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Abstract

Rapid changes in computer vision technologies have enabled automatic perspectives for more

disciplines that tend to need heavy intervention from human experts. Computational biology,

which is the application field of this thesis, is one of those disciplines where computer tech-

nologies (software and hardware systems) are applied on cell biology research, drug discovery,

and disease diagnosis. The research conducted in this thesis is primarily concerned with au-

tomating the analysis of calcium imaging data obtained by two-dimensional (2D) fluorescence

microscopy (FM) over living cells. The thesis also presents a theoretical and empirical analysis

of the state-of-the-art object detection techniques used in Region based Convolutional Neural

Network (R-CNN) and proposes a new R-CNN scheme tailored for cellular object detection in

FM data. The analysed images are either individual greyscale images or image stacks of cardiac

myocytes stained with DNA markers or calcium indicators. The cells are special cardiac cells

found in lung veins, called Pulmonary Vein sleeve Cells (PVC) and Neo-natal Rat Ventricular

Myocytes (NRVM) extracted from heart muscle. PVC stains enable the analysis of Calcium

signals effect on heart physiology, whereas NRVM images allow autophagy process measuring

through accurate cell counting.

In the thesis, we demonstrated that automated hotspot detection can be achieved with 79.75%

of precision by a two-level segmentation procedure combining thresholding and statistical fil-

tering of cellular regions. We also showed that photobleaching can be corrected by exponential

curve fitting and baseline adjustment from normalised calcium traces with respectively a mean

square error (MSE) varying between [0.09013, 6.41796] and an overall accuracy of 78.75% for

a real-life dataset. Finally, based on the investigation carried over state-of-the-art object de-

tection techniques developed in the past such as the Edge Boxes, the Selective Search, the

Objectness Measure, and the Sliding Window paradigm, we demonstrated that a customised

R-CNN framework based on a data-driven proposal box generation outperforms with less sam-

pling rate (61 proposals/image) and more ground truth coverage ratio (GTCR of 99.40%).
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Chapter 1

General Introduction

The discovery and development of Green Fluorescence Proteins (GFP) in 2008 [78] enabled

biologists to observe and understand the inner workings of cells, thousands of crucial events that

were for a long time hidden such as the development of brain cells, the spreading of cancer cells,

autophagy process, excitation-contraction coupling of cardiac cells due to calcium signals, etc

[14]. These advances in imaging living cells and their components have been applied to countless

biological problems and led to a tremendous amount of imaging data produced by scientists

that need automated processing. In this thesis, we focus on investigating image processing

algorithms that can be applied to fluorescence microscopy (FM) images for intracellular calcium

signal analysis and cell counting.

This thesis investigates the strengths and limitations associated with low & mid-level image

processing techniques, machine learning strategies and deep learning solutions for the process

and analysis of cell biology images obtained by FM. The low and mid-level techniques refer

to traditional image processing techniques, including spatial domain filters, morphological op-

erations, and intensity thresholding. The machine learning strategies in this thesis refer to

image classification algorithms based on hand-crafted feature vectors such as Support Vec-

tors Machines (SVM) and the use of deep learning techniques such as Convolutional Neural

Networks (CNN) for object detection. To assess the multiple algorithms and models build and

investigated during this research, we used imaging datasets that describe intracellular signalling

parameters and cellular components of cardiac myocytes, such as calcium signals and nuclei. In

this first section, we give some background information about intracellular calcium signalling,

and nuclear detection in terms of biological problems associated with the datasets we dealt
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with. Then we state the thesis aim and objectives before presenting a general framework for

automated intracellular calcium analysis and nuclei detection in cells. The final section of this

chapter enumerates our list of contributions and publications.

1.1 Biological Problems

The datasets used in this project were collected on cardiac myocytes: PVCs and NRVMs.

However, the processes investigated are of much wider biological importance. The first biolog-

ical relevance of our research study refers to intracellular calcium signalling. Changes in the

intracellular calcium concentration are essential for a plethora of cellular signalling events [8],

ranging from the fertilisation of an egg [23], transferring nerve impulses [14], gene transcription

[31], activation of muscle contractions to causing memory formation and cell death [7].

Heart contraction is one of the most critical functions of cardiac myocytes and the heartbeats

because of a synchronised combination of multiple processes involving the rise of an electrical

signal called action potential. Action potential starts from a pacemaker region of the heart

called the sino-atrial node and expanded over the different chambers of the heart. The action

potentials cause a depolarisation of the cardiac myocytes, which in turn leads to an increase

in the intracellular calcium concentration that causes the cardiac myocyte to contract. This

process is called excitation-contraction coupling. A well-coordinated spreading of the action

potentials over the heart causes the sequential contraction of the atrial and ventricular cham-

bers, pumping blood through the body and lungs, and is important for the rhythmical beating

of the heart throughout the lifetime [10]. Figure 1.1, adapted from [10] illustrates how calcium

particles are important for the pumping function of the heart by contributing to the propa-

gation of the electrical signal of heart muscle cells through a complex mechanism during an

action potential. To know more about the complex biological process that involves sodium

(Na), potassium (K), and hydrogen (H) ions, and multiple calcium pumps and channels, please

read [10] for further details.

During this complex cardiac excitation-contraction coupling mechanism illustrated by Figure

1.1, calcium ions are specially important because they cause the contraction of cardiac myocytes

through concentration variations. However, if the calcium concentration changes in an irregular

manner, for example, in-between heartbeats, this can intervene in the propagation of AP and

may inhibit the electrical pacing of cardiac myocytes through local calcium transients [31] [9]
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Figure 1.1: Importance of intracellular calcium transport during an action potential and heart-

beat.AP: action potential. ATP: symbol of adenosine 5 triphosphate, principal molecule for

energy transport and storage in cells. NCX: sodium calcium exchanger molecule responsible

of removing calcium from cells. Na: symbol of sodium or salt nutriment. Ca: symbol of cal-

cium. K: symbol of potassium. RyR: ryanodine receptors, major mediator for calcium-induce

and release in animal cells. SR: sarcoplasmic reticulum, calcium storage in muscle cells. PLB:

phospholamban protein.

[69] [12]. PVCs, the first group of cells whose we have dealt with their video recordings in

this thesis, are one of the cell types which is known to show these spontaneous rises in the

intracellular calcium concentration and that can disrupt the propagation of action potential,

and thus lead to heartbeat anomalies such as atrial fibrillation, a heartbeat disturbance due to

erratic signalling of atrial cells [69]. Being able to study the characteristics of calcium signalling

of PVCs in detail and to identify the most active cells in calcium signalling, i.e. the hotspots

is essential to understand how they contribute to the development of atrial fibrillation.

Another biological relevance of our research study is linked to cells counting in NRVM images.

In the images of NRVM preparations we dealt with in this thesis, biologists are interested in
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observing the autophagy process. But as autophagy, cell counting provides the foundation for

multiple biomedical essays [56]. It is a fundamental task in computational biology because the

automated analysis of many cellular processes requires the knowledge of how many cells are

being observed. Nuclei are used to detect and count cells because every cell contains a nucleus,

in which the genetic information is stored in the form of DNA. It is possible to use fluorescent

markers to stain the DNA, and thus highlight one organelle in the cell. One common marker

for nuclei is Hoechst, which is excited with UV light and used to produce the NRVM images

analysed in this study. The number of cells can then be established by counting the number

of nuclei. If researchers then perform other measurements, like measuring the ability of cells

to digest and recycle macromolecules by autophagy [19] like in the NRVM cells used in this

study, the results can be normalised to the level observed per cell. The second stain in a

different colour can then be applied to visualise various cellular processes or stain organelles

inside cells. Knowing how many cells were analysed allows normalising the signal from this

second stain to the total number of cells. In addition, knowing the number of cells can also

show for example if a treatment applied to the cells caused their death (e.g. x number of

cells in the control treatment but only Y number of cells after treating the cells). Common

diseases investigated through NRVM stains and associated to autophagy deregulation in the

UK are known as lysosomal storage disorders (LSD) and hypertrophic cardiomyopathy (HCM),

a cardiac disorder [58].

Based on that background information and biological relevance associated to the imaging

datasets we dealt with, our research journey appears as a multidisciplinary exercise straddling

digital image processing and cell biology in the sense that this thesis offers Maths, statistical

and computer algorithmic solutions to understand cell-biological problems. In the next sections,

we introduce our thesis aim and objectives.

1.2 Thesis Aim and Objectives

The main aim of this thesis is to develop automated routines for cellular parameters analysis

through FM imaging data that provide biologist with reliable, replicable and accurate mea-

surements for calcium imaging experiments to understand the calcium signalling in cardiac

myocytes and for counting cellular nuclei. The objectives of this thesis can be summarized into

five key points:
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a) Proposing an automated solution for calcium active cellular regions detection or hotspots

detection and calcium measurement in fluorescence microscopy recordings of cardiac my-

ocytes stained with calcium indicator.

b) Modelling the photobleaching decay in calcium hotspots signals as a mono-exponential

function of time by non-linear least square regression.

c) Correcting photobleached signals of calcium hotspots by baseline adjustment.

d) Carrying out a theoretical and empirical analysis of R-CNN variants applicable to nuclei

detection, which aims to assess the limitations of the state-of-the-art object detection

techniques.

e) Providing practical and effective nuclei detection technique based on a customized R-CNN

architecture using an adaptive generation of region proposals.

1.3 Frameworks for Calcium Signal Analysis and Nuclei

Detection

Automated routines for intracellular calcium signalling analysis and for autophagy evolution via

nuclei counting is very demanding among cell biologist community because the breakthroughs

in imaging protocols have enabled the production of a vast quantity of imaging data to be

processed in labs. Still, data analysis are often done manually or semi-automatically through

multiple platforms such as ImageJ, MATLAB, Calquo, Cellprofiler, Prism, etc. To optimize

the output of some of those platforms, user experiences and parameters finetuning are crucial.

In this section, we list the main steps of our automated solutions to firstly analyse calcium

signals through videos of fluorescent images of heart cells interiors, and secondly identify and

count the number of cell nuclei present in static images of heart cells.

Figure 1.21.2 illustrates the global framework we developed to automatically analyse calcium

signals in living cardiac myocytes. The process consists of 6 main stages numbered from (1) to

(6).

• In stage (1) untitled “load calcium signal video”, calcium signal imaging videos are loaded

into the system. These videos describe temporal screenshots of calcium release activities
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Figure 1.2: Global framework for automated calcium signal analysis. (1): loading of calcium

signal recordings into the system. (2): calcium signal segmentation by multi-level thresholding

in frames. (3): calcium hotspot detection. (4): measure of calcium traces over time in hotpots.

(5): photobleaching detection and correction in signals. (6): signal parameters measurements.

inside living cardiac myocytes stained with calcium indicators. Therefore, to assess ele-

mentary calcium signals events at every frame time, input videos should be broken down

into consecutive frames during the loading process.

• In stage (2) untitled “Segment calcium signal expressions”, the segmentation of calcium

signal events is performed through individual frames. The segmentation of calcium signal

events inside input frames is crucial as it tells whether cells are being active or not.

This segmentation requires pre-processing of video frames prior to intensity thresholding

derived from the global fluorescence of the whole video file and local fluctuations in

individual frames. The pre-processing aims to reduce the Gaussian noise that may corrupt

the fluorescence imaging data, and to increase the contrast of the images.

• In stage (3) untitled “Detect calcium signal hotspots”, the detection of the most active

regions in calcium signal events of cells is performed. This is done by video fusion-based

essentially on a hit-ratio parameter. The hit-ratio parameter is computed for all cellular

regions containing calcium events and tells how often intracellular calcium concentration

varies inside the given regions. The best hotspots correspond to non-overlapping areas
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containing the greatest hit-ratio.

• In stage (4) untitled “Compute temporal calcium signal traces”, the average pixel intensity

of the corresponding cellular areas is taken as the temporal measure of the intracellular

calcium change of concentration values. The records are max normalized based on the

minimum fluorescence inside each hotspot. This enabled a realistic comparison between

cells observed in different biological preparations and camera settings.

• In stage (5) untitled “Detect and correct photobleaching”, our system tries to detect and

correct any potential photobleaching phenomenon that might have altered the temporal

measures of the intracellular change of concentration previously recorded in stage (4).

Photobleaching phenomenon can be defined as an exponential decay of illumination that

can affect cardiac cell preparations analysed by FM technique [90]. When calcium signals

are affected by photobleaching phenomenon, their quantitative measurements get reduced

and thus need to be recovered. This stage of our proposed solution for calcium signal

analysis is essential as it provides data integrity for further accurate measurements of

temporal calcium traces recorded from hotspots.

• In stage (6) untitled “Extract statistical measurements”, the system computes from

photobleaching-free calcium signals a set of statistical measures such as peak amplitudes,

maximum amplitudes, peak frequencies, inter-spike intervals, time of slopes and area un-

der the curves. Those measurements enable formal comparison of the calcium signalling

activity of various cells and active regions. In fine, they help biologists to draw conclu-

sions related to the underlying biological problems under investigation such as the heart

physiology induced by calcium signalling.

Following Figure 1.31.3 illustrates the global framework we developed for automated detection

of nuclei in FM static images based on deep neural networks. The framework consists of four

main steps labelled from 1 to 4.

• In step 1, as its title suggests, initial proposals boxes for potential nuclei locations are

generated using local adaptive thresholding. In computer vision, object detection, and

recognition tasks applied to biomedical images have been subject to numerous research

papers and remain an ongoing problematic [91]. Some recent literature suggests searching

for instances of objects inside images in a selective to boost performance and reduce errors
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Figure 1.3: Global framework for automated nuclei detection. (1): Stage of initial proposal

generation by thresholding. (2): stage of hand-crafted feature extraction. (3): stage of initial

proposals filtering by SVM classifiers built upon HOG, GLCM, PC, and LBP features.(4): stage

of ultimate nuclei detection through CNN classification of image patches

[87], while other authors promote an exhaustive search. We follow up the former approach

by considering as potential nuclei locations, any meaningful, and connected components

output by the local adaptive threshold of nuclei images.

• In step 2, untitled “hand-crafted feature extraction” the system extracts from image

patches corresponding to initial candidate locations of nuclei texture-based features for

further filtering. Indeed, the initial proposal boxes generated by local adaptive threshold-

ing correspond to image patches that are more likely to contain nuclei instances. However,

segmentation by intensity thresholding means that all foreground elements should be dis-

tinguished from background thanks to their pixel intensity distribution [65], which is not

always the case. The hand-crafted feature extraction step included in the automated

routine enables to consider extra image features for describing foreground elements and

background counterparts. These features are histogram of oriented gradients (HOG), local

binary patterns (LBP), grey-level co-occurrence matrices (GLCM) and phase congruency

features (PC).

• In step 3 untitled “Filter candidate nuclei locations by SVM”, the system filters the

initial proposal boxes based on SVM classification of the extracted features map into

background and nuclei patches. We investigated various feature concatenation models,
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but experiences showed that a fusion model made at score level achieved the best results.

• In step 4, untitled “Validate right nuclei locations by the convolutional neural network”

a fine-grained classification of the filtered proposal boxes is applied by CNN. In fact,

analysis of nuclei locations output by SVMs models built upon HOG, GLCM, LBP and

PC features show a non-negligible proportion of background elements wrongly consid-

ered as nuclei contents. Which means that despite the complexity of the user-defined

feature vectors, challenging background elements are yet difficult to be captured fully

and comprehensively. The usage of deep learning strategy in this step aims to overcome

the inherent limitations associated to hand-crafted feature vectors models: the lack of

abstraction levels provided by CNN [94].

