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Abstract. We construct quasi-Einstein metrics on some hypersurface
families. The hypersurfaces are circle bundles over the product of Fano,
Kähler-Einstein manifolds. The quasi-Einstein metrics are related to
various gradient Kähler-Ricci solitons constructed by Dancer and Wang
and some Hermitian, non-Kähler, Einstein metrics constructed by Wang
and Wang on the same manifolds.

1. Introduction

1.1. Motivation and definitions. This article1 is concerned with a gener-
alisation of Einstein metrics that in some sense interpolates between Einstein
metrics and Ricci solitons, namely, quasi-Einstein metrics.

Definition 1.1. Let Mn be a smooth manifold and g be a complete Rie-
mannian metric. The metric g is called quasi-Einstein if it solves

Ric(g) +Hess(u)− 1

m
du⊗ du+

ε

2
g = 0, (1.1)

where u ∈ C∞(M), m ∈ (1,∞] and ε is a constant.

It is clear that if u is constant then we recover the notion of an Einstein
metric; we will refer to these metrics as trivial quasi-Einstein metrics. By
letting the constant m go to infinity we can also recover the definition of a
gradient Ricci soliton. In line with the terminology used for Ricci solitons,
we will refer to the quasi-Einstein metrics with ε < 0, ε = 0 and ε > 0 as
shrinking, steady and expanding respectively.

There has been a great deal of effort invested in finding non-trivial examples
of Ricci solitons on compact manifolds. However, they remain rare and the
only known examples are Kähler. Due to work the work of Hamilton [13]
and Perelman [19], non-trivial Ricci solitons on compact manifolds must
be shrinking gradient Ricci solitons. The first non-trivial examples were
constructed independently by Koiso and Cao on CP1-bundles over complex
projective spaces [3, 15]. These examples were subsequently generalised by
Chave and Valet [7] and Pedersen, Tønneson-Freidman and Valent [18] who
found Kähler-Ricci solitons on the projectivisation of various line bundles
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over a Fano Kähler-Einstein base. The reader should note that what we call
a Ricci soliton is referred to as a quasi-Einstein metrics in the papers [7] and
[18]. Recently Dancer and Wang generalised these examples by constructing
some Kähler Ricci solitons on various hypersurface families where the hyper-
surface is a circle bundle over the product of Fano Kahler-Einstein manifolds
[9]. The solitons found by Dancer and Wang were also independently con-
structed by Apostolev, Calderbank, Gauduchon and Tønneson-Freidman [1].

In the complete non-compact case Feldman, Ilmanen and Knopf [11] found
shrinking gradient Kähler-Ricci solitons on certain line bundles over CPn.
Steady gradient Kähler-Ricci solitons were first constructed on Cn by Cao
[3] (the n = 1 case was first found by Hamilton [12]). Cao also found
steady gradient Kähler-Ricci solitons on the blow up of Cn/Zn at the ori-
gin. Expanding gradient Kähler-Ricci solitons have been found by Cao on
Cn [4] and by Feldman, Ilmanen and Knopf on the blow ups of Cn/Zk for
k = n+1, n+2, . . . , [11]. Examples were also found by Pedersen, Tønneson-
Freidman and Valent on the total space of holomorphic line bundles over
Kahler-Einstein manifolds with negative scalar curvature [18]. As in the
compact case, these examples have been generalised by Dancer and Wang
who constructed shrinking, steady and expanding Kähler-Ricci solitons on
various vector bundles over the product of Kähler-Einstein manifolds [9].

