3 

 𝑢2,𝑢2 
𝑢2 . 
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Since  𝑢1, 𝑢1 = 1,  𝑢2 ,𝑢2 = 1 and by substituting the values of  𝑣3, 𝑢2 and 𝑢1in the above 

formula we obtain: 

𝑢3 =  

0
1
0
0

 +  

−1/4
−1/12
−1/12
−1/12

 +  

1/4
−1/4
−1/4
−1/4

 =  

0
2/3
−1/3
−1/3

 . 

Normalizing 𝑢3, i.e. 𝑢3 =
𝑢3

 𝑢3 
 where  𝑢3 =

 2

 3
  will give a normalized vector 𝑢3 as follow: 

𝑢3 =

 
 
 
 
 

0

 2/ 3

−1/ 6

−1/ 6 
 
 
 
 

 

which has unit norm.  Finally, we calculate the last orthonormal vector as follow: 

  

𝑢4 = 𝑣4 −
 𝑢1, 𝑣4 

 𝑢1,𝑢1 
𝑢1 −

 𝑢2 , 𝑣4 

 𝑢2 ,𝑢2 
𝑢2 −

 𝑢3, 𝑣4 

 𝑢3,𝑢3 
𝑢3 . 

By substituting the values of 𝑣4 ,𝑢1,𝑢2 and 𝑢3 we get: 

𝑢4 =  

0
0
1
0

 +

 
 
 
 −1/2 2
−1/12
−1/12
−1/12  

 
 
 

+  

1/4
−1/4
−1/4
−1/4

 +  

0
1/3
−1/6
−1/6

 =  

1 −  2/4
0

1/2
−1/2

 . 

By normalizing 𝑢4 we obtain: 

𝑢4 =

 
 
 
 
 
 
 
 
 1 −  2

 11 − 2 2
0
2

 11 − 2 2
−2

 11 − 2 2 
 
 
 
 
 
 
 
 

. 

Finally, the rows of matrix Φ is the transpose of  𝑢1,𝑢2 and 𝑢3 as follow: 

Φ =

 
 
 
 
 
 
 

1

2

−1

2

−1

2
                   

−1

2

0
 2

 3

−1

 6
                  

−1

 6

1 −  2

 11 − 2 2
0

2

 11 − 2 2

−2

 11 − 2 2 
 
 
 
 
 
 

. 
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It is clear that Φ is minimally redundant as Φ ∈ ℝ3×4 = ℝ(𝑁−1)×𝑁 where 𝑁 = 4. Also, the 

rows of Φ are orthonormal as they constructed by Gram-Schmidt process. Hence Φ is a 

minimally redundant row orthonormal matrix. To show that Φ has unit spectral norm, let 

𝑥 = 𝑢3 which is the second row in matrix Φ. Since   

 Φ𝑥 𝑙2 = 1 and  𝑥 𝑙2 = 1 

then 

|||Φ||| = 1. 

Finally, we concluded that Φ is a minimally redundant row orthonormal matrix which has 

unit spectral norm. 
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3.2 Future work 

 

After we showed that in order to search for the 𝑙1-failing matrices we need to search for the 

minimally redundant row orthonormal matrices. Then this might help for investigating 

whether it is sensible to consider that 𝑙1-failing matrices have the minimally redundant 

property (i.e. to throw away the unit spectral norm property).  Furthermore, by theorem (3.1) 

we stated that 𝛿2𝑘  cannot be bigger than 0.7071 in order to recover all sparse vectors and it 

was already known that when 𝛿2𝑘 < 0.472 then we recover all sparse vectors. Then there is a 

gap between these two results and the question that arises here is:  what if we have a 

minimally redundant row orthonormal matrix such that 𝛿2𝑘  has a value in the gap between 

these two results above, i.e. between 0.472 and 0.7071 ? 
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