1.4 List of Contributions and Publications

The main contributions of this thesis can be summarized as the following:

a) We proposed an automated routine for calcium hotspot detection and signal measure-

ment based on a 2-level segmentation algorithm. At the frame level, local thresholds are

computed based on Otsu’s algorithm. Then an optimum global threshold is derived from

the mean and STD of the Otsu thresholds to segment calcium signal release events in

individual video frames. At the video level, the best active cellular regions are identified

based on a hit-ratio value derived from the frequency of calcium release events inside cells.

b) We developed a photobleaching detection technique in hotspots calcium signals by mono-

exponential curve fitting based on non-linear least square regression.

c) We proposed a signal recovery technique after photobleaching detection in hotspot calcium

signals by baseline adjustment.

d) We built a region proposal box generation for nuclei detection in FM images using local

adaptive thresholding to generate candidate locations and linear SVM fusion at score

level to filter the candidates.

e) We designed and trained a deep learning model for image patch classification to ultimately

detect nuclei box using a convolutional neural network (CNNs) from the proposal boxes

output by SVMs.
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f) We developed a Graphical User Interface (GUI) software for intracellular calcium sig-

nal analysis using MATLAB. It is a standalone application that runs on Windows PC

that enables biologists to perform calcium signal segmentation, hotspots detection, pho-

tobleaching correction and signals measurements.

The following papers have been produced throughout the research:

a) D. Traore, K. Rietdorf, N. Al-Jawad, and H. Al-Assam, “Automatic hotspots detection

for intracellular calcium analysis in fluorescence microscopy videos,” in Communications

in Computer and Information Science, 2017.

b) D. Traore, K. Rietdorf, N. Al-Jawad, and H. Al-Assam, “Photobleaching detection and

correction in cardiac cell calcium signals by negative exponential curve fitting and base-

line adjustment,” in Communications in Computer and Information Science, 2020. [in

preparation]

c) D. Traore, K. Rietdorf, N. Al-Jawad, and H. Al-Assam, “Customized R-CNN with adap-

tive proposal box generation for nuclei detection in fluorescence microscopy images” in

Proceedings - International Symposium on Biomedical Imaging, 2020. [in preparation].

1.5 Thesis Outline

Chapter 2 presents background information and literature about techniques for cellular pa-

rameters analysis through fluorescence microscopy images.

Chapter 3 proposes a 2-level segmentation technique for intracellular calcium hotspot detec-

tion and signal measurement in cardiac myocytes. It also presents a comparison between our

proposed approach and a pioneering technique.

Chapter 4 provides a machine learning approach for photobleaching detection and correction

in calcium hotspots signals using non-linear regression.

Chapter 5 describes a theoretical and empirical analysis of objection detection techniques that

are applicable to nuclei detection in images obtained by fluorescence microscopy.
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Chapter 6 proposes a feasible and efficient solution for nuclei detection in fluorescence mi-

croscopy images using R-CNN and adaptive region proposal generation.

Chapter 7 highlights the thesis achievements alongside, its limitations and potential areas for

future research.

The Appendix A presents the biomedical image analysis toolbox we developed in MATLAB

to automate the analysis of intracellular calcium imaging through video recordings of cardiac

myocytes stained with calcium indicators.
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Chapter 2

Background and Literature Review

The background study and literature review reported in this chapter emphasizes on relevant and

recent solutions proposed for and applicable to the automated analysis of biomedical images

obtained by fluorescence microscopy (FM). In general, we shall investigate texture related

features that can help encode and distinguish biomedical image contents such as cellular objects

and background elements and review pre-processing techniques to enhance image quality and to

deal with specific problems associated with FM images such as noises and illumination artefacts.

Moreover, we shall discuss segmentation algorithms applicable to calcium signal analysis in

calcium imaging videos. Finally, we shall review some advanced techniques developed for

cellular and/or nuclear detection in biomedical images.

2.1 Introduction

In the last decade, a considerable amount of literature has been published on computational

biology applicable to the analysis of fluorescence microscopy cell images. These studies can be

classified into two main categories. First, there is a set of traditional methods based on stan-

dard image processing techniques such as intensity-based segmentation [61], frequency domain

component filtering [73], mathematical morphology [89], edge and region-based segmentation

algorithms [24]. Then, the group of machine learning techniques using state-of-the-art classi-

fiers that can be either deep networks [80] [25] or hand-crafted feature extraction models for

mainly image segmentation, object detection and image classification [59] [1] [26].
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Despite the number of previous works and the relative performances of various state-of-the-art

techniques over specific datasets such as natural images and high-resolution medical images,

multiple instance object detection in low-contrast FM images remains problematic. Challenges

associated to FM images are essentially image quality, movement of cells, potentially unwanted

background due to unspecific staining, variability in image illumination, and variability in

regions of interest (ROI) sizes, shapes, colours and textures which makes most of the techniques

tested on specific datasets to fail on unknown images i.e. on images with different characteristics

[71] [43].

In the following sections, we firstly report a computational background study and investigation

on four popular texture related features that may help encode and distinguish image contents in

FM datasets such as Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP),

Grey Level Co-occurrence Matrix (GLCM) and Phase Congruency features (PC). Then, we

present a quick review on the literature about pre-processing techniques that deal with some

of the challenges associated to FM cell images. Finally, we review techniques for intracellular

calcium imaging analysis, and cellular objects detection in 2-D greyscale biomedical images.

2.2 Computational Background

To develop robust machine learning techniques for automated cell detection in FM images, we

investigated multiple hand-crafted features vectors such as HOG, LBP, GLCM and PC. In the

next subsections we describe these features ability to encode cellular contents and background

elements and their visual representation in FM images stained with DNA markers.

2.2.1 HOG Feature Representation and Description

HOG features represent local shape information within images patches [82]. Here, we found out

that computing HOG within a cell window of [10 x 10] discriminates well background patches

from their counterpart nuclei in many images, after gamma transform. Gamma transform is a

simple image contrast enhancement technique that converts a low contrast input image into a

visually pleasant image without significant alterations [66] according to the formula A = c ∗ Iγ,

where A is the output image, c a constant, I the input image, and γ the power. Figure 2.1

describes shape information encoded by HOG in NRVM patches.
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Figure 2.1: HOG feature extraction after gamma contrast enhancement. Sub-images A and

B represent respectively an original NRVM nuclei image and its HOG feature representation.

Nuclei samples being highlighted by yellow boxes and background contents by red boxes.

Figure 2.1 demonstrates visually that HOG features can capture various object shapes in image

patches. Figure 2.1(A) illustrates an original NRVM image with nuclei and background patches

labelled by bounding boxes. Red boxes correspond to background labels, whereas yellow boxes

highlight nuclei locations. The input image is originally greyscale, but is displayed in pseudo

colour for visual purpose. Figure 2.1(B) illustrates the visual representation of the HOG features

extracted from patches in A. To implement the HOG feature extraction, we used the dedicated

MATLAB proprietary function presented here [22].

In conclusion, as illustrated in Figure 2.1, HOG features help encode various shapes of objects

inside images. Nuclei can look like egg, heart, peanut, circle while background elements may

show fancy patterns ranging from flat surfaces, elongated forms, circular shapes, to complex

patterns. This means that a background element may also look like a nucleus, as illustrated

in Figure 2.1(B) mid-bottom region, where a bright noisy dot is encoded as a circular object

by HOG. Such visual confusion related to HOG features may indicate that more information

such as texture encoding may be necessary to distinguish nuclei from background elements in

addition to shape descriptors. Moreover, in some lower-contrast images, nuclei contours may

appear as shadow and therefore difficult to be captured by HOG descriptor. This is generally

due to staining deficiency. In such cases, HOG may also fail to recognize shapes, and hence to
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distinguish accurate background contents from nuclei. The performance of SVM models built

on HOG and tested over splits of our nuclei datasets is reported and discussed in Section 6.4.2.

Filtering Initial Nuclei Proposals by SVM Models.

2.2.2 LBP Feature Representation and Description

The fact that background elements may exhibit the same visual shape as foreground elements

led us to investigate additional texture-based descriptors. The first texture-based features, we

analysed are LBP features. LBP are famous in the field of computer vision for achieving great

success in image classification tasks [26] over various medical datasets.

To learn and differentiate nuclei and background textures, we extracted from uniform LBP

image regions, 59-bins histograms. Figure 2.2 illustrates the LBP features’ ability to encoding

rich texture details in NRVM images. Here, for instance, the bottom background element with

misleading HOG shape observed in Figure 2.1 can be better distinguished as non-nucleus by

the LBP texture encoded (Figure 2.2(B)).

Figure 2.2: Uniform LBP image computation after gamma correction. Sub-images A and B

represent respectively an original NRVM nuclei image and its LBP feature representation with

nuclei patches highlighted by yellow boxes and background contents highlighted by red boxes

Figure 2.2 illustrates the texture information encoded by LBP features when applied to NRVM

nuclei images. Figure 2.2(A) represents an original NRVM image with nuclei ground accurate

labels (in yellow) and background ground truth labels (in red). Figure 2.2(B) illustrates the
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LBP version of A, where 59-bin histograms will be later extracted as LBP feature vectors to

describe individual patches. Visually it can be noticed that right nuclei regions are encoded as

subtle prominence over general flat valleys surface corresponding to background elements.

However, few background elements exhibit some peak pattern like the misleading background

dot element located at the bottom of Figure 2.2(A-B). A close look shows that the LBP tex-

ture representation of the problematic background element is well different than the texture

representation of nuclei regions. Moreover, the 59-bin histogram extracted from the misleading

background region shows some differences when compared to the histogram extracted from a

true nuclei patch, as highlighted in Figure 2.3(C-D).

.

Figure 2.3: LBP texture vs HOG Shape information. Sub-image O shows an original NRVM

nuclei image with a nuclei sample highlighted by a yellow box and a background sample high-

lighted by a white box. Sub-images A and B show respectively the HOG encoding of the

nucleus and background patches highlighted in O. Sub-images C and D show respectively the

LBP images and the derived histograms from the LBP images of both nuclei and background

images computed in C.

Figure 2.3 illustrates a qualitative comparison between shape information encoded by HOG

features and texture information encoded by LBP features for nuclei and background patches

classification. Figure 2.3(O) represents an original NRVM nuclei image with two labelled regions

nucleus (in yellow) and background (in white). Figure 2.3(A) and Figure 2.3(B) represent

respectively, the HOG features of the nucleus and the background regions. Visually it is evident

Page 42 of 202



that the nucleus in A and the background element in B exhibit the same circular shape which

highlights the limitations of HOG shape descriptors.

Figure 2.3(C) shows the corresponding LBP image computation of the patches (A) and (B)

cropped from (O). Figure 2.3(D) represents the 59-bins LBP histogram of the nuclei patch in

(A) (red line) and the background patch in (B) (blue line). From those LBP histogram plots,

it is noticeable that nuclei feature distribution spans in larger value intervals than background

counterparts even if they intersect sometimes.

Based on that visual comparison of HOG and LBP feature representation, we argued that LBP

could be an added value to use alongside HOG features to filter nuclei patches. This assumption

related to shape descriptors will be later confirmed when comparing the output of SVM models

based on separate HOG and LBP feature features. The overall performance of SVM models

built on LBP and tested over splits of our nuclei datasets is reported and discussed in Section

6.4.2.

2.2.3 GLCM Feature Representation and Description

GLCM is another textural feature that we investigated after LBP features to encode nuclei and

background clues in NRVM images. GLCM derives from the spatial distribution at different

angles or offsets of pixel pairs [88] that we investigated. Here, we found out that extracting

statistics such as the contrast, the correlation, the energy, and the homogeneity derived from

GLCM computation with a 59 x 2 offset window gives a richer textural description of nuclei

and background patches. The co-occurrence matrix we computed for each NRVM image of our

dataset is a matrix that tells how often pairs of pixels with specific values and in a specified

spatial relationship occur inside NRVM images. This matrix is defined to be the distribution

of co-occurring pixel values at a given offset or distance according to the following formula [88]:

Consider:

N =
∑
i

∑
j

Gd(i, j); (2.1)

which is the total number of occurrence pairs in Gd

Let:

GNd(i, j) =
1

N
Gd(i, j).GNd; (2.2)
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GNd(i, j) is called the normalized co-occurrence matrix,

where (i, j)th entry of GNd(i, j) is the joint probability of co-occurrences of pixels with intensity

i and pixels with intensity j separated by a distance k, in a particular direction d.

Figure 2.4 below shows that energy features (solid blue line) extracted from GLCM nuclei

images are different than those extracted from GLCM background patches(Figure 2.4(C-D)).

In contrast, for the same cell and background patches, LBP histograms exhibit little differences

(Figure 2.4 A-B). In other terms, where LBP could fail, GLCM might offer a healthy alternative

to recognize nuclei and background patches.

Figure 2.4: GLCM features vs LBP features for nuclei texture encoding. Sub-image O shows an

original NRVM nuclei image with a nuclei sample highlighted by a yellow box and a background

sample highlighted by a white box. Sub-images A and B show respectively the LBP encoding

of the of the nucleus and background patches highlighted in O. Sub-images C and D show

respectively the GLCM images and four derived features extracted from the GLCM images of

both nuclei and background patches computed in C.

In Figure 2.4, (O) represents an original NRVM image with one nucleus fade region labelled in

yellow and one background region labelled in white. (A) represents LBP computation of the

cropping versions of those image regions highlighted in (O). (B) represents the LBP histograms

plotting of both LBP images displayed in A. So, visually, it is easy to notice that both regions

exhibit similar LBP texture with no obvious cell texture standing out or background prominence

as in Figure 2.2. This is further verified in (D) where their corresponding GLCM features
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extracted are plotted. Solid lines represent GLCM features of the nuclei patch, whereas the

dashed line corresponds to the background patch’s ones.

To sum up, GLCM may outperform LBP visually as it enables encoding fine details texture from

fading nuclei regions that will not be possible with LBP. Therefore, we made the hypothesis

that GLCM based SVMs models may also outperform LBP counterpart in challenging cases

where images exhibit low contrast cells. The performance of SVM models built on GLCM and

tested over splits of our nuclei datasets is reported and discussed in Section 6.4.2.

2.2.4 PC Feature Representation and Description

PC is defined as a low level invariant property of image features [50] that tries to capture edges

and corners of objects from frequency domain representation of image contents. PC is known

for its performance at detecting object edges and corners in challenging environments such as

local image illumination variations and low contrast images [50] [49] [59]. For these reasons, PC

might be interested to test on FM images which exhibit similar challenges. Multiple theories

behind the calculation of phase congruency have been released in the past. Here, the Kovesi’s

formula based on a new measure of the phase deviation using sin and cos functions in 2D is

adopted [50].

PC(x) =

∑
nW (x)

⌊
An(x)4φn(x)− T

⌋∑
nAn(x) + ε

(2.3)

Where PC(x) is the PC value at x.

W (x) =
1

1 + eγ(c−s(x))
(2.4)

An(x): amplitude of filter responses at x; φn(x): a phase angle at x; φ̄(x): mean phase angle;

ε: a small constant to avoid division by zero such that the phase deviation measure is given by:

4φn(x) = cosφn(x)− φ̄(x)− ‖ sinφn(x)− φ̄(x)‖ (2.5)

To encode nuclei features based on PC, we adopted the improved MATLAB implementation

of Kovesi, which consists of a set of wavelet filters convolutions over input images prior to

Gaussian smoothing. For more details, please read [50]. Thus, to learn relevant nuclei features
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Figure 2.5: PC features vs GLCM features for nuclei and background texture encoding

in NRVM images, we extracted from PC versions of nuclei and background patches, 59-bins

histograms as feature descriptors.

Figure 2.5 illustrates that PC can often outperform GLCM features and can better help dis-

criminate heterogeneous background patches. Heterogeneous background patches are NRVM

image windows that contain numerous illumination artefacts that could be mistaken as nuclei.

This is illustrated in Figure 2.5 by the red labelled background region located at the bottom-

left corner of the image labelled “original”. Visually it can be noticed that in this background

region, PC did not rightly encode any strong edges (image labelled “PC”). In contrast, the

corresponding GLCM image produced a cellular texture (image labelled “GLCM”). Therefore,

we made the hypothesis that PC could be an added value to GLCM feature vectors for SVM

filtering of nuclei and background patches due to their sensibility at denoting or not object

edges in image regions.

In details, Figure 2.5 demonstrates that PC and GLCM could be used in parallel for nuclei and

background patches classification in NRVM images by SVM models. As the titles suggest, the

three images displayed in Figure 2.5 represent respectively, an original NRVM input image, a

GLCM image version of the original image and a PC image version of the original image. As

it can be denoted visually, texture information encoded by GLCM features and those encoded

by PC features seems proportional in all patches except for a background patch located at the

bottom left corner of the three images and for a nucleus patch situated at the bottom right

corner.