In the recent work [6] Case suggested that there should be quasi-Einstein
analogues of Dancer-Wang’s solitons. He points out that the quasi-Einstein
analogue of Koiso-Cao, Chave-Valent and Pedersen-Tønneson-Freidman-
Valent type solitons was already constructed by Lü, Page and Pope [16].
The purpose of this article is to show that Dancer-Wang’s solitons indeed
have quasi-Einstein analogues. However it is better to think of these met-
rics as quasi-Einstein analogues of various Hermitian, non-Kähler, Einstein
metrics constructed by Wang and Wang on these spaces [20]. The Wang-
Wang Einstein metrics generalise a construction originating with Page [17]
and Berard-Bergery [2]. We now state the precise results we wish to prove.
Non-trivial steady or expanding quasi-Einstein metrics can only occur on
non-compact manifolds [14]. In the non-compact case we have the following
which is the quasi-Einstein analogue of theorem 1.6 in [20]:

Theorem 1.2. Let (Vi, Ji, hi), 1 ≤ i ≤ r, r ≥ 3, be Fano Kähler-Einstein
manifolds with complex dimension ni and first Chern class piai where pi > 0
and ai are indivisible classes in H2(Vi,Z). Let V1 be a complex projective
space with normalised Fubini-Study metric i.e. p1 = (n1 + 1). Let Pq de-
note the principal S1-bundle over V1 × ... × Vr with Euler class ±π∗1(a1) +∑i=r

i=2 qiπ
∗
i (ai), i.e. q21 = 1.

(1) Suppose (n1 + 1)|qi| < pi for 2 ≤ i ≤ r then, for all m > 1, there
exists a non-trivial, complete, steady, quasi-Einstein metric on the

2



total space of the Cn1+1-bundle over V2 × ... × Vr corresponding to
Pq.

(2) For all m > 1 there exists at least one one-parameter family of
non-trivial, complete, expanding, quasi-Einstein metrics on the total
space of the Cn1+1-bundle over V2 × ...× Vr corresponding to Pq.

For the compact case we have the following analogue of theorem 1.2 in [20].

Theorem 1.3. Let (Vi, Ji, hi), 1 ≤ i ≤ r, r ≥ 3, be Fano Kähler-Einstein
manifolds with complex dimension ni and first Chern class piai where pi > 0
and ai are indivisible classes in H2(Vi,Z). Let V1 and Vr be a complex projec-
tive space with normalised Fubini-Study metrics. Let Pq denote the principal

S1-bundle over V1 × ... × Vr with Euler class ±π∗1(a1) +
∑i=r−1

i=2 qiπ
∗
i (ai) ±

π∗(ar), i.e. |q1| = |qr| = 1.

Suppose that |qi|(n1 + 1) < pi and |qi|(nr + 1) < pi for 2 ≤ i ≤ r − 1 and
that there exists χ = (χ1, χ2, ..., χr) where |χi| = 1, χ1 = −χr = 1 such that∫ (nr+1)

−(n1+1)

(
χ1x+

p1
|q1|

)n1
(
χ2x+

p2
|q2|

)n2

...

(
χrx+

pr
|qr|

)nr
xdx < 0,

(1.2)
then, for all m > 1 there exists a non-trivial, shrinking quasi-Einstein metric
on Mq, the space obtained from Pq ×S1 CP1 by blowing-down one end to
V2 × ...× Vr and the other end to V1 × ...× Vr−1.

We remark that the Futaki invariant (evaluated on the holomorphic vector
field f(t)∂t in the notation of the next section) is given by∫ (nr+1)

−(n1+1)

(
p1
q1
− x
)n1

(
p2
q2
− x
)n2

...

(
pr
qr
− x
)nr

xdx.

If this integral vanishes then Dancer-Wang construct a Kähler-Einstein met-
ric on Mq.
Finally we note that none of the metrics we find are Kähler. Indeed there is
a rigidity result due to Case-Shu-Wei [5] that says, on compact manifolds,
Kähler-quasi-Einstein metrics are trivial i.e. Kähler-Einstein.

Acknowledgements: I would like to thank Prof. Andrew Dancer for many
interesting conversations about quasi-Einstein metrics and Ricci solitons. I
would also like to thank Maria Buzano, Jeffrey Case and Tommy Murphy
for useful comments on this paper. I would also like to thank the anonymous
referee for useful suggestions and corrections to the previous version.