In the seven nuclei patches located at the top of the images and highlighted in yellow, GLCM
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texture is visible and prominent, while PC texture is strong. It is the same for the seven

background patches located at the top of the images and highlighted in red. In those background

regions, GLCM texture and PC edges are logically null or hardly visible.

The only disparity happens inside the two lowest image patches located respectively at the

bottom-left corner (highlighted in red) and the bottom-right corner (highlighted in yellow) of

Original image of Figure 2.5. In the first region, which exhibits a heterogeneous background,

GLCM feature encodes some tiny nuclear texture as illustrated in the GLCM image of Figure

2.5. In contrast, the PC does not exhibit any edge map. In the second problematic region,

which exhibits a vague-contour cell, GLCM feature encodes some strong nuclear texture, while

PC still shows slight edges fragments challenging to visualize.

This dissimilarity of the two types of feature vectors at encoding a heterogeneous background

patch and a weak boundary cell made us investigate confidence levels associated to the object

classes output by SVM models built upon unique feature vectors such as PC and GLCM. We

expanded this analysis to SVM models based on HOG and LBP. We also investigated SVM

fusion models based on multiple combinations of the four individual feature vectors: HOG,

LBP, GLCM, and PC. All these investigations about SVM models for nuclei and background

patches filtering are presented and discussed in Sections 6.3 and 6.4. In next Section 2.3, we

introduce the relevant literature about pre-processing techniques, automated calcium signal

analysis, and cellular segmentation in FM images and videos.

2.3 Review on Pre-processing Techniques

The advent of FM and its application in cell biology has been a fantastic mean for visualizing and

understanding complex sub-cellular and molecular mechanisms involving thousands of proteins

that reside in living organisms. Fluorescent labelling through the usage of dyes or contrast-

enhanced products also called GFP had enabled easy tracking, in vitro and in vivo, of tissues,

cells, proteins, ions, and various macro-molecular structures. To learn more about the ground-

breaking contributions of GFP in cellular biology, please read Roger Tsien’s paper that won

the 2008 Nobel Prize for Chemistry [78]. From these optical advances, numerous biomedical

studies and research are getting benefits. But, like often, computer scientists who aim to

provide hardware and software solutions to automate the analysis of such medical data, are yet

to overcome all the computational challenges associated to the imaging power.
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Some common problems associated with FM imaging datasets are illumination artefacts, low

resolution images, photobleaching, Gaussian and Poisson noises [61] [71] [54] [92]. To deal with

illumination artefacts, poor resolution and noises in fluorescence images, many solutions have

been proposed such as contrast enhancement techniques based on greyscale histogram manip-

ulation, morphological reconstruction, gamma transform, background subtraction techniques,

point operators, low-pass filtering using Fourier Transform or wavelet transform , median fil-

tering and Anscombe transform [36] [63] [20] [64] [45]. Those techniques can be remarkably

successful on specific datasets but dramatically fail on others due to wrong parameter setting.

Besides, robust noise removal techniques may cause blurring effects on images and crucial

information contained within the images might be lost. This could be the case when applying

noise removal in calcium signalling images where intracellular calcium changes are captured by

the difference in the intensity (brightness) of a calcium indicator. The direct manipulation of

pixel values in such images could alter the calcium concentration derived from cellular regions’

brightness.

Another reason that makes it difficult to apply standard techniques such as morphological

operations to unseen datasets is related to the fact that the performances of morphological

operations rely on the technique adopted, and the type and size of the structuring elements

chosen. For instance, the rolling ball technique used for background estimation, and based on

morphological top-hat operations described in [60] would need prior knowledge about input

images, for example, the size (in µm) of the signals the researchers are interested in, if default

parameters do not work.

Therefore, instead of developing robust pre-processing techniques for noise removals and image

contrast enhancement, we adopted cautious strategies according to the phenotype under in-

vestigation. For the calcium signalling image datasets, a set of routines consisting of adaptive

background subtraction, a default [3x3] median filtering, and a simple morphological recon-

struction were investigated and adopted. For the counting of nuclei cells, we applied gamma

correction over image patches prior to feature extraction to increase the brightness and adjust

the contrast of fading cells. In following Section 2.4, we report a literature review on automated

solutions for intracellular calcium signal analysis in FM datasets.
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2.4 Review on Automated Analysis of Intracellular Cal-

cium Signals

Calcium ions are truly one of the most important minerals in human body [40]. They help

solidify human bones and teeth. They can also be found free in many soft tissues and intra-

cellular domains where they are used as secondary messengers or triggering signals to multiple

cellular functions [14]. The automated analysis of such intracellular calcium signals remains a

challenging task due to their spatio-temporal diversity and staining protocols i.e., the spatial

extent, duration, and amplitude of calcium signals, and the microscopy technique and camera

settings or calcium indicators used to stain the calcium signals. Table 2.1 list the existing and

relevant techniques of calcium signal analysis in FM images found in the literature.

One of the earlier investigations for automated analysis of such intracellular calcium signals was

published in February 1999 by Cheng and Co [21]. In their findings, the authors demonstrated

that local calcium transients or calcium sparks observed in confocal line-scan images of rat

ventricular myocytes are outliers relative to the mean and standard deviation of the whole

image fluorescence. They believed that calcium spark signals could be segmented above a

relative fluorescence threshold equalling to the mean plus two times the standard deviation of

the total image fluorescence. That was brilliant at the time but difficult to sustain in conditions

of illumination variation inside image sequences, or for different cell types or cells with different

intracellular calcium intensities or for experimental conditions using different calcium indicators

or different camera settings that may affect the overall fluorescence measured.

Later in 2012, a plugin developed in ImageJ was proposed for automated ROIs analysis of

dynamic calcium signals in images sequence of rat arterial cells [34]. The technique combines

statistical noise filtering and arbitrary ellipse fitting of high-intensity image contents to identify

and measure local calcium signal events in cells within an arbitrary radius of 15 pixels per

ROI. The technique also applies an arbitrary of p < 0.05 to segment the events. Using a fixed

threshold value and assuming all calcium signal events circular make this approach limited

in the sense that calcium signals are diverse in shape, frequency, lasting time, intensity and

spread according to the cells involved and experimental conditions in place. A technique based

on dynamically computation of such parameters of size and intensity thresholding might be

theoretically more efficient.
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Methods Features Dataset Performance Limitation

[21] Raw pixel

data

CLS images of

skeletal muscle

cells and cardiac

myocytes.

Specificity = 90%

Accuracy = 50%

Fails in Back-

ground fluctuation

and local varia-

tion of calcium

intensities.

[34] Normalized

pixel data

CLS images of

pulmonary cells

and arterial cells

Sensitivity = 99% Fails to detect het-

erogeneous calcium

signals

[28] Raw pixel

data

TIRF images of

neuroblastoma

cells

Speed: 30 seconds

for 4000 frames.

Only dedicated to

puff calcium sig-

nals.

[76] Raw pixel

data

TIRF images

of plasma

membrane of

Xenopus laevis

Accuracy = 100%

for long calcium

signals.

Only dedicated to

puff calcium sig-

nals.

[52] Fourier

transform

spectrum

Confocal mi-

croscopy images

of Jurka T-cells

classification Preci-

sion = 100%

No calcium signal

segmentation.

Table 2.1: Relevant techniques for automated calcium signal analysis in FM datasets. CLS:

Confocal line scan images. TIRF: Total Internal Reflection Fluorescence microscopy.
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Another approach using dynamic user-defined spatio-temporal filters, threshold detection level

and selection of the background level to be subtracted was proposed in 2014 for local calcium

puffs detection and measurement in Total Internal Reflection Fluorescence microscopy (TIRF)

[28]. This approach written in MATLAB and Python is interesting but the requirement of user

input of crucial parameters such as the size of the ROIs of the algorithm makes it prone to

same user-bias as a manual procedure would be.

Developed and tested on the same type of microscopy data (TIRF) in 2018, the CellSpecks

software solution written in Java, came as a more autonomous and robust GUI application for

small calcium channels detection and activity measurement of oocytes plasma membrane at high

frame rate (> 500fps) [76]. Although, the Java environment provides flexibility and portability

to CellSpecks software, its proven performances over only local calcium signals do not guarantee

same performance over global signals i.e., calcium transients that repeat frequently or spread

in bigger spaces and last longer such oscillatory signals or calcium waves of cardiac cells for

instance. These limitations of the CellSpecks solution are partially addressed by the CalQuo2

approach for calcium signal classification described here [52].

In CalQuo2, a frequency domain filter based on Fourier transform [52] is designed to detect and

differentiate single calcium response and global calcium oscillations of Jurka T-cells. In their

approach, authors of CalQuo2 demonstrated that the Fourier spectrum of the intensity-based

curve of calcium signals could help classify cells into triggering and non-triggering cells of global

calcium signals according to a certain radius threshold set over parts of their Fourier spectrum.

Calquo2 is an interesting solution for cells classification based on their calcium signals. However,

it does not answer the calcium signal detection problematic itself i.e., it is not an automated

framework for the detection and measurement of calcium signals in cells images.

All in one, to the best of our knowledge, several solutions for intracellular calcium signals anal-

ysis exist but none of them propose an automated solution for the detection and measurement

of the best active regions in cells that is data driven in two-dimensional images i.e., where the

ROIs parameters are inferred from the series of FM images input and analysed. That is why in

this thesis we aim to investigate an automated solution for intracellular hotspot detection and

measurement through FM videos of cardiac myocytes without prior knowledge or user input of

crucial parameters of size and threshold value of the calcium signal under investigation. Next

Section 2.5 reports our literature review on the cell segmentation techniques applicable to cell

biology images obtained by FM.
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2.5 Review on Cell Segmentation Techniques Applicable

to Cell Biology Images

Cell or and nuclei detection techniques applied to FM images range globally from hand-crafted

algorithms and machine learning techniques to deep learning strategies. For an extensive review

on nuclei detection and segmentation techniques please read [42], [61],[93], and [45]. In this

thesis, we aim to investigate the limitations of hand-crafted algorithms and some machine

learning techniques and to propose better practical and working solutions that can be easily

adapted to other datasets.

By hand-crafted algorithms, we mean traditional image processing techniques where computers

are specifically programmed to perform cell and/or nuclei detection and segmentation tasks

from end-to-end without any learning strategy. These traditional methods for nuclei detection

and/or segmentation in microscopy images may consist of threshold-based techniques [65] [57],

Laplacian of Gauss (LoG) filtering [47], morphological operations [89], region growing solutions

[44], and marker-controlled watershed segmentation techniques [89] [85].

Thresholding techniques that rely on global or local thresholds to separate foreground element

from the background are said to perform well when the signal-to-noise-ratio of images is high,

and when there is a clear a separation of the pixel intensity distribution between nuclei and the

remaining image contents [59]. This might not be the case in many real-world scenarios, where

Gaussian and Poisson noises may corrupt FM images. Moreover, such images may also exhibit

non-uniform background, weak cell boundaries and varying illumination artefacts sharing same

colour intensities like the ROIs.

To overcome the limitations related to thresholding, people use LoG filters. LoG filters enable

better handling of background disparities and noise reduction. However, LoG performance is

still critically dependant to the bandwidth choice [74] relevant to ROIs’ sizes. Another popular

traditional image processing technique used to detect nuclear components in microscopic images

refers to mathematical morphology such as Top Hat and h-dome operators where structuring

elements with tuned sizes help differentiate foreground elements from image background [45].

However, as the structuring element tuning suggests, morphological solutions assume prior

knowledge about the dataset, i.e. the size of the nuclei and the undesirable artefacts. In

other terms, it would be a happy coincidence that default parameters of algorithms tested over
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different datasets give same results over new datasets without prior knowledge and finetuning

of user-input parameters.

It is to reduce this need of tuned input parameters that machine learning (ML) detectors have

been proposed for nuclei detection like in the reviews described in [61],[42], [43]. Those ML

techniques include unsupervised clustering algorithms and supervised ML classifiers such as

random forest model, Gaussian mixture model, Bayesian graph cut, binary graph cut, spatial

fuzzy c-means, fuzzy level set algorithms [4] and Markov random fields model [61] [95]. The

advantage of using these ML techniques is related to the fact that the knowledge about ROIs

are inferred from features within images rather than from users’ inputs. Clustering and object

detection are data-driven accordingly even if crucial inputs are still needed in some cases such

as seed points notification in graph cut techniques.

The main limitations related to the ML techniques described above refers to feature selection

paradigm i.e. how to make sure that the selected features are the best to describe any kind

of nuclei in most fluorescence images knowing that there are no perfect features or a set of

features to describe all kind of nuclei regions. This is a trivial question that may never get

answered soon as it is even believed that the selection of the best features may depend only on

someone’s experience and luck rather than any rationality [96]. For example, detection models

based on HOG features which are popular in object recognition task [82] for capturing shape

information of rigid objects may fail to recognize deformable objects or objects showing various

shapes within same images. In the same sense, it can be argued that classification models based

on HOG features would make wrong predictions about different objects showing similar shape

information.

In our case, the observed nuclei may have various shapes or forms within the same images, and

exhibit week boundaries. Moreover, in some extreme conditions, microscope images might show

background elements with circular, ellipsoid, elongated shapes that can be mistaken as nuclei

when shapes are the only descriptors chosen to distinguish foreground and background elements.

The conclusion we can draw from such conditions is that theoretically, HOG features alone may

not be enough to discriminate nuclei. The same analysis can be applied to other state-of-the-

art ML techniques available in the literature using only hand-crafted feature selection. To sum

up, the generalization is still an issue for ML techniques due to the inherent limitations of the

feature vector selection to encode image contents.
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To overcome the limitations associated with ML models that are dependent to their feature

extraction type, supervised deep learning (DL) strategies seem better alternatives. The DL

strategies based on CNNs for object detection, make the feature vector extraction more sys-

tematic, richer, hierarchical, and portable to any kind of object as long as there are enough

image patch/label pairs of data to learn from as described in [35].

The most popular CNNs applicable to object detection in FM images are regions with convolu-

tional neural network (R-CNN) [35], faster RCNN [67], mask RCNN [38], and fully convolutional

networks (FCN) [77]. In those general ANN architectures, the aim is dual: either to assign

labels to image patches or to assign labels to image pixels. The two strategies are respectively

called box and pixel-wise classifications.

With regards to R-CNN, for instance, the architecture we have adopted in this thesis, the

object detection is performed in three phases: first, around 2000 candidate object proposals are

generated by sliding windows [41], or edges boxes [97], or by selective search using SIFT features

combined with a SVM classifier [87]. Then rich hierarchical feature extraction is performed

by CNN layers from each proposal box flattened into a fixed size using a popular technique

called affine image warping. In geometry, an affine transformation is a transformation function

between affine spaces that preserves points, straight lines, and planes. Finally, fine-grained

object detection is performed at the output layer of the CNN using image patch classification

by SVM and bounding box refinement by a box regressor. Figure 2.6 describes the standard

architecture of R-CNN as described in [97].

Figure 2.6: Architecture of R-CNN (Region with Convolutional Neural Network).

With regards to pixel-wise classification, for instance, authors in [72] proposed the U-Net so-

lution, a variant of FCN applied to light microscopy cell images. This U-Net consists of both

down-sampling and up-sampling convolutions over input images while preserving region contest

to segment Hela cells and neurons with respectively 92% and 77% intersection over union (IoU)

accuracy. Another novel deep learning framework presented in [39] for nuclei segmentation
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uses a combination of Mask R-CNN and U-net architectures to outperform 739 techniques pre-

sented at the 2018 Data Science Bowl competition. Authors of this technique described in [39]

achieved this performance over unknown testing datasets due to the artificial data augmentation

strategies they developed and applied to imitate multiple image conditions.

With regards to similar biological ROIs analysed by FM to the nuclei images we dealt with in

this thesis, authors in [96] report experiments of a faster R-CNN based approach for detecting

six categories of microscopic cells such as red blood cells, white blood cells, yeast, crystal, cast,

and epithelium cells. Although those cells differ in shape, texture, size, area, colour intensity,

and spatial distribution within images, authors demonstrated that a CNN classifier (detector

fine-tuned upon VGG16 [18]) could outperform traditional SVM models trained with hand-

crafted features. The different cell types detected by the technique described in [96] with a

mean average precision of 91.6% indicated how well deep networks could generalize well across

other datasets compared to hand-crafted algorithms [6].

Faster R-CNN is an evolved version of R-CNN where the proposal box generation is performed

by a CNN module called region proposal network (RPN) instead of a separate object detection

technique that can be Edge Boxes [97], Selective Search [87], Objectness Measure [1] or Sliding

Window search [41]. In this thesis, we aim to investigate solutions based on the basic R-CNN as

it is simpler and requires less computation power in terms of double training CNN for proposal

box generation and final box classification.

2.6 Summary on Literature Review

To sum up, a considerable amount of literature has been published on automated analysis

of intracellular parameters through images and videos of FM. For pre-processing FM images,

many techniques can be applied with relative outstanding performances according to the testing

datasets such as spatial and frequency domain filters, histogram-based operations, and morpho-

logical operations. However, human interactions are needed for parameters setting as filtering

may cause unwanted blurring effects on input images.

For calcium signalling segmentation or the segmentation of calcium imaging events, the de-

tection of calcium hotspots in videos of cardiac myocytes recorded using FM, and the photo-

bleaching correction in calcium signals recorded in cardiac myocytes, no previous study has fully
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investigated automated solutions for the whole procedure, to the best of our knowledge without

prior knowledge of the spatial spread, the duration, and the intensity of the calcium signals

under investigation. That is why, in Chapter 3, we propose an automated solution for calcium

hotspot detection and measurement in cardiac myocytes based on a multi-level thresholding

method derived from the input data themselves, and in Chapter 4 an automated routine to

deal with photobleaching in temporal calcium signals based on non-linear least square fitting.

For cellular segmentation techniques in biological images, there have been several solutions

proposed for multiple cell types and imaging protocols. Still, the generalisation of much-

published research on cell or nuclei detection is problematic. We aim to investigate that gap

in Chapter 5 and Chapter 6 by arguing that it is feasible to build an efficient nuclei detection

strategy based on a customized R-CNN using data-driven region proposal generation.
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Chapter 3

Automated Calcium Hotspot Detection

and Measurement

This chapter presents our first investigations for the automation of intracellular signalling pa-

rameters analysis through fluorescence microscopy (FM) videos. The primary study reported

here consists of three stages:

1. The segmentation of calcium imaging events or calcium signals objects by combining local

and global thresholding to identify candidate hotspots (active regions)

2. Locating and identifying the true active regions inside cells, i.e. calcium hotspots by

employing a novel hit-ratio computation.

3. Extracting calcium signal measurements from individual hotpots to be used at the analysis

phase.

Many UK biology labs study calcium signalling processes using FM in which the analysis is

usually done manually. In this chapter, we argue that an automated procedure for hotspot

detection and measurement in fluorescence videos of calcium imaging can provide scientists

with experiment replicability, speed and can prevent from inter-intra observer variability. Thus

the contributions of the chapter is twofold: firstly we demonstrate that a two-level segmenta-

tion technique based on thresholding and video fusion using region hit-ratio parameter may

outperform manual procedure at detecting calcium hotspots in cardiac cells; then secondly by

developing a working solution for hotspot analysis, we provide biologist with a graphical user

57



interface application essential for the automation of their daily calcium data analysis and also

applicable to multiple biological problems.

This chapter begins by outlining the biological relevance of the study and an overview of our

proposed solution for automated detection of calcium hotspots in cardiac myocytes (in Section

3.1). Then in Sections 3.2, and 3.3, we describe in detail our proposed solution for hotspot

detection and measurement. Section 3.4 of the chapter presents the experiments conducted for

calcium signal object segmentation and hotspot detection. Finally, in Section 3.5, results of

calcium imaging experiments carried out in PVC and NRVM calcium images are reported and

discussed prior to concluding remarks presented in Section 3.6.

3.1 Introduction

As mentioned in Chapter 1, calcium signals trigger and inhibit a vast number of cellular func-

tions through various signalling pathways and spatio-temporal patterns, i.e. according to their

arise time, space and amplitude [14] [15] [12] [46]. Invariably, in animal cells, intracellular

calcium dynamics involve the activation of various calcium channels and other processes inside

multiple cellular organelles such as nuclei, sarcoplasmic or endoplasmic reticulum, mitochon-

dria, and/or lysosomes [68][14] [19].

It is therefore essential in many laboratory experiments for biologists to be able to detect, lo-

calize and measure intracellular calcium signals of living cells to infer better their effects on the

related cellular functions under investigations. For instance, in PVCs, biologists use calcium

indicators to analyse the frequency of the spontaneous cell of calcium signals that can modify,

beyond a certain threshold, cells’ natural ability to follow electrical pacing and cause atrial

fibrillation, the most common cardiac arrhythmia [68]. Another cell type used to investigate

cardiac signalling is NRVMs. Calcium signalling in these cells can also be studied using flu-

orescent calcium indicators. The cells can also be used to investigate how calcium signalling

regulates other cellular processes, like for example, autophagy [15]. During autophagy, cal-

cium signals are said to act both as, triggering and inhibitory factors according to the calcium

channels activated and the signal amplitudes, i.e. the magnitude of the change of calcium

concentration [15].

The current chapter consists of investigating automated procedures for the analysis of calcium
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imaging data in two types of cardiomyocytes PVCs and NRVMs for the understanding of the

biological correlation between changes in the pattern of changes in the intracellular calcium

concentration and the development of cardiac dysfunctions like arrhythmia. In these calcium

imaging experiments; biologists are interested in identifying calcium hotspots and measuring

the changes in the calcium concentration inside the hotspots over time.

As their name suggests, intracellular calcium hotspots (ICH) correspond to areas in the cells

where frequent and repeated changes of intracellular calcium concentration are observed over

time. In other words, any active cellular regions in calcium signalling events can be considered

as ICH. The accurate detection of ICH is needed because it is essential to understand the

timing/frequency and amplitude of calcium signals to understand why cellular signalling might

be disturbed and affect the function of cardiac myocytes [9][69]. Analysing ICH responses to

different stimuli such as treatment with pharmacological modulators (drugs) usage may also be

highly beneficial for diagnostic formulation and treatment discovery [13] [14].

We aim to automate the detection of ICH in cardiac myocytes through fluorescence microscopy.

Since it is hard to find worldwide established routines for ICH detection and measurement in

fluorescent cardiac myocytes, researchers rely on their own experience and computing knowledge

to perform calcium imaging data analysis using different programs. Popular software programs

among calcium signalling community are Image J, MATLAB environment, Prism and Microsoft

Excel. For those familiar with these software, Image J or MATLAB are essential for hotspot

setting and calcium signal segmentation, whereas Prism or Microsoft Excel are used for data

plotting and statistical analysis.

A typical data analysis workflow of calcium imaging experiment is like the following: a video of

cardiomyocytes stained with calcium indicator is loaded into Image J. Users navigate through

the input video frames and manually set the active regions in calcium release-events as hotspot

locations. From the pixel regions highlighted by the manual annotations, initial readouts of

changes in the calcium concentration are extracted, corresponding to the average pixel inten-

sities of the selected regions in all consecutive frames. After the initial readouts, background

brightness values are subtracted and the raw pixel intensities normalized, then curve and sta-

tistical measurements are computed. Signal normalisation is based on the estimation of the

baseline fluorescence that corresponds to the minimum fluorescence of the calcium measure-

ments recorded in hotspots. All in one, computing tasks performed for calcium signal analysis

are essentially calcium signal object segmentation, ICH detection, time-series ICH signal ex-
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traction, and graph-derived measurements of signal amplitude, width, frequency, the area under

a curve, inter-spike interval and time of slope.

Although elaborated, this manual procedure for calcium signals analysis described above and

adopted by many UK-based experts in calcium signalling shows many limitations. These are

related to speed, accuracy, and replicability of the procedure. Indeed, due to the lack of

automated standards, analysis is time-consuming, prone to errors, human biased and difficult

to replicate.

In this chapter, we aim to address those issues related to the manual or semi-automated ap-

proach by proposing a framework which relies on a two-level segmentation algorithm for ICH

detection and measurement in videos of cardiac myocytes obtained by fluorescence microscopy.

We argue that contrast enhancement techniques combined with thresholding at the frame and

video level using hit-ratio computation outperform manual procedures and provide speed, ac-

curacy and replicability for the detection and measurement of intracellular calcium traces in

videos of cardiac myocytes. The flowchart in Figure 3.1 describes the whole process for au-

tomated calcium hotspots detection in fluorescence microscopy videos prior to calcium signals

processing.

Figure 3.1: Framework for automated calcium hotspots detection prior to signal measurements.

Figure 3.1 describes our automated routine for ICH detection in fluorescence microscopy videos

of cardiac myocytes based on a pre-processing stage followed by two separate segmentation
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tasks. The pre-processing stage is made of four sub-routines: loading of individual video frames,

non-cellular region background subtraction from frames, median filtering of background-free

images, and contrast enhancement of the filtered video frames by morphological reconstruction.

The calcium signal segmentation stage is also made of four sub-routines. Computing Otsu

threshold from all individual pre-processed video frames is followed by the segmentation of all

individual pre-processed frames by applying an optimum threshold T derived from the mean

and standard deviation of individual frames Otsu thresholds. Then a post-processing routine

is applied over the output of the optimum thresholding by using morphological operations such

as hole filling, border smoothing, and isolated pixel removal of the binary objects representing

calcium signal areas. Finally, properties of the binary calcium signal regions are measured for

further analysis such as centroid locations, bonding boxes, pixel element points, size, ellipsoid

fitted radius. As shown in the flowchart, the calcium detection stage which follows the calcium

signal segmentation stage also consists of four main sub-tasks: the hit-ratio computation of

all detected calcium signal regions, the calculation of hotspot size default parameters based on

the mean and standard deviation of calcium signal region sizes, the sorting of calcium signal

regions based on hit-ratio and the detection of the best active regions based their hit-ratio

without overlapping hotspots selection.

In the past, many automated solutions for intracellular calcium imaging analysis have been

proposed in proprietary software solutions, but few were free [45][71][46]. Most of them rely on

intensity thresholding and enable the detection of local calcium signals, also called intracellu-

lar calcium sparks in time-lapse recordings using confocal microscopy in skeletal and cardiac

myocytes. Those techniques are based on the general assumption that connected components

whose normalized pixel intensities are above a specific threshold value represent calcium spark

or wave expressions. This value is roughly equalled to the sum of average pixel intensity of the

whole image + n times its standard deviation[71][45][72]. A popular algorithm using this strat-

egy has been implemented in Java as an Image J plugin called Spark master with a graphical

user interface [73].

Others methods rely on Fourier transforms of temporal pixel value fluctuation of cellular regions

for the detection of global intracellular calcium responses of non-excitable immune cells such

as Jurka T-cells [46]. CALQUO, the standalone MATLAB application with graphical user

interface described in [46] for global calcium response detection in individual cells, considers

a discriminated radius of value 0.34 as a threshold for classifying Fourier spectrum of cell
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fluorescence into global calcium oscillation or not.

Here, we adopted a strategy similar to [71] [72]. Still, instead of relying only on the mean

and standard deviation of individual frames pixel intensity to detect calcium signal areas at a

given time, we first considered Otsu threshold values of each time frame as a starting point.

Then, the optimal threshold value for detecting the calcium signal in the whole time-series of

images is derived from the average and standard deviation of all Otsu thresholds. In such a

way, our algorithm takes into consideration illumination variation across consecutive frames

and keep detected calcium signals equivalent and not necessarily of one type, i.e. only local or

only global. In certain biological essays, it is essential to distinguish whether calcium signals

are spread locally inside individual cells or globally across multiple cells, and to analyse them

separately [2], but that was beyond the scope of this research because of a lack of enough

ground truth images stained both with calcium and cell membrane indicators. In following

Section 3.2, we describe our automated routine for ICH detection in fluorescence microscopy

videos of cardiac myocytes.

3.2 Calcium Hotspot Detection

As stated in Section 3.1, hotspots correspond to dynamic intracellular active regions where

calcium concentrations are likely to vary the most with time. In biological terms, they represent

cellular spaces where calcium release events happen the most. This may be caused by the

presence of specific calcium channels or of organelles acting as calcium stores, which can release

calcium after stimulation [14]. When the cells’ calcium activities are monitored using calcium-

sensitive fluorescent indicators, such as Fluo-4 or Oregon-green BAPTA, calcium release events

can be visualised as bright spots with dynamic sizes and located on the photo-chemical principle

that the fluorescence increases with an increase in the calcium concentration.

So, knowing that changes of the intracellular calcium concentration are captured in the form of

increased brightness with irregular shapes popping up randomly or regularly in various or same

cellular regions, the identification of the hotspots in cytoplasmic calcium fluctuation can be

directly denoted from the frequency of bright areas observed in video frames patches. In other

terms, the higher is the frequency of the bright regions within a cellular region, the more active

the cellular region in showing changes of intracellular calcium concentration. Therefore, from

the segmentation of the calcium signal areas described in next Subsection 3.2.1 we derive the
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location of the most active regions in showing changes of calcium concentration inside cardiac

myocytes based on the frequency of calcium signals within regions, i.e. their hit-ratio.

We defined as hit-ratio the percentage metric that tells how often calcium fluctuations happen

inside sub-cellular locations. In that sense, by default, any cellular regions showing at least

one calcium change are potentially calcium hotspot locations. Thus, the next question to be

answered might be how to automatically determine the hit-ratio of intracellular regions based

on the fluorescence fluctuation associated with them. To do so, we broke down the calcium

hotspot detection procedure into two phases: first, is the segmentation of bright areas in time-

lapse microscopic images corresponding to the presence of calcium signals and second, is the

filtering of the most active regions based on the calcium signal hit-ratio metric.

3.2.1 Identifying Candidate Calcium Hotspots by Multi-level Thresh-

olding

In this study, we refer to calcium signal areas, any presence of a change in intracellular calcium

concentration captured in fluorescent video frames produced at a usual rate of 30 fps with a

low-resolution camera under Oregon Green Bapta or Fluo4 loading. To read more about the

protocol used for calcium imaging in cardiac myocytes, please refer to [11].

To detect intracellular calcium hotspots in fluorescent video frames, we built our strategy based

on a simple but powerful image processing technique called intensity thresholding. Thresholding

was the obvious solution to consider because in such fluorescent videos, calcium signal areas

have a common characteristic: they should look brighter than everything else (Figure 3.2(B)).

In other terms, when scanning individual video frames, white pixels are more likely to belong to

calcium signal areas, whereas darker pixels are more likely to fall into image background. Figure

3.2 below illustrates our hypothesis that calcium signal regions show higher pixel intensity values

in images of cardiac myocytes loaded with calcium indicator.

3.2 illustrates the fact that regions where calcium signals occur exhibit higher pixel fluorescence

than non-active regions. In fact, 3.2 (B) represents fluorescence measurement or intensity

profiles overtime of 2 different groups of image regions highlighted in Figure 3.2 (A). The image

regions highlighted in Figure 3.2 (A) are numbered in white for areas showing calcium signals

and red for background samples. In Figure 3.2 (B) the intensity profiles of the calcium signal
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Figure 3.2: Calcium signal areas look like bright spots over general dark background. A: original

input image sequence of PVC with twenty-two annotated regions from 1-22. First two labelled

regions are outside the cell tissue and correspond to image background. Last 20 labelled regions

are inside the cell tissue and correspond to calcium signal areas

areas correspond to the plots above 20 y-axis value. In contrast, the intensity profiles of the

two background samples labelled (1,2) correspond to the plots below 20 y-axis value. Visually,

it is evident that image regions showing calcium signals exhibit higher pixel intensity values

than the areas without calcium change of concentration or signals. Therefore, in such case, it

is obvious to conclude that a thresholding value around 20 can help distinguish calcium signal

regions from the image background.

So, based on clear intensity differences between image patch samples with and without calcium

signal areas, we adopted a strategy based on intensity thresholding to segment calcium signal

areas. The next fundamental task to be solved was the search for the optimal threshold pixel

value that can truly separate the ROIs, i.e. calcium signal areas. To do so, in the literature,

many strategies have been developed. Some of them rely on global thresholds computed from

grey-level histograms distributions of individual images like the Otsu method described in [62].