2. Proof of main theorems

2.1. Derivation of equations. We use the same notation as above. We
consider the manifold
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M0 = (0, l)× Pq. Let θ be the principal U(1)-connection on Pq with curva-
ture Ω =

∑r
i=1 qiπ

∗ηi where ηi is the Kähler form of the metric hi. We form
the 1-parameter family of metrics on Pq

gt = f2(t)θ ⊗ θ +
i=r∑
i=1

g2i (t)π
∗hi

and we then form the metric ḡ = dt2 + gt on M0. The group U(1) acts
on M0 by isometries and generates a Killing field Z. We define a complex
structure J on M0 by J(∂t) = −f−1(t)Z on the vertical space of θ and by
lifting the complex structure from the base on the horizontal spaces of θ.

Lemma 2.1. Let M0 be as above and let v = e−
u
m . Then the quasi-Einstein

equations in this setting are given by:

f̈

f
+

i=r∑
i=1

2ni
g̈i
gi

+m
v̈

v
=
ε

2
, (2.1)

f̈

f
+

i=r∑
i=1

(
2ni

ḟ ġi
fgi
− niq

2
i

2

f2

g4i

)
+m

ḟv̇

fv
=
ε

2
, (2.2)

g̈i
gi
−
(
ġi
gi

)2

+
ḟ ġi
fgi

+

j=r∑
j=1

2nj
ġiġj
gigj
− pi
g2i

+
q2i f

2

2g4i
+m

ġiv̇

giv
=
ε

2
. (2.3)

In order that (M, g, u) be a quasi-Einstein manifold, as well as equation
(1.1), u must also satisfy an integrability condition that essentially comes
from the second Bianchi identity (c.f. Lemma 3.4 in [9]). The form we use

here is given in Case [6] using the Bakry-Émery Laplacian:

∆u := ∆− 〈∇u, ·〉.

Lemma 2.2 (Kim-Kim [14] Corollary 3). Let (M, g, u) be a quasi-Einstein
manifold then there exists a constant µ such that

∆u

( u
m

)
+
ε

2
= −µe

2u
m . (2.4)

In the notation above (recalling v = e−
u
m ) this condition becomes

µ = vv̈ + vv̇

(
ḟ

f
+
∑
i

2ni
ġi
gi

)
+ (m− 1)v̇2 − ε

2
v2. (2.5)

The constant µ enters into the discussion of Einstein warped products when
m is an integer. If (M, g, u) is a quasi-Einstein manifold with constant µ
coming from (2.4) and (Fm, h) is an Einstein manifold with constant µ, then
(M × Fm, g ⊕ v2h) is an Einstein metric with constant −ε/2 as in equation
(1.1) (c.f. [14]).

Introducing the moment map change of variables as in [9] and [20] yields
the following set of equations:
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Proposition 2.3. Let s be the coordinate on I = (0, l) such that ds = f(t)dt,

α(s) = f2(t), βi(s) = g2i (t), φ(s) = v(t) and V =
∏i=r
i=1 g

2ni
i (t). Then the

equations (2.1),(2.2),(2.3) and (2.5) transform to the following:

1

2
α′′ +

1

2
α′(log V )′ + α

r∑
i=1

ni

(
β′′i
βi
− 1

2

(
β′i
βi

)2
)

+m

(
αφ′′

φ
+
α′φ′

2φ

)
=
ε

2
,

(2.6)

1

2
α′′ +

1

2
α′(log V )′ − α

i=r∑
i=1

niq
2
i

2β2i
+m

α′φ′

2φ
=
ε

2
, (2.7)

1

2

α′β′i
βi

+
1

2
α

(
β′′i
βi
−
(
β′i
βi

)2
)

+
1

2

αβ′i
βi

(log V )′ − pi
βi

+
q2i α

2β2i
+m

α

2

β′iφ
′

βiφ
=
ε

2
,

(2.8)

φ

(
φ′′α+

φ′α′

2

)
+φφ′

(
α′

2
+ (log V )′α

)
+ (m− 1)(φ′)2α− ε

2
φ2 = µ. (2.9)

Equating (2.6) and (2.7) we obtain

−mφ′′

φ
=

i=r∑
i=1

ni

(
β′′i
βi
− 1

2

(
β′i
βi

)2

+
q2i

2β2i

)
(2.10)

Following [9, 20] we look for solutions that satisfy

β′′i
βi
− 1

2

(
β′i
βi

)2

+
1

2

q2i
β2i

= 0.