Others are based on local thresholds derived from image patches’ statistics like in [65].

In this study, our strategy combines both local and global approaches in such a way that the best

threshold value for separating calcium signal areas in fluorescent videos is assessed at two levels:

locally and globally. Locally, by first considering grey-level pixel distribution of individual

frames, and globally by considering the whole video file as a unique entity. Indeed, since our

ROIs are changes of calcium concentration in cellular regions which can easily be perceived
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when comparing consecutive video images of same stained cells, best thresholds should not

be only dependant to individual frames pixel intensities but all the pixel fluctuations in the

recording of the imaging experiment. In that way, calcium signal areas would stay proportional

no matter their rising time in videos.

To validate this hypothesis, we compared the pixel intensity profiles of image regions with and

without the presence of change of calcium concentration of different cardiac cell preparations.

We found out that, at the frame level, the average pixel intensities inside areas with calcium

signals are effectively greater than in background regions, i.e. in areas without calcium signals.

The average brightness can be up to sixteen-fold above the average pixel intensities of non-

active regions depending on the calcium signals amplitudes, the bit-depth of the camera, and

the background brightness (Figure 3.2). This means that estimating calcium signal thresholds

only at frame level would be hazardous because their fluorescence amplitudes vary with time,

i.e. from frame to frame.

However, at the video level, we found out that the average intensity profiles of image regions with

and without calcium signals demonstrated a constant pattern: an optimum threshold equalling

to the double of the sum of the average and the standard deviation of Otsu thresholds computed

for all individual frames can help separate calcium signal areas from image background in 95%

of the videos according to the formula:

OptimumT = 2 ∗ (averageOtsuT + stdOtsuT ) (3.1)

with averageOtsuT = the average threshold value computed for all frames using Otsu method;

and stdOtsuT = the standard deviation of all threshold values calculated for all frames using

Otsu method.

To sum up, the dynamics of intracellular calcium signalling in the cardiac myocytes used in this

study are very intriguing because calcium signal areas may start as small dots, grow, become

brighter, move around, and merge with each other at any time before disappearing over a

heterogeneous background. However, intensity profiling of such bright areas shows that local

thresholding may be an excellent alternative to localize local increases in calcium concentrations

in the fluorescence time-series of images. The flowchart diagram below describes the different

steps we followed for calcium signal areas segmentation by thresholding through fluorescence

video frames.
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Figure 3.3: Flowchart diagram of calcium signal segmentation by multi-level thresholding.

First, a video or time-series image stack is loaded, and frames illuminations are normalized

according to [92]. Then video background is roughly estimated and subtracted to obtain a

background-free image. We defined as a background element, any pixel point that is not part of

cellular regions. Further analysis demonstrated that the minimal fluorescence of cellular regions

can be roughly deducted from frame pixel average and standard deviation. Each background

free images was later smoothed by median filtering [63] to reduce Gaussian noises that usually

corrupts fluorescent images.

After the smoothing operation, morphological reconstruction is applied over the resulting im-

ages for contrast enhancement. Morphological reconstruction is performed using mask and

marker images of video frames. Mask images are derived from background-free frames whose

contrast has been adjusted by adaptive histogram equalization [98]. Marker images are obtained

by eroding the mask images.

After morphological reconstruction, Otsu thresholds of the resulting video frames are computed

and recorded. Then, from those calculated frame-level thresholds, a single global threshold at

video level is estimated according to the optimum threshold formula above (Equation 3.1).

Figure 3.4 below highlights the results output by our automated routine for calcium signal

segmentation at every stage over an example image of PVCs.

The image in Figure 3.4(A) shows an original video frame displayed in MATLAB 2019a en-

vironment. It represents a timely screenshot of the intracellular frequency of calcium signals

produced by a set of PVCs stained with Oregon Green BAPTA. The actual image has been

recorded by a digital camera 8 seconds after the beginning of the calcium imaging experiment.

Six different Calcium signal areas in which the calcium concentration has increased have been
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Figure 3.4: System output at each stage of calcium segmentation by thresholding. A: original

input video frame of PVC. B: reference image with ROIs highlighted in yellow. C: non-cellular

regions estimated as background frame. D: background subtracted frame. E: contrast-enhanced

frame. F: binary frame obtained after multi-level thresholding. G: connected components

enhanced by morphological operations. H: multi-level thresholding results overlaid on original

input video frame. ROIs have been coloured from blue to red according to x-coordinates.

manually highlighted in yellow for visual purpose (Figure 3.4(B)).

As it can be denoted visually, bright spots correspond mostly to calcium signals, whereas

dark pixels belong to background elements. When we feed such an image into our system, a

rough background image is computed (as shown in Figure 3.4(C)) corresponding to non-cellular

regions using mean – std/2 as a minimum fluorescence value for cellular pixel contents. Figure

3.4(D) shows the output of our system after median filtering of the background-free image of

Figure 3.4(C). Visually it is clear that the resulting image in Figure 3.4(D) is smoother than

the original input image (Figure 3.4(A).

Figure 3.4(E) represents the output of our system after contrast enhancement application to

the smooth image obtained in Figure 3.4(D) by using morphological reconstruction. It can also

be noticed that visually high-intensity objects corresponding to calcium signals regions became

more emphasized compared to ordinary cellular regions without significant calcium signals.
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Figure 3.4(F) and (G) represent respectively the output of global optimal thresholding applied

to Figure 3.4(E) and morphological operations applied to Figure 3.4(F). Finally, Figure 3.4(H)

shows the final output of calcium signal areas detected by our system from the original input

PVC image. The performance of the procedure for detecting calcium increases in individual

frames is presented in the result section.

3.2.2 Filtering and Identifying the True Hotspots based on Hit-ratio

Computation

As stated in Section 3.1, calcium signal hit-ratio is a percentage metric that tells how often

certain intracellular domains show variations in their calcium concentration. The hit-ratio

parameter is derived from the number of occurrences of calcium signal objects inside a frame

location. Knowing that calcium signal objects are characterised by bright spots with varying

sizes (that may grow or shrink over time) in recordings of imaging experiments, counting the

number of bright objects inside frame regions is equivalent of counting the number of overlapping

calcium objects inside same cellular areas through all video frames.

The actual locations of calcium signal areas are obtained by thresholding the video frames,

the output of the calcium signal areas segmentation procedure. The resulting binary frames

are used as input of the proposed method for calcium hotspot detection based on the hit-ratio

computation of calcium signal events. The flowchart diagram below describes our proposed

algorithm’s steps for the final hotspots’ detection through filtering of calcium signal locations

without overlapping.

The flowchart diagram above shows that, by default, any cellular regions exhibiting calcium

signal areas are potentially hotspot locations. Then, the system computes for each potential

hotspot location identified in each frame, the number of overlaps with other calcium signal

areas expressed in other consecutive frames. The hit-ratio is equalled to the number of overlaps

divided by the total number of frames. Two binary objects are said overlapping when the

separating distance between their closest borders is null or negative or when bounding boxes

overlap according to the technique implemented in [86].

Finally, the system filters the best hotspot regions based on their hit-ratio, size, and separating

distances. Default parameters for the minimum hit-ratio are set to 15%, the separating distance
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Figure 3.5: Flowchart diagram of calcium hotspot detection by hit-ratio filtering of calcium

signal areas. Here, objects refer to areas.

to 5 pixels (the distance between the two borders of two separate calcium signals). In contrast,

the default size is dynamically set according to the average size of calcium signal areas of the

whole video file. The performance of the hotspot detection method is presented in Section 3.5.

3.3 Calcium Signal Measurements from Individual Hot-

pots

After the detection of hotspots, we proceed to the analysis of the calcium signal inside each

of them. It consists of the temporal measurement of the change of calcium concentration

inside the active regions detected as hotspots. The goal here is to provide useful measures that

characterise any given active regions inside cardiac myocytes and enable biological comparisons

between cells’ calcium responses across different experiments.

• Initial readout of calcium signals of individual hotspots The first measurements our algo-

rithm extracts for the detected hotspots are their average greyscale pixel intensity values.

Because in each frame time, we may have different values of pixel intensity per hotspot,

the plotting of those initial traces is a direct first indication of cells responses to calcium
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events.

• Non-cell tissue background fluorescence The second measurement that can be useful for

biologists to report is the estimation of the average background fluorescence inside a

given frame, i.e. the non-cellular region fluorescence. Non-cell tissue regions fluorescence

is a rough estimation of pixels which do not belong to any cellular areas. It is useful to

make that distinction because the actual fluorescence of any calcium signal needs to be

differentiated from the overall fluorescence of the cells. Non-cell tissue image corresponds

to cell tissue image fluorescence subtracted from the original input image. For the cells

used in this study, we found that We found that any pixel below the mean – std/2 falls

to the background fluorescence in each frame.

• Corrected fluorescence F By correcting fluorescence F of a given hotspot, we intend to

obtain a more accurate estimation of the value of calcium changes being released by cells.

The fixed fluorescence value (f) is calculated by subtracting from the initial readouts of

individual hotspot traces, the background value of the corresponding frame where the

calcium signal has been detected.

fi = mi − background, (3.2)

where mi = initialreadouts

• Change of fluorescence F/Fm The change of fluorescence of a hotspot at a given frame

time corresponds to the ratio of its corrected fluorescence at the given frame time over a

particular minimum fluorescence inside the hotspot. The minimum fluorescence itself is a

constant value corresponding to the pixel intensity level below which there are no events

of calcium signalling captured in the hotspot. Since we assume that frame backgrounds

are snapshots of calcium signalling experiments without the actual calcium expressions,

averaging all backgrounds of the entire video should give us a close indication of the

minimum fluorescence value if we minimize the effect of photobleaching on the whole

video. So, to get the minimum fluorescence, we take the mean of the estimated frame

background previously calculated. The reason for the change of fluorescence estimation is

to enable reliable comparison of hotspots between different videos. When plotting F/Fm,

a straight line of value 1 acts like a baseline for the change of fluorescence.

• Statistical measurements From the change of fluorescence, we extracted statistical mea-

surements such as locations of the peak of the calcium signal, their amplitudes and fre-

quencies, the area under the curve, inter-spike intervals, time of slopes. The peak is
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defined to be above a minimum threshold of 20% of the maximum signal amplitude

recorded per hotspot. The inter-spike intervals value corresponds to the elapsed time

between two consecutive calcium signal peaks. The time of slopes refers to the elapsed

time between a peak point and the time when the hotspot signals get back to the normal

baseline. All the measurements output by our system are illustrated in Figure 3.6.

Figure 3.6: Calcium signal measurements output by our proposed algorithm.

3.4 Materials & Experimental Protocols

Since the proposed solution for automated calcium hotspot detection and measurement in FM

videos consists of inferring calcium hotspots or active cellular regions in calcium change of con-

centrations from the frequency of calcium signal events, materials and experimental protocols

were designed accordingly.

In terms of materials, two ground truth datasets were developed. The first ground truth dataset

describes calcium signal events or areas present in individual video frames of PVC and NRVM
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cells’ preparations. It enables to evaluate and investigate the performances of the proposed

multi-level thresholding algorithm for calcium signals segmentation presented in Section 3.2.1

against the Cheng’s pioneering work published here [21]. The second ground truth dataset also

developed over FM videos of PVC and NRVM describes true location of calcium hotspots in

cells preparations after scanning all videos. It allows performance measure and the validation

of the ultimate calcium hotspot detection subroutine presented in Section 3.2.2. The following

subsections give an insight on the labelling procedure performed to build the different calcium

signal ground truth datasets and the experimental protocols carried to assess the performance

of the different techniques investigated.

3.4.1 Calcium Signal Ground Truth Datasets

As highlighted in Section 3.1, various signalling pathways and spatio-temporal patterns make

intracellular calcium signals difficult to shape. In cells preparations loaded with calcium indi-

cators, they may look like dot points or calcium sparks i.e., localized calcium signals with little

spread within a cell, then gradually grow, and move to calcium waves before shrinking and

disappearing as clouds or smokes in cellular domains.

Therefore, to develop a ground truth dataset of such calcium signals, a hand-free labelling

procedure was performed under the supervision of three calcium expert biologists in a user-

friendly and interactive application coded in MATLAB. After loading calcium imaging videos in

the system, the experts were asked to highlight in a frame basis, cellular areas showing calcium

signals or intracellular calcium change of concentration as the smallest ellipsoids containing

them. Then the pixel locations of the different ellipsoidal labelled areas were saved as ground

truth of the corresponding intracellular calcium signals manually marked. For each video

analysed, 50 consecutive frames were hand-free labelled by experts. This makes a final ground

truth calcium signal datasets of 1000 labelled frames derived 20 different calcium imaging

videos that was used in this analysis. Figure 3.7 illustrates the hand-free labelling procedure

conducted under biologists’ supervision where cellular regions showing calcium signal events

are highlighted in ellipsoids.

In Figure 3.7, 25 cellular regions highlighted in yellow show the locations of calcium signals

recorded at the 30th frame of a video of PVC. These locations were identified by calcium

signalling experts. The procedure is applied on all 1000 frames.
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Figure 3.7: Ground truth annotation for calcium signal segmentation. A represents original

video frame showing PVC loaded with calcium indicators. B illustrates hand-free ellipsoidal

labels of cellular regions showing calcium signals i.e., change of intracellular calcium concen-

tration. C represents the binary mask of the ellipsoidal labels saved as the ground truth of

calcium signals areas or events in A

Since calcium hotspots correspond to the locations of the cellular regions that exhibit the highest

frequency of intracellular calcium signals over time, the same hand-free labelling approach was

adopted as for the signals themselves. After loading a calcium imaging video into a GUI app

designed in MATLAB, 3 expert biologists were asked to play the video then to manually labelled

by ellipsoids the most active regions in calcium release events during the entire video recording.

In such a way, for each video analysed, they drew in average 20 hand-free hotspots locations

inside a single reference image. Thus from 20 labelled videos in total, 20 different hotspot maps

were obtained. The final ground truth for calcium hotspots was made of 20 hotspot image

masks as illustrated in Figure 3.8.

Next subsections of this chapter summarize the experimental protocols performed for investi-

gating automated solutions to segment calcium signal in individual video frames and detect

calcium hotspots in videos.

3.4.2 Experimental Protocols

According to the two main steps of the proposed solution for automated detection and measure-

ment of ICH, two types of experiments are performed. First calcium signals are segmented from

FM video frames by using the Cheng’s method [21] and the multi-level thresholding introduced

in Section 3.2.1 . Then, ultimate calcium hotspots are detected from the video fusion technique
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Figure 3.8: Ground truth annotation for calcium hotspot detection. A represents an original

FM video consisting of time-series images of cells loaded with calcium indicators. B shows the

manual annotation made by calcium signal experts to highlight the 22 most active regions in

the video. C represents the binary mask of the 22 hotspot locations across the entire video

saved as the ground truth of the video in A.

based on hit-ratio filtering of cellular regions introduced in Section 3.2.2 . The calcium imaging

videos used were captured by Zeiss cameras with fluorescence confocal microscopy setup to

record videos at an average frame rate of 30 fps. Each video frame exhibits a bit-depth varying

from video to video between 8 to 16 bits.

To evaluate the performance of both types of experiments, outputs of the investigated algo-

rithms are compared against their corresponding ground truth in terms of precision metric. In

classification problems, the precision metric is defined as the proportion of relevant instances

among the retrieved ones. Here, it corresponds to the fraction of calcium signal area or hotspot’s

locations that are detected by the system and which overlap with their corresponding ground

truth set up manually by biologist experts. The formula of the precision metric is the following:

P =
TP

TP + FP
(3.3)

where P = precision, TP = true positive, FP = false positive.

The TP calcium signal areas in video frames and the TP calcium hotspots respectively cor-

respond to the calcium signal areas and hotspots output by automated systems and which

overlap with the ground truth datasets. Thus, the FP calcium signal areas and hotspots in

images and videos correspond to those ones that do not overlap with the ground truth. Two

cellular regions are said overlapping when they share common pixel points (x, y). In Section

Page 74 of 202



3.5the results and discussions on the findings of the experiments carried are reported.

3.5 Results and Discussion

According to the types of experiments conducted, the results and discussions on the findings

are classified into two groups: the ones related to calcium signal area segmentation and those

related to hotspot detection experiments.

3.5.1 Calcium Signal Area or Event Segmentation in Video Frames

For calcium signal area segmentation in individual frames, the proposed multi-level thresholding

i.e., an optimum threshold value estimated both at frame and video levels achieved a mean

average precision of 65.5% over the entire labelled calcium signal dataset (Table 3.1). However,

it is worth mentioning that these performances are relative to the number of ground truth

locations experts limited themselves to per FM video frames labelled. Figure 3.9 illustrates the

result of the multi-level thresholding method over an example PVC video frame where ROIs or

targeted calcium signal areas are highlighted in yellow (Figure 3.9 (A)), calcium signal areas

segmented by thresholding are represented by white binary connected components (Figure 3.9

(B)), and the system output of calcium signal areas in red (Figure 3.9 (C)).

As it can be noticed in Figure 3.9. (C), over 30 predictions, 28 calcium signal areas truly match

with ground truth labels i.e., 0.93 of precision. Table 3.1 lists the average results obtained by

multi-level thresholding 1000 FM video frames of cardiac myocytes. Next Table 3.2 reports the

average results obtained by applying the Cheng’s method over the same datasets.

Intracellular calcium dynamics of the cardiac myocytes used in this study are very intriguing

across different experimental conditions. Still, our results shows that applying an optimum

threshold derived from local Otsu thresholds computed for every frame and their standard

deviation enables the segmentation of areas showing change of calcium concentration with high

precision than thresholds derived only from Cheng’s method based on the mean plus two time

the standard deviation of individual frames as suggested in [21] and [86]. Table 3.2 presents

the results obtained from Cheng method.

Despite the various spatio-temporal patterns that characterize intracellular calcium signals of
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Figure 3.9: Results of calcium signal segmentation in FM images. A represents an original

PVC image with 27 ground truth calcium signal areas highlighted in yellow ellipsoids. B repre-

sents the segmentation result obtained by multilevel thresholding of A. B shows 30 connected

components that indicate 30 candidate calcium signal locations. C is the comparison between

A and B i.e., between the segmentation results highlighted in red and the ground truth labels

highlighted in yellow

cardiac myocytes, these results show that an optimum threshold derived at two levels and using

mean and standard deviation of Otsu thresholds enables a better precision ( 65%) than the

Cheng’s method that relies on thresholds computed solely at frame level (53% precision).The

difference could be explained by the fact that Cheng’s approach assumes that calcium signal

areas correspond to outlier pixels whose intensities are above a constant threshold equalling to

the mean + 2 times the standard deviation of individual cell video frames. This assumption

implies that any FM video frames showing cells loaded with calcium indicators there should be

calcium signal events no matter the cell types and states except for extreme scenario of fully

black images or fully bright images.

This assumption cannot stand in any cases because intracellular calcium signalling is a dynamic

procedure that may show some pauses, increases, or decreases over time depending on the cells

or calcium channels being activated or not. Therefore, it is not always right to expect calcium

signals while monitoring life cells stained with calcium indicators every moment of the imaging

experiment. In other terms, bright pixels above a certain threshold should not be considered

as part of calcium signal areas in individual images without comparing with other consecutive

images.

Indeed, the changes in calcium concentration can only be denoted when spotting fluorescence

variation between consecutive frames or in cellular areas at different time points. This is the
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video AP video AP

1 61 11 50

2 74 12 63

3 83 13 61

4 57 14 63

5 79 15 79

6 74 16 56

7 50 17 80

8 70 18 64

9 59 19 49

10 86 20 52

Mean 65.5

STD 11.83

Table 3.1: Average result for calcium signal detection per video. Column video lists indexes

of the 20 different videos used to build the ground truth datasets and to test our proposed

solution for calcium signal segmentation by multi-level thresholding. Column AP lists the

average precision recorded per set of 50 video frames analysed.

fundamental difference between our method and Cheng’s strategy for calcium signal detection

in FM videos i.e., the search for calcium signal locations through all video frames as a whole

set instead of individual frames as independent entities.

Although the two-level thresholding advantages, it shows two major drawbacks. First it wrongly

identifies some noisy illumination artefacts common to FM data as calcium signal areas. Second

the system fails to handle FM videos with high illumination variances across consecutive frames.

The noisy artefacts generally correspond to persistent bright spots or areas which are present

across consecutive frames but with high pixel intensities. To enable the system to identify such

false friends, we introduced a post-processing step which filters those persistent bright areas

before the ultimate hotspot detection.

The system failure to process video frames with varying fluorescence spectrum may be explained

by severe photobleaching, change in camera settings during experiment recordings, or significant

variances in intercellular calcium waves of the cells. To overcome such problems, illumination

normalization techniques of video frames , multiple optimum thresholds estimation for a group
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video AP video AP

1 71 11 74

2 53 12 33

3 30 13 40

4 44 14 26

5 63 15 60

6 33 16 68

7 72 17 58

8 37 18 50

9 85 19 65

10 39 20 65

Mean 53.3

STD 17.17

Table 3.2: Results for calcium signal detection using Mean + 2std at the frame level. Column

video lists indexes of the 20 different videos used to build the ground truth datasets and to test

the Cheng’s strategy for calcium signal segmentation. Column AP lists the average precision

recorded per set of 50 video frames analysed.

of frames, and photobleaching correction could be investigated. This is done in Chapter 4 for

illumination normalization and photobleaching correction . In next Section 3.5.2, results, and

discussion on the findings from experiments of filtering cellular areas into calcium hotspots are

reported.

3.5.2 Ultimate Calcium Hotspot Detection in FM Videos

From the calcium signal areas output by multi-level thresholding, the system performs ultimate

calcium hotspot detection by filtering the intracellular regions showing calcium signals based

on the hit-ratio metric associated with two other parameters such as region size, and minimum

distance separating them. The default size parameter is a size interval based on the average size

of calcium signal areas. The default hi-ratio is set between [1-100%]. In contrast, the minimum

distance separating two hotspots is set to two pixels. This approach enables to develop a

novelty technique for automated calcium signal analysis. In fact, to the best of our knowledge,

there was no previous fully automated framework available for intracellular calcium hotspots
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detection through FM videos of cardiac myocytes.

The proposed framework is unique and enables to achieve ICH detection with an overall ac-

curacy of 80% over twenty testing video datasets by using default parameters of size, hit-ratio

and minimum distance. Table 3.3 summarizes the results we obtained over expert manually

labelled ground truth.

video frames AP running time (s) video frames AP running time (s)

900 71 359.51 390 97 112.43

301 68 67.10 900 82 427.33

1799 64 860.19 390 98 105.74

900 85 571.66 206 62 225.44

900 69 403.35 206 83 231.15

900 72 387.13 206 85 243.27

900 79 552.40 389 64 103.58

900 73 418.63 350 90 72.88

300 91 85.04 441 93 83.91

899 78 224.11 441 89 74.25

Mean AP STD AP Mean Running Time

79.65 11.34 280.45 seconds 4.67 minutes

Table 3.3: Result for hotspots detection per video. Column video frames shows the number

of video frames included in each video processed. AP stands for average precision of hotspots

detected by the system for the video described in the left-hand side column. Column running

time shows the time elapsed by the system to process the video in second.

Further investigation on the effect of the three parameters onto our automated hotspot detec-

tion algorithm shows strong correlations between regions size, separating distance, the system

performance, and the total number of hotspots retrieved. Large region size parameters tend to

produce few hotspot locations with big hit-ratio. But those large hotspots are not significant

for biologists as they may be covering multiple cells or multiple active regions inside different

cells or same cells. Significant separating distance parameters also tend to reduce the number

of hotspots detected but do not affect the overall system performance if smaller than 5 pixels.

Besides, increasing the minimum distance between ROIs reasonably enables to avoid redun-

dancy, i.e., picking up multiple hotspots inside the same cells, which is a matter of concerns for

biologists.
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Indeed, biologists are seeking to identify the most active cells responsible for some physiological

patterns involving calcium signalling without being distracted by same cells hotspots calcium

measurements. This is valid in cases where they want to know if a treatment increases or

decreases the number of active regions in a cell or if it affects the activity of certain or all

cellular regions, for instance. So, in an ideal world, the system should enable full detection of

the best active hotspots inside distinct cells without overlapping. However, a calcium hotspot

detection technique considering cell boundaries was difficult to investigate in this analysis as

cell membranes are not stained nor visible in the FM datasets used.

The three parameters of desired hotspot size, minimum separating distance and hit ratio that

have been introduced in this analysis for automated hotspot detection in FM videos by con-

nected components filtering enables rich, consistent, and unbiased selection of active regions

compared to the manual procedure described in Section 3.1. Figure 3.10 illustrates this strength

of the proposed solution where from scanning 900 video frames, the system picks up only 30

hotspots from a total of 23065 calcium signal areas previously identified by multi-level thresh-

olding of the video frames. The automated procedure enables speed, accuracy, and replicability

for the following reasons:

• It takes only 280 seconds i.e., 4 minutes 40 seconds in average for the system to process the

datasets against 30 minutes in average by biologists when performing a manual procedure

on a video made of 300 frames.

• The selection of hotspots or active regions is more consistent and less human-biased nor

subjective as it relies on a hit-ratio that tells how often the concentration of intracellu-

lar calcium varies within cells. The accuracy of the automated system is derived from

automated procedure with a precision of 79.65% that will stay consistent despite human

factors such as fatigue, and errors.

• Results are replicable because the same parameters of size, hit-ratio and separating dis-

tance will always retrieve the same hotspots over the same cell preparations no matter how

many times the analysis is repeated whether by the same biologists or not. Replicability

of hotspot measurements is essential for scientists because it enables them to observe cells’

behaviour at different times and under different circumstances. For instance, to under-

stand the effect of lysosomal calcium signals in NRVM cells undergoing autophagy, same

cells preparations are loaded with calcium indicators and monitored at different days (1,
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8, 10). During these experiments, cells can be excited with caffeine or not or electrically

field stimulated.

Figure 3.10: Automated hotspot detection based on hit-ratio, size, and distance. A: reference

image showing 30 ground truth hotspot locations annotated by experts for an input video of

PVC. B: binary map of the ground truth hotspots in in A. C: 89 initial connected components

output by the system as potential non overlapping hotspots after scanning 900 video frames

of the input video and checking 23065 different calcium signals. Detection parameters based

on size between [100, 300], hit-ratio between [1,100]%, and minimum distance = 1. D :30 final

hotspots output by the system after applying a default minimum distance parameter of 2. The

connected components are coloured according to their hit-ratio values. The colour map ranges

from blue to red. The hit ratio values of the hotspots are displayed next to them. E: illustration

of the overall precision of the hotspot detection method that is computed by comparing the

results of the system against the ground truth hotspot location in white ellipsoids. F: Results

of the automated hotspot detection method overlaid on a frame of the input image.

3.6 Summary on Calcium Hotspot Detection

To sum up, our automated routine for hotspots detection and measurements in FM video has

shown that optimum thresholding derived from individual frames pixel histograms and calcium
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fluctuation hit-ratio in cellular regions outperformed standard routines developed by Cheng in

[21] and an early automated technique we developed in [86] with more than 26.35% accuracy

margin. Our new framework, which relied on a two-level segmentation algorithm enables fast,

accurate and reproducible analysis of intracellular calcium signals within certain types of cardiac

myocytes loaded with fluorescence indicators.

Automated algorithms for intracellular calcium signal analysis are essential issues for future

research due to their biological relevance. Our proposed technique has contributed to a rapid,

accurate and better understanding of clinical research data performed by biologists about car-

diac arrhythmia through the analysis of intracellular hotspot calcium measurements.

However, when analysing the calcium change of concentration curve over time for measurements

extraction inside detected hotspots, we noticed that some signals exhibit photobleaching effects

(progressive fading of the fluorescence signal over time). In quantitative microscopy, it is

believed to take into consideration photobleaching effects because they can reduce the precision

of the derived measurements, and therefore lead to false conclusions [79]. Photobleaching

detection and correction are discussed in the next chapter.
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Chapter 4

Calcium Hotspot Signals Processing in

Cardiac Myocytes

In quantitative microscopy, photobleaching is a degenerative photo-chemical phenomenon that

severely alters measurements derived from raw pixel data such as intracellular calcium signal

traces in cardiac myocytes. In this chapter, we proposed automated routines that guarantee

data integrity in terms of calcium signals measurement extracted from intracellular calcium

hotspots despite eventual photobleaching decay that may corrupt measurements. Therefore,

the main contributions of this chapter are:

1. Extracting and normalising intracellular calcium signals in cellular hotspots

2. Detecting photobleaching in calcium signals of cardiac myocytes and demonstrating that

it can be modelled as a mono-exponential function of time and corrected by baseline

adjustment according to the exponential decay initially estimated by non-linear least

square regression.

3. Correcting calcium signals affected by photobleaching and validating the results by mea-

suring the goodness of the recovered signals against the expected flat baselines.

Structurally, the chapter is made of 6 sections. Section 4.1 briefly presents the goal of calcium

hotspot signal processing in terms of signal extraction and normalisation, and photobleaching

handling. In Section 4.2, an automated framework for extracting and normalising intracellular

calcium signals in calcium hotspots is described. Section 4.3 presents our investigations and
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proposed solutions for photobleaching detection and correction in calcium signals of cardiac

myocytes’ hotspots. This framework is based on exponential curve fitting and signal baseline

adjustment. In Section 4.4, the materials and experimental protocols used to evaluate the

proposed techniques for both photobleaching detection and correction are described and the

results and discussion on the findings are reported in Section 4.5. Finally, the chapter ends by

concluding remarks in Section 4.6.

4.1 Introduction

Calcium hotspot signal processing in cardiac myocytes refers to a set of measurement tasks per-

formed by biologists after identifying calcium hotspots inside cellular regions from fluorescence

microscopy (FM) videos. These tasks are; therefore, an extensive follow up of the automated

hotspot detection technique discussed in Chapter 3, i.e. the signal processing behind the mea-

surement of calcium change of concentration inside ROIs.

Our goal here is to make sure that calcium traces captured for individual hotspots are accurate

and can be used to compare calcium signalling in different cells or in the same cells observed

in different circumstances, regardless of experimental differences and photobleaching loss.

4.2 Hotspot Calcium Signal Extraction

Calcium signal extraction from hotspots (see Section 3.3 for detailed description) corresponds to

the measurement of calcium concentration changes inside hotspot regions over time. Technically

it derives from the average fluorescence measured in consecutive video frames inside cellular

areas labelled as hotspots. To do so, for a video of N frames, we measure as hotspot calcium

traces N average greyscale pixel values of their corresponding location through each frame.

The flowchart diagram below schematizes our automated routine for hotspots calcium signal

extraction if hotspots regions are detected:

Figure 4.1: Flowchart diagram of calcium signal extraction.
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Figure 4.1 lists three main tasks: initial calcium readout computation, corrected readouts

computation and definitive calcium signals normalization. The initial readouts computation

corresponds to averaging the raw pixels values of hotspots regions through video frames. The

corrected readouts computation corresponds to the first correction applied to the initial readout

by subtracting the non-cellular region fluorescence. The reason for such operation is to make

sure that the measurements extracted reflect essentially the fluorescence attributed to calcium

change of concentration rather than something else (noisy artefacts) in video frames. The

definitive calcium signal normalization corresponds to a ratio of the corrected fluorescence over

an estimated minimum fluorescence for every hotspot region identified.

Figure 4.2 illustrates the importance of normalized readouts against initial ones for comparison

between hotspots detected from different cardiac myocytes observed in various experimental

conditions.