This condition can be geometrically interpreted as saying that the curvature
of g is J-invariant in the sense that Rm(J ·, J ·, J ·, J ·) = Rm(·, ·, ·, ·) where
J is the complex structure on M0. Imposing this forces φ to be a linear
function of s. We write φ(s) = κ1(s + κ0) for some constants κ0, κ1 ∈ R.
Hence (2.9) becomes

α′ + α((log V )′ +
(m− 1)

(s+ κ0)
) =

ε(s+ κ0)

2
+

µ

κ21(s+ κ0)
. (2.11)

Accordingly there are two classes of solution βi:

βi = Ai(s+ s0)
2 − q2i

4Ai
or

βi = ±qi(s+ σi)

where Ai 6= 0 and σi are constants. We note that the case βi = −qi(s+ σi)
corresponds to the metric ḡ being Kähler with respect to the complex struc-
ture. Hence the rigidity result of Case-Shu-Wei rules out having any solu-
tions of this form (in fact choosing βi of this form leads to inconsistency).
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If we input βi = Ai(s+ s0)
2 − q2i

4Ai
into (2.8) we see that

α′ + α

(
(log V )′ +m(log φ)′ − 1

(s+ s0)

)
=
ε

2
(s+ κ0) +

E∗

(s+ κ0)

where

E∗ :=
8Aipi − εq2i

8A2
i

.

Comparing with equation (2.11) we see that solutions are consistent provid-
ing κ0 = s0 and

µ

κ21
= E∗ =

8Aipi − εq2i
8A2

i

.

Solving gives

α(s) = V −1(s+ κ0)
1−m

∫ s

0
V (s+ κ0)

m−2
(
E∗ +

ε

2
(s+ κ0)

2
)
ds. (2.12)

2.2. Compactifying M0. We recall that V1 = CPn1 and we are adding in
the manifold V2 × ... × Vr at the point s = 0. We refer the reader to the
discussion immediately after equation (4.17) in [9]. In a nutshell, in order
for the metric to extend smoothly we require that

α(0) = 0, α′(0) = 2, β1(0) = 0 and β′1(0) = 1.

As we are using β1(s) = A1(s + κ0)
2 − q21

4A1
we must have A1 = 1

2κ0
and

|q1| = 1. We also have normalised so that p1 = n1 + 1 hence the consistency
conditions become

E∗ =
µ

κ21
=
κ0
2

(4(n1 + 1)− εκ0) =
8Aipi − εq2i

8A2
i

for 2 ≤ i ≤ r.

2.3. Steady quasi-Einstein metrics. In this case ε = 0. Setting V1 =
CPnr and compactifying we obtain a Cn1+1-vector bundle over V2× ...×Vr.
In order that βi(0) > 0 on I = [0,∞) we must have Ai > 0 and

E∗ =
µ

κ21
=
κ0
2

(4(n1 + 1)) =
pi
Ai

for 2 ≤ i ≤ r.

Hence Ai = pi
E∗ and

βi(s) =
pi
E∗

(s+ κ0)
2 − E∗q2i

4pi
.

It is clear that in order for βi(0) > 0 we must have

(n1 + 1)|qi| < pi for 2 ≤ i ≤ r.
In order to ensure the metrics are complete it is sufficient to check that the
integral

t =

∫ s

0

dx√
α(x)

(2.13)

diverges as s → ∞ (this says that geodesics cannot reach the boundary at
infinity and have finite length). If we compute the function α(s) we see that
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it is asymptotic to a positive constant K. Hence the above integral diverges
and we obtain a complete quasi-Einstein metric for all m > 1 generalising
the non-Kähler, Ricci-flat ones constructed in [20]. Choosing a different
value of E∗ simply varies the metric by homothety.