Figure 4.2: Hotspot calcium signal plots.A and E: screenshot of original input video frame with

three annotated hotspot locations. B and F: initial readouts of three hotspots from average

raw pixel fluorescence over time. C and G: corrected fluorescence of the three hotspots. D and

H: change of fluorescence measurements of the three hotspots

Figure 4.2(A) and Figure 4.2(E) represent images of two preparations of cardiac myocytes

where three hotspot locations have been highlighted in white ellipses. For the first 100 frames,

the initial readouts of the hotspots from the different cells are plotted in Figure 4.2(B) and

Figure 4.2(F) with the green curves representing the non-cellular region fluorescence, i.e. the

background fluorescence. The amplitudes of the initial readouts range from [30,200] for cells
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(A) whereas the amplitudes of the initial readouts for cells (E) range from [500, 3000]. The

variation of the ranges is due to differences in experimental conditions, i.e., camera image

resolution (8 bits for the first one, and 12 bits for the second).

Therefore, strong conclusions from the initial readouts of the frequency of calcium signals of

those two types of cells might be misleading. Figure 4.2(C) and Figure 4.2(G) represent the

corrected estimation of the fluorescence in the hotspots inside cells (A) and (E). But they

are still dependant to experimental conditions such as the camera bit-depth. The final Figure

4.2(D) and Figure 4.2(H) show the normalized calcium signals extracted from hotspots in Figure

4.2(A) and Figure 4.2(E). The range of the normalization procedure, being set between [1,2],

enables appropriate comparison to both cells’ frequency of calcium signals without experimental

conditions interferences according to the formula:

Fi =
fi

max(fi)
+ 1 (4.1)

where Fi is the normalized fluorescence value of the hotspot at time i scaled between [1,2],

fi the corrected fluorescence value of the hotspot at time i,

And max(fi) the maximum value of the corrected fluorescence values of the hotspot.

4.3 Photobleaching in Hotspot Calcium Signals

As stated in the introduction, measurements of calcium changes of concentration in cardiac

myocytes can be altered quantitatively by photobleaching loss. In following subsections 4.3.1,

4.3.2 and 4.3.3, we define what is meant by photobleaching in quantitative microscopy, and

then we present our investigation for its detection and correction in calcium signals recorded

in calcium hotspots of cardiac myocytes.

4.3.1 Introduction to Photobleaching

In FM, photobleaching is defined as the lost ability of fluorescent molecules to change contrast,

fluoresce or to re-emit light at an expected wavelength when exposed to some controlled excita-

tion light at the presence of binding targets [90]. In simple terms, there is photobleaching when
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fluorochromes or fluorophores that are supposed to change colour when exposed to light and at

the presence of target molecules, stop doing so because of the death of the fluorescent molecules

[90] [92]. It is a progressive phenomenon which shows fluorescent molecules fade the more they

are exposed to light [55]. As highlighted in Figure 4.3, the change of fluorescence measured

inside an active region of cardiomyocyte (plotted in blue) can exhibit a negative baseline shift

corresponding to an exponential decay (plotted in red). Ideally, its baseline should show a flat

horizontal baseline as plotted in amber if there was no photobleaching phenomenon affecting

the original signal plotted in blue.

Figure 4.3: Hotspot calcium signal affected by photobleaching.Blue line: original calcium signal

recorded for a hotspot through consecutive video frames for 13 seconds. Red line: photobleach-

ing illustration through a baseline shift of the original calcium signal comparable to a negative

exponential function. Amber line: theoretical flat baseline that should characterize the calcium

signal in red if no photobleaching decay.

Many factors contribute to the advent of photobleaching in FM. These can be the nature of dyes
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used, the chemical composition of the observed cells, the oxygen concentration inside them, the

amount of excitation light, and the camera settings [79].

Although these diverse factors make it difficult to design general mathematical models ap-

plicable to different imaging experiments, research have not stopped investigating automatic

solutions to deal with photobleaching in raw data measurements. Indeed, it is crucial in quan-

titative microscopy, to deal with the progressive decay of pixels values within images due to

photobleaching when the aim is to infer directly from their raw image data the measurements

of biological phenomenon such as intracellular calcium signals through FM [92].

To deal with the photobleaching loss that may alter calcium signal measurements in cardiac

myocytes analysed in this thesis, we adopted a machine learning approach based on negative

exponential models described here [90] [79]. These models based on mono and two exponential

functions have been successfully applied to various types of cells and image modalities but

not on biological signals observed in cardiac myocytes. In this chapter, we aim to investigate

the same mathematical hypothesis over intracellular calcium signals of PVC and NRVM cell

preparations obtained by FM that can be severely altered by photobleaching decay [68] [11]

when exposed to excitation light for some time.

4.3.2 Photobleaching Detection in Hotspot Calcium Signals

Ideally, when the imaging experiments are supposed to exhibit constant fluorescence spectrum

over time as described in [90] and [70] for histological slices of Bufo Arenarum Embryos stained

with E-cadherin indicator, photobleaching effects can be directly measured from changes of raw

pixels fluorescence in time-sequential images. Since the concentration of the protein E-cadherin

under investigation does not fluctuate over time, any decay of the fluorescence associated with

its expression can be considered as due to photobleaching loss. Figure 4.4 adapted from [90]

illustrates the computation of photobleaching curves from three slices of Bufo Arenarum Em-

bryos. Exponential curves (solid lines Fit-P1, Fit-P2, Fit-P3) are fitted directly to average pixel

values of E-Catherin regions (dot lines P1, P2, P3) to estimate photobleaching curves affecting

the images obtained by immunofluorescence.

However, in the case of cardiac myocytes stained with intracellular calcium indicators, the

change of raw pixel intensities in time-sequential images could reflect the intracellular calcium

changes of concentration rather than direct fluorescence decay in cellular preparations. In such
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Figure 4.4: Photobleaching curves computation in Histological slices.

biological experiments, the fluctuation in cell regions due to intermittent and transient calcium

signals with different amplitudes make it hard to distinguish normal fluorescence decays and

abnormal ones induced by photobleaching. Normal fluorescence decays may be observed in

cellular regions where calcium signals are gradually decreased. Abnormal fluorescence decays

may occur in calcium hotspot regions undergoing photobleaching phenomenon but difficult

to detect as inhibited by the cardiomyocytes’ calcium signalling behaviour. Cardiac myocytes

calcium signalling typically shows large transient increases of the calcium concentration, caused

by calcium release from the endoplasmic reticulum, which can have various spatio-temporal

patterns [68], resulting in fluorescence intensities spectrum ranging from dark to bright when

the cells are imaged.

To distinguish the fluorescence decay due to photobleaching in cellular regions from a real de-

crease in the intracellular calcium concentrations, we built a photobleaching detection strategy

based on calcium signals baseline estimation in such a way that the global trends of calcium

signals are captured in a window-averaging (the window size is 6.6% of video length) manner.

By doing so, our algorithm ignores the effect of fluorescence fluctuations inherent to calcium

signals intakes and releases in cells and focus on filtered versions of calcium signals that may

better represent the global flow of the original signals, i.e. the baseline or the resting calcium

concentration.

Our strategy assumes that if there is no photobleaching affecting calcium signals, cells should

roughly show positive-shifts or flat baselines when analysing their general signal trends. Oth-

erwise, negative shifts of the baseline of calcium signals would mean the occurrences of photo-

bleaching loss. To compute the sign of the baseline shift of hotspot calcium signals over time,

we adopted a machine learning approach using a non-linear least square regression algorithm
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that has been successfully implemented in [90]. Non-linear least square regression is a data

fitting solving problem that minimizes the sum of squares of auxiliary functions defined by a

user-defined objective function f according to the following formula [37]:

minimizexf(x) =
m∑
i=1

fi(x)2 ≡ 1

2
F (x)TF (x); (4.2)

Where f(x) is the objective function, fi(x) the auxiliary function, and F (x) the vector-valued

function. To read more about the algorithm mathematical concept please refer to [37] [81].

Here we used exponential models as the objective function.

Figure 4.5 illustrates our automated procedure for photobleaching detection in calcium hotspot

signals by baseline shift’ data fitting using nonlinear least square regression.

Figure 4.5: Photobleaching detection through baseline shift sign (x-axis representing time unit

in second, and y-axis representing calcium change normalized units). Blue lines represent traces

of hotspot calcium signals. Red lines correspond to their respective baseline shift estimation

by mono-exponential fitting using non-linear least square regression technique. Amber lines

represent smooth calcium signals obtained by window-averaging the original calcium signals.

Curves are plotted calcium intensities over times in second. The intensities of the calcium

signals have been normalized between 0 and 1 based on their maximum readouts.

Figure 4.5 describes original calcium signals for two hotspots (in solid blue lines) monitored in

two different cell types. Blue lines represent traces of hotspot calcium signals. Red lines corre-

spond to their respective baseline shift estimation by mono-exponential fitting using non-linear

Page 90 of 202



least square regression technique. Amber solid lines represent smooth calcium signals obtained

by window-averaging the original calcium signals. Curves are plotted calcium intensities over

times in second. The intensities of the calcium signals have been normalized between 0 and 1

based on their maximum readouts. The first hotspot in Figure 4.5(A) does not show any sign

of photobleaching artefact as it has a positive-shift baseline highlighted in the solid red line.

The baseline is estimated from the smooth signal of the original signal highlighted in amber by

using non-linear least square regression with the exponential model (Equation 4.2). The second

hotspot in Figure 4.5(B) in contrast demonstrates an evident photobleaching decay affecting

the overall original calcium signal depicted by a negative shift of the estimated baseline of the

signal (solid red line in Figure 4.5(B)).

The flowchart diagram in Figure 4.6 below describes our automated routine steps for pho-

tobleaching detection by non-linear least square regression using the exponential model and

photobleaching correction by baseline adjustment in hotspot calcium signals.

Figure 4.6: Flowchart diagram of photobleaching detection and correction in hotspot calcium

signals. The correction step highlighted in red is described in Section 4.3.3

.

Figure 4.6 shows four main steps for photobleaching detection and correction: window-averaging
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of hotspot signals, exponential curve fitting of hotspot calcium signals, baseline loss estima-

tion by photobleaching, and signal correction after photobleaching. The window-averaging of

hotspot signals consists of a trend estimation by mean filtering in one dimension where each

output signal amplitude contains the mean value in a window of k neighbourhood around the

corresponding amplitude in the input hotspot signal. The greater is the neighbourhood size,

the smoother the output signal becomes. The smaller is the neighbourhood size, the closest the

output signal will be to the initial input. We dynamically set the neighbourhood size to the

nearest odd number roughly corresponding to 6.6% of the input video length. For example, a

video of 301 frames will be smoothed within a window of 21 frames. By smoothing the origi-

nal calcium signal in a relatively large window (21 frames in average), we aim to capture the

baselines of calcium signals, i.e. their general trends with little interferences related to inherent

cellular calcium dynamics.

The exponential curve fitting of the smooth signals obtained after mean filtering corresponds

to a maximization procedure that looks randomly for the best exponential function parameters

to minimize the mean square error between observed data and predictions modelled (Equation

4.2). We investigated two exponential models (functions with one and two terms) and opted

for the best fit. For mono-exponential fitting, we searched for two parameters (a, b) whereas

for bi-exponential fitting, we searched for four parameters (a, b, c, d) according to the following

equations:

f1 = a ∗ exp(b ∗ x) (4.3)

f2 = a ∗ exp(b ∗ x) + c ∗ exp(d ∗ x) (4.4)

where f1 is a mono exponential function , f2, a bi-exponential function of time x modelling the

photobleaching loss of fluorescence inside hotspot signals. In mono-fitting, b < 0 would mean

a negative shift of the calcium signal baseline. In bi-exponential fitting, b < 0 and d < 0 would

mean a negative shift of the calcium signal baseline. Otherwise, the system assumes there is no

photobleaching effect on the input hotspot signal processed. The corresponding photobleaching

loss affecting the calcium signal is derived from the parameters of the exponential function found

using curve fitting of the smooth calcium signals.

Although we are dealing with different ROIs (Calcium signals) and different fluorescent indi-

cators (e.g. Oregon Green BAPTA and fluo-4) than the methods described in [90] and [37]
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which are static cells populations loaded with membrane stains, our proposed photobleaching

detection solution argues that it is possible to model the photobleaching loss affecting intracel-

lular Calcium traces of cardiac myocytes as a negative exponential function of time. Figure 4.7

illustrates the result of the two exponential fittings using Equation 4.3 and Equation 4.4. The

performance of our method for photobleaching detection based on exponential curve fitting of

the baseline shift of calcium signals is presented in Section 4.5.

Figure 4.7: Photobleaching detection by mono (A, C) and bi-exponential (B, D) fitting. The

blue lines represent original hotspot calcium signals measured over time in consecutive video

frames. The amber lines represent smooth versions of the hotspot calcium signals by using

window-averaging. The red lines represent the estimated photobleaching rate obtained by

fitting exponential curves to the smooth calcium signals.

As Figure 4.7 shows, models based on mono-exponential curves (red curves (A) and (C)) seem

more appropriate at capturing photobleaching losses described as negative exponential functions

of time rather than bi-exponential curves (red curves (B) and (D)). Bi-exponential curves are

more complex (4 parameters) and tend to overfit the observed data in smooth signals (red

curve B). In best cases, they exhibit similar shapes as mono-exponential curves (red curves (C)

and (D)). Moreover, the visual inspection demonstrates that the mono-exponential fits show

consistent exponential decays in the photobleaching rate, whereas the bi-exponential fits can be
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inconsistent. The bi-exponential fit in Figure 4.7(B) does not show a progressive decrease of the

fluorescence, i.e. that does not exhibit photobleaching effect. Therefore, we based the correction

of photobleaching in calcium hotspot signals on the mono-exponential fitting of baseline shifts.

Next section 4.3.3 presents our investigation for calcium signal recovery once photobleaching

loss has been infered by exponential curve fitting of signal baseline.

4.3.3 Photobleaching Correction in Hotspot Calcium Signals

If negative baseline shifts are detected from initial calcium signals instead of expected flat

baselines, we correct the corresponding photobleaching effects by adding to the original hotspot

signals the amplitude differences between the expected flat baseline and the estimated shifted

baseline obtained by exponential curve fitting, as shown in Figure 4.8.

If negative baseline shifts are detected from initial calcium signals instead of expected flat

baselines, the correct calcium signal is recovered by adding to the altered hotspot signals the

absolute amplitude differences between the expected flat baseline and the estimated shifted

baseline corresponding to the photobleaching loss and obtained by exponential curve fitting, as

shown in Figure 4.8.

Figure 4.8 shows the photobleaching effect and correction of the calcium signals in the two

types of cardiac myocytes used in this study: PVCs (A) and NRVMs (B). The two cell types

exhibit different levels of photobleaching effects plotted in amber lines (estimated baselines by

non-linear regression using a mono-exponential model over smooth signals). The blue lines (in

both cells’ plots) represent the original calcium signals showing or affected by photobleaching

loss. The purple lines (in both cells’ plots) represent the expected horizontal baselines of correct

calcium signals, i.e. the flat baselines of signals not affected by photobleaching. The red lines (in

both cells’ plots) correspond to the corrected calcium signals obtained by baseline adjustment.

The baseline adjustment is performed by taking the absolute differences between the expected

flat baseline (in purple) and the estimated shifted baseline (in amber) due to photobleaching.

Then the absolute differences are added to the initial calcium signals (in blue) according to the

following formula:

CorrectSignal = InitialSignal + abs(FlatBaseline− ShiftedBaseline) (4.5)
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Figure 4.8: Photobleaching correction by baseline adjustment in 2 calcium signals by mono-

exponential fitting. A: photobleaching detection and correction from a hotspot calcium signal

recorded 3 minute before carvedilol treatment on cells. carvedilol is a protein that inhibits

Calcium signalling in mitochondria. B: photobleaching detection and correction from a hotspot

signal recorded after 10 minutes after dantrolene treatment of cells. dantrolene is a molecule

used to treat some specific calcium channels disorders in cardiac cells. Blue lines: original

hotspot calcium signals recorded over time. Yellow lines: estimated photobleaching decay

derived from baseline shift of the original signals. Purple lines: theoretical flat baselines if the

original signals were not affected by photobleaching. Amber lines: recovered calcium signals

after photobleaching detection and correction of the original signals.

where CorrectSignal is the expected calcium hotspot signal without photobleaching effect;

FlatBaseline is the ideal expected horizontal baseline that should characterizes the InitialSignal;

and ShiftedBaseline is the abnormal baseline caused by photobleaching and estimated by ex-

ponential curve fitting.