2.4. Expanding quasi-Einstein metrics. Here we take ε = 1 to factor
out homothety. Again the manifolds in question are Cn1+1-vector bundles
over V2 × ...× Vr. Here the consistency conditions become

E∗ =
µ

κ21
=
κ0
2

(4(n1 + 1)− κ0) =
8Aipi − q2i

8A2
i

for 2 ≤ i ≤ r.

If |qi|(n1 + 1) ≤ pi then we choose 0 < E∗ < 2(n1 + 1)2,

κ0 = 2(n1 + 1) + 2

√
(n1 + 1)2 − E∗

2

and

Ai =
1

2E∗

(
pi +

√
p2i −

E∗q2i
2

)
.

In order that βi(0) > 0 we require 2κ0Ai > |qi| for 2 ≤ i ≤ r. This can be
seen as

2

(
2(n1 + 1) + 2

√
(n1 + 1)2 − E∗

2

)
1

2E∗

(
pi +

√
p2i −

E∗q2i
2

)
>

2(n1 + 1)pi
E∗

> |qi|.

In the case that |qi|(n1 + 1) < pi we note also that(
1 +

√
1−

E∗q2i
2p2i

)
>

(
1 +

√
1− E∗

2(n1 + 1)2

)
,

hence,

2

(
2(n1 + 1)− 2

√
(n1 + 1)2 − E∗

2

)
1

2E∗

(
pi +

√
p2i −

E∗q2i
2

)
>

4pi(n1 + 1)

2E∗

(
1−

√
1− E∗

2(n1 + 1)2

)(
1 +

√
1 +

E∗

2(n1 + 1)2

)
=

pi
(n1 + 1)

> |qi|.

Therefore if we have the strict inequality |qi|(n1 + 1) < pi then we can also
choose

κ0 = 2(n1 + 1)− 2

√
(n1 + 1)2 − E∗

2
.

If |qi|(n1+1) > pi then we can choose 0 < E∗ < 2(n1+1)2 min(p22/q
2
2, ..., p

2
r/q

2
r ).

If we also choose

κ0 = 2(n1 + 1) + 2

√
(n1 + 1)2 − E∗

2
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and

Ai =
1

2E∗
pi +

√
p2i −

E∗q2i
2

,

then βi(0) > 0. We can also choose E∗ < 0 in this case. Completeness
follows as α(s) is asymptotic to Ks2 for a positive constant K and so the
integral (2.13) diverges. Hence we find complete, quasi-Einstein analogues
of the non-Kahler, Einstein metrics constructed in [20].

2.5. Shrinking quasi-Einstein metrics. In order to factor out homothety
we take ε = −1 and so the consistency conditions are

µ

κ21
=
κ0
2

(4(n1 + 1) + κ0) =
8Aipi + q2i

8A2
i

for 2 ≤ i ≤ r.

We split the discussion into the compact case and the non-compact, complete
case. For the compact case we consider I to be the finite interval [0, s∗]. We
set Vr = CPnr and at the point s = s∗ we add in the manifold V1× ...×Vr−1.
For the metric to extend smoothly we require that qr = 1, pr = nr + 1 and
−1 = 2Ar(s∗ + κ0). Putting these into the consistency conditions we see
that

κ0(4(n1 + 1) + κ0) = (s∗ + κ0)
2 − 4(nr + 1)(s∗ + κ0)

and hence

s∗ =
√
κ0(4(n1 + 1) + κ0) + 4(nr + 1)2 − κ0 + 2(nr + 1).

We note that if n1 = nr then s∗ = 4(n1+1). For the time being we note that
s∗ = s∗(E

∗) and βi is completely determined by E∗ once we have chosen the
value of q2i and the sign of Ai. The value Ai is given by

Ai =
1

2E∗

(
pi + χi

√
p2i +

E∗q2i
2

)
where χi = 1 if Ai > 0 and χi = −1 if Ai < 0. In order to have a quasi-
Einstein metric we must be able choose a value of E∗ > 0 such that the
integral∫ s∗(E∗)

0

i=r∏
i=0

[(
(s+ κ0)

2 − q2i
4A2

i

)ni]
(s+ κ0)

m−2
(
E∗ − 1

2
(s+ κ0)

2

)
ds = 0.

Changing coordinates to

x =
1

2
(s+ κ0)− ((n1 + 1)2 +

E∗

2
)1/2,

then the above integral becomes (ignoring constants)

F (E∗) =

∫ x∗(E∗)

−(n1+1)

i=r∏
i=0

Pi(x)(x+((n1+1)2+
E∗

2
)1/2)m−2(x2+2x((n1+1)2+

E∗

2
)1/2)+(n1+1)2)ds
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where

Pi(x) =

x2 + 2x((n1 + 1)2 +
E∗

2
)1/2 + (n1 + 1)2 +

2pi(χi

√
p2i +

E∗q2i
2 − pi)

q2i

ni

and

x∗(E
∗) = (nr + 1) + (

E∗

2
+ (nr + 1)2)1/2 − (

E∗

2
+ (n1 + 1)2)1/2.

We will compute the limit limE∗↓0 F (E∗) and the limit limE∗→∞ F (E∗).
We begin with 0. We note that as m > 1 the function f(x) = (x+(n1+1)m−2

is integrable on [−(n1+1), x(E∗)] so by the dominated convergence theorem
we can evaluate the integral of the limit. This is given by

S

∫ 2(nr+1)−(n1+1)

−(n1+1)

∏
χi=−1

[x+ (n1 + 1)]2ni
∏
χj=1

[
4p2i
q2i
− (x+ (n1 + 1))2

]nj
(x+(n1+1))mdx,

where
S = (−1)

∑
χi=−1 ni .

The hypothesis on the pi and qi mean that the sign of limE∗↓0 F (E∗) is that
of S.

For E∗ →∞ we consider

lim
E∗→∞

F (E∗)(E∗)
1
2
(1−m−

∑
χi=−1 ni) = K(−1)

∑
χi=−1 ni

∫ (nr+1)

−(n1+1)

i=r∏
i=1

[
χix+

pi
|qi|

]ni
xdx,

where K is a positive constant. Hence if we can choose χi so that∫ (nr+1)

−(n1+1)

i=r∏
i=1

[
χix+

pi
|qi|

]ni
xdx < 0,

we can find an E∗ > 0 such that α(s∗) = 0. A discussion similar to that in [9]
and [20] shows that this is enough to ensure we have smooth quasi-Einstein
metrics.

3. Examples and future work

We end with an example of theorem 1.3, some discussion of the geometry of
the quasi-Einstein metrics constructed and a discussion of possible sources
future compact examples.

3.1. An example. We consider an example that is also considered in [9].
They consider a CP1-bundle over CP2×CP2. In theorem 1.3 this corresponds
to taking r = 4, n1 = n4 = 0, n2 = n3 = 2 and p2 = p3 = 3. Hence to apply
the theorem we must consider |q2|, |q3| < 3. They take (q2, q3) = (1,−2).
The Futaki invariant is given by∫ 1

−1
(3− x)2(

3

2
+ x)2xdx
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which they calculate is 7.8. This means that∫ 1

−1
(3 + x)2(

3

2
− x)2xdx = −7.8 < 0

and we have non-trivial quasi-Einstein metrics on this space for all m > 1.

3.2. Remarks on the geometry of the quasi-Einstein metrics. In [9]
section 4, the authors comment on the geometry at infinity of their exam-
ples of steady and expanding gradient Kähler-Ricci solitons. In particular
they conclude that their steady examples are asympotically parabolic and
that the expanding examples are asymptotically conical. We recall that the
examples of steady quasi-Einstein metrics constructed in theorem 1.2 have
α(s) ∼ K for some positive constant K and so the following asymptotic
behaviour holds (ignoring multiplicative constants)

f(t) = O(1) and gi(t) ∼ t.

In the expanding case we recall that α(s) ∼ Ks2 and so we have

f(t) ∼ et and gi(t) ∼ et.

3.3. Future families. The space CP2]CP2
fits into the framework of the-

orem 1.3 as a non-trivial CP1-bundle over CP1. On this space there is the
Page metric, the Koiso-Cao soliton and the quasi-Einstein metrics of theo-

rem 3 (originally due to Lü-Page-Pope). The space CP2]2CP2
also admits

a non-Kähler, Einstein metric due to Chen, LeBrun and Weber [8] and a
Kähler-Ricci soliton due to Wang and Zhu [21]. It would seem reasonable
that there should be a family of quasi-Einstein analogues to these met-

rics. The metrics on CP2]2CP2
are not cohomogeneity-one but do have an

isometric action by T2. One observation is that the Lü-Page-Pope quasi-
Einstein metrics are conformally Kähler (as any U(2)-invariant metric on

CP2]CP2
is). The Chen-LeBrun-Weber metric is also conformally Kähler

(a fact orginally proved by Derdzinski [10]) and so one might hope that the

same would be true for analogues of the Lü-Page-Pope metrics on CP2]2CP2
.

Both the Page and Chen-LeBrun-Weber metrics are conformal to extremal
Kähler metrics which satisfy a PDE that ‘occurs naturally’ in Kähler ge-
ometry. It would be an interesting first step to try and find an analogous
PDE/ODE for the Kähler metrics that are conformal to the Lü-Page-Pope
metrics. The author hopes to take up the existence questions in a future
work.

References

[1] V. Apostolev, D. Calderbank, P. Gauduchon, C. Tønnesen-Friedman, Hamiltonian
2-forms in Kähler geometry IV: Weakly Bochner-flat Kähler manifolds, Commum.
Anal. Geom., 16, (2008), 91–126.

[2] L. Bérard-Bergery, Sur des nouvelles variétés riemannienes d’Einstein, Publication
de l’Institute Elie Cartan, Nancy (1982).

10



[3] H.-D. Cao, Existence of gradient Ricci solitons, Elliptic and parabolic methods in
geometry,A.K. Peters, Wellesley, (1996) 1-16.

[4] H.-D. Cao, Limits of solutions to the Kähler-Ricci flow, J. Diff, Geom., 45, (1997),
257–272.

[5] J. Case, Y. Shu, G Wei, Rigidity of quasi-Einstein metrics, Diff. Geom Appl., 29,
(2011), 93–100.

[6] J. Case, Smooth metric measure spaces and quasi-Einstein metrics, preprint, (2010),
arXiv:1011.2723v3 [math.DG].

[7] T. Chave, G. Valent, On a class of compact and non-compact quasi-Einstein metrics
and their renormalizability properties, Nuclear Phys. B, 478, no. 3, (1996), 758–778.

[8] X. Chen, C. LeBrun, B. Weber, On conformally Kähler, Einstein manifolds, J. Amer.
Math. Soc., 21, no. 4, (2008), 1137–1168.

[9] A. Dancer, M. Wang, On Ricci solitons of cohomogeneity one, Annals of Global
Analysis and Geometry, 39, (2011), 259–292.

[10] A. Derdzinski, Self-dual Kähler manifolds and Einstein manifolds of dimension four,
Compositio Math., 49, no. 3, (1983), 405–433.

[11] M. Feldman, T. Ilmanen, D. Knopf, Rotationally symmetric shrinking and expand-
ing gradient Kähler-Ricci solitons, J. Diff. Geom., 65, (2003), 169–209.

[12] R. Hamilton, The Ricci flow on surfaces, Contemporary Mathematics, 71, (1988),
237–261.

[13] R. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential
geometry, Voll. II (Cambridge, MA, 1993), (1995), 7–136.

[14] D.-S. Kim, Y.H. Kim, Compact Einstein warped product spaces with nonpositive
scalar curvature, Proc. Amer. Math. Soc. 131, (2003), 2573–2576.

[15] N. Koiso, On rotationally symmetric Hamilton’s equation for Kähler-Einstein met-
rics, Advanced studies in Pure Mathematics, vol. 18-I. Academic Press, Tokyo,
(1990), 327–337.
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