4.4 Materials & Experimental Protocols

The experiments we performed in calcium hotspot signals processing correspond to the two

main tasks related to our handling of photobleaching in cardiac myocytes, i.e., photobleaching

detection by non-linear least square regression with exponential models and photobleaching

correction by baseline adjustment. To obtain time-series calcium signals of hotspots, we used
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the output of our automated routine for hotspots detection over PVC and NRVM calcium

imaging datasets described in Chapter 3.

To assess the performances of our automated algorithm for photobleaching detection in hotspot

calcium signals by curve fitting, we performed qualitative comparison and measured the good-

ness of the fits through two metrics: the mean square error of and the coefficient of determi-

nation. The mean square error (Equation (4.6)) describes the difference between the estimator

(the original baseline obtained by smoothing the original calcium signal) and the estimated

value (the predicted value output by exponential function models). The coefficient of deter-

mination (Equation (4.7)) is a percentage metric that tells how much the original baseline is

closed to the exponential function whose parameters have been estimated by non-linear least

square regression.

MSE =
1

n

n∑
i=1

(yi − fi)2; (4.6)

where MSE is the mean square error, n the number of observations, yi the estimator or baseline

dataset point at position i, and the fi the corresponding estimated value or baseline value by

exponential function at position i.

R2 = 1− SSres
SStot

; SSres =
∑
i

(yi − fi)2; SStot =
∑
i

(yi − y′); (4.7)

Where R2 is the coefficient of determination, SSres is the residual sum of squares, SStot is the

total sum of squares, yi is the observed data at position i, fi the predicted data, and y′ the

observed data mean.

To assess the performance of our automated routine for photobleaching correction in hotspot

calcium signals by baseline adjustment, we considered the proportion of hotspot calcium signals

correctly adjusted by detecting photobleaching in the corrected signals.

4.5 Results and Discussion

Mono-exponential and bi-exponential functions were fitted to sets of data derived from window-

averaging of calcium signals extracted from hotspot regions in consecutive video frames. Statis-

tical analysis of MSE (Figure 4.9) and R2 (Figure 4.10) of the two models shows that mono and
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bi-exponential models output similar performances. MSE of mono-exponential models varies

between [0.09013, 6.41796], whereas MSE of bi-exponential models varies between [0.03444,

6.41796]. R2 of the mono-exponential models varies between [0.014009, 0.999998], while R2 of

bi-exponential models have also got the same maximum similitude of 0.999998 but a smaller

minimum of 0.006958. So, all in one, based on the MSE and the R2, a conclusion about the

best fits cannot be drawn. Therefore, we visually compared the outputs of both models.

Figure 4.9: MSE report for mono and bi-exponential curve fitting of 80 hotspots. X-axis: index

of 80 hotspot signals analysed. Y-axis: mean square error units.

A visual analysis of the exponential curves shows that bi-exponential models tend to over-

fit baseline shift datasets. Bi-exponential curves can exhibit complex shapes where function

derivatives change signs at some points. In contrast, mono-exponential curves usually show

smooth shapes where function derivatives never change signs and remain negative.

For instance, in Figure 4.11, it is evident that mono and bi-exponential curves can capture

similar photobleaching decline of fluorescence (B) as well as different shapes (D). In the case

of D, the mono-exponential model represents the best fit for capturing photobleaching effect of

the original calcium signal in (C), because it shows a consistent decrease in fluorescence value,

the bi-exponential model describes a non-continuous decline of fluorescence values. Therefore,
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Figure 4.10: R2 report for mono and bi-exponential curve fitting of 80 hotspots. X-axis: index

of 80 hotspot signals analysed. Y-axis: coefficient of determination units.

bi-exponential fails to capture (in some cases) the properties of photobleaching decay in hotspot

calcium signals.

Based upon on the statistical and visual analysis of both models investigated, mono-exponential

curve models were employed in our automated routine for photobleaching detection. For pho-

tobleaching correction in calcium imaging recordings, we added to the original calcium signals,

the fluorescence differences between the expected flat baseline and the mono-exponential fitted

baseline, as shown in Figure 4.12.

Corrected calcium signals are considered truly adjusted when the average difference between

the flat expected baseline and the baseline of the signals is greater than a threshold T. The

threshold T corresponds to 1/100th of the average fluorescence decay observed in our hotspot

calcium datasets made of 80 elements. T = -0.0014. Figure 4.13 shows the average differences

between estimated baselines of corrected signals and expected baselines of 80 hotspots analysed.

Comparing the average differences of corrected signals with the threshold (as shown in Figure

4.13), we found 63 of the 80 hotspots calcium to be above the threshold, i.e. 78.75% of hotspots

have been correctly adjusted. Figure 4.14 illustrates a situation where our system has failed
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Figure 4.11: Exponential models comparison for photobleaching detection. Blue lines in A and

B represent original calcium signals extracted from different hotspots of the same cells. Red

lines in A, B, C and D correspond to smooth signals of original signals obtained by window-

averaging. Blue lines in B and D correspond to mono-exponential curve fit of the smooth

signals. Orange lines in B and D show bi-exponential curve fit of the smooth signals.

to adjust a photobleached signal to the accepted threshold we set up, whereas Figure 4.15

illustrates a successful detection and correction outcome.

4.6 Summary on Calcium Hotspot Signal Analysis

To sum up, the detection and correction of photobleaching effects in calcium imaging experi-

ments provide biologists with more precise measurements that can be used to compare different

cells signalling activity regardless of experimental conditions. The chapter shows that photo-

bleaching can be detected with two exponential curve fittings using nonlinear least square

regression in cardiac myocytes datasets. The two models show similar performances in terms

of MSE and R2. However, upon a visual investigation, calcium baseline shifts estimated by
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Figure 4.12: Photobleaching correction in hotspot calcium signal. Blue line: original hotspot

calcium signal recorded over time. Red line: recovered signal after photobleaching detection

and correction. Yellow line: estimated photobleaching decay derived from the baseline shift

of the original calcium signal. Purple line: theoretical flat baseline of the correct signal if no

photobleaching corruption

mono-exponential models exhibit the properties of photobleaching rates, i.e. the exponential

continuous decline of fluorescence over time. This can be expanded to other experiments that

observe changes in fluorescence over time.

The chapter also shows that the detected photobleaching declines in calcium signals can be

corrected by baseline adjustment of the original signals. The adjustment is made by adding

to the original signals the differences between the expected flat baselines and the estimated

baselines exhibiting photobleaching loss. With this correction, 78.75% of the detected hotspots

exhibiting photobleaching effects were adjusted correctly. For the remaining 21.25% of the

detected hotspots that the system failed to correct, the photobleaching detection and correction

could be applied to them multiple times until an acceptable threshold is reached.
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Figure 4.13: Average differences between expected and estimated baselines of corrected signals.

X-axis: index of 80 hotspot signals analysed. Y-axis: differences recorded. Amber line: aver-

age differences between the baseline of the recovered signals and the theoretical flat baseline

expected. Average differences below the blue line threshold means the system failure to correct

the detected photobleaching effect

Measuring calcium signals accurately helps to understand how cells function. Calcium signals

regulate a plethora of other processes inside cells, some of which can also be observed in

living cells using fluorescent indicators. By observing two processes in parallel, one can draw

important conclusions on how, for example, calcium signals affect the regulation of autophagy.

For many of these other cellular processes, it is critical to know how many cells are observed.

Detecting and counting the nuclei in FM images is the central theme of Chapter 5.

Page 101 of 202



Figure 4.14: Example of a corrected calcium signal whose average difference falls below the

threshold T. Blue line: original hotspot calcium signal recorded over time. Amber line: recov-

ered signal after photobleaching detection and correction. Yellow line: estimated baseline shift

of the recovered calcium signal. Purple line: theoretical expected flat baseline of the recovered

signal. The average difference -0.002997 between the estimated baseline of the recovered signal

and the flat expected baseline illustrates a non-successful photobleaching correction as it means

the baseline of the recovered signal is still below expectation
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Figure 4.15: Example of corrected calcium signal whose average difference is above the threshold

T. Blue line: original hotspot calcium signal recorded over time. Amber line: recovered signal

after photobleaching detection and correction. Yellow line: estimated baseline shift of the

recovered calcium signal. Purple line: theoretical expected flat baseline of the recovered signal.

The average difference 0.000656 between the corrected baseline and the flat baseline illustrates

a successful photobleaching correction as it means the baseline of the recovered signal is above

the flat baseline.
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Chapter 5

Investigating Standard R-CNN

Variants for Nuclei Detection in

Autophagy Cells

This chapter presents a theoretical and empirical analysis of state-of-the-art object detection

techniques based on R-CNN architecture for nuclear object proposal generation in FM images.

In R-CNN based solutions, object detection techniques rely on different strategies to identify

“proposal boxes” to be fed into a CNN classifier. The performances of such strategies were

largely demonstrated over natural images, but not yet rigorously done on biomedical images

at a similar scale. This chapter evaluates four popular strategies for proposal box generation

in R-CNN, namely, exhaustive search by sliding windows, edge box search, selective search,

and region proposal network (RPN). The four techniques are compared, and their strengths

and limitations are reported over NRVM images stained with a DNA blue fluorescent dye

called Hoechst. The evaluation reported in this chapter enabled us to make recommendations

for nuclei detection in biomedical images based on a customized R-CNN architecture using

adaptive region proposal generation. The contribution of this chapter is twofold:

1. Evaluating the strengths and limitations of four state-of-the-art object detection algo-

rithms for object proposal generation in biomedical images.

2. Arguing that a customized R-CNN based on adaptive region proposal box generation

using the data-driven technique may produce a great performance for nuclei detection in
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biomedical images.

The chapter begins by giving an overview of R-CNN in Section 5.1. Then in Section 5.2,

the materials and experimental protocols used to evaluate four state-of-the-art object proposal

techniques over biomedical images are described. In Section 5.3, the theoretical and empirical

evaluations of the four techniques are reported in terms of techniques description, experiment

results and discussion, and techniques comparison. The chapter ends by concluding remarks in

Section 5.4.

5.1 Introduction

R-CNN was first introduced in 2014 by Ross Girshick, a research scientist at Facebook AI

Research. Ross Girshick is also well-known for developing variants of R-CNN called Fast-R-

CNN, Faster R-CNN, [67], and Mask R-CNN [38] used respectively for object recognition, object

detection, and semantic segmentation. Those deep networks have been successfully tested on

computer vision benchmark databases made of natural images such as Pascal Visual Object

Class (VOC) [30], and COCO [53], but are yet to achieve the same success in biomedical image

analysis such as the detection of nuclei in cardiac myocytes obtained by FM.

The focus of this chapter is on the core landmark R-CNN architecture introduced in 2014 [35].

Since, challenges associated to our datasets of NRVM nuclei are ROI variability (in size, colour,

and texture), and illumination artefacts, we argue that R-CNN based strategy might enable

us to build a nuclei detector object that can generalize well across different ROIs and images

characteristics, providing that the proposal box generation of nuclei locations is efficient. In

fact, many researchers in the field of computer vision and object recognition believe that the

overall accuracy of supervised object detectors based on image region analysis depends on the

efficiency of the proposals initially computed by the systems [65]. Efficient object proposal

methods should be fast and achieve high recall or sensitivity i.e., True Positive Rate (TPR).

Thus, in this chapter we seek to mainly investigate multiple object detection techniques used as

core initial proposal generation techniques in R-CNN models for nuclei detection in biomedical

images.

Typical R-CNN architecture is interesting as it is simple and relies on three basic modules. First,

an initial region proposal module generates candidate object locations that may be present in
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input images. Then, a feature extraction module using CNN layers computes rich hierarchical

features from the candidate locations proposed initially. Finally, a classification module out-

puts the actual locations of objects after image patch classification using linear SVM and box

refinement using regression built upon the CNN feature maps as described in [35].

Despite the simplicity of R-CNN models, legitimate research questions tend to focus on the

computational cost of their deployment, the size of network training datasets, and the accuracy

of the proposal box generation technique used. To overcome the deployment burden, systems

built on GPU hardware solutions and using Faster R-CNN architectures have been proposed

as credible alternatives [67] because the proposal box generation and the final object detection

are performed simultaneously.

About the issues linked to network training datasets, it is tough to find in the literature a

“one size fits all cases ” answer because the amount of sufficient training data required to build

performing models can depend on multiple parameters such as the differences between object

classes to be identified, and the quality of the dataset someone may be using [27]. To overcome

these limitations associated with the lack of sufficient training data, data augmentation, and

transfer learning solutions have been proposed by many researchers [54]. For more information

about data augmentation and transfer learning in deep neural networks, please read [5].

About the problems related to the quality of candidate object locations generated by R-CNN

models, state-of-the-art object detection techniques are yet to be widely adapted and tested over

cellular domains images. That is why, in this chapter, we present a comprehensive investigation

of the performances and limitations of four non-exhaustive proposal box generation algorithms

over biomedical image data. These techniques include object proposal generation by exhaustive

search with or without objectness measure [1], selective search [87], edge boxes [97], and Region

Proposal Network (RPN) [67].

5.2 Materials & Experimental Protocols

In some object detection and recognition systems, the development of efficient ground truth

labelled datasets are crucial for assessing models’ performance and adjusting training protocols

[33]. That is the case for instance, in supervised learning, where it is based on the ground truth

that researchers refine algorithms and perform a sort of reality check of their output against
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what they know as the truth or the reality. Therefore, in this case study, we developed a ground

truth nuclei dataset under the supervision of 2 biologist experts. The dataset was made from

nuclei images of NRVM cells stained with blue Hoechst dye and used to investigate and evaluate

four different proposal box generation algorithms that were initially built, trained and/or tested

over natural images. Following subsections describe the labelling procedure we performed and

the experimental protocols we followed to compare the different techniques investigated, i.e.,

object proposal generation by exhaustive search with or without objectness measure, selective

search, edge boxes and RPN.

5.2.1 Ground Truth Dataset Materials

Since the techniques investigated output bounding boxes as the locations of object instances

inside testing images, we performed a bounding box labelling of nuclei images under supervision

of biologist experts to set the ground truth dataset. To this end, from 250 NRVM images, the

same number of locations of nuclei and background samples were manually indicated in terms of

[x, y, w, h] vectors. The vectors [x, y, w, h] represent respectively (x, y) geographical coordinates

of the upper-left corner of the bounding box containing an object class with width ’w’ and height

’h’. Only two object categories were set: “nuclei” and “background” as illustrated in Figure 5.1.

An arbitrary fixed size of [160x160] as width and height of sample patches was chosen to enable

feature vector length consistency of techniques based on feature extraction and to conform with

the size of the smallest window that can contain the most significant NRVM nucleus observed

within the dataset. In total, the labelled dataset consists of 250 labelled NRVM images made

of 2734 nuclei locations and 2734 background locations.

Figure 5.1 describes the labelling procedure adopted to generate the ground truth dataset used

to evaluate performances of state-of-the-art proposal box generation techniques. In Figure 5.1,

15 nuclei locations and 15 background locations have been respectively labelled into yellow

boxes or positive samples (top left illustration) and red boxes or negative samples (bottom left

illustrations) on an NRVM image. The right-hand side illustration of Figure 5.1 represents

individual crops of the nuclei and background regions labelled.

Visually, it can be noticed that the different object categories samples exhibit heterogeneous

illumination, texture, and contents sizes. Such variability in the positive and negative samples

of our labelled database comes as extra arguments in favour of generalized approach toward
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Figure 5.1: Labelling nuclei and background patches of NRVM images. A: an original NRVM

image with nuclei locations labelled by yellow bounding boxes and sample background patches

labelled by red bounding boxes. B: Cropping of the labelled patches in A that illustrates the

contrast, size, shape, and texture diversity in ROIs and background elements

nuclei detection in FM images instead of hand-crafted algorithms or traditional image pro-

cessing techniques that rely on prior knowledge of the datasets as discussed in Chapter 2. It

also illustrates the ROI variability challenges faced by algorithm designers for nuclei instance

counting in FM images. The next section of this chapter summarizes the experimental proto-

cols performed for investigating nuclei proposal box generation by exhaustive search, selective

search, edge boxes and RPN.

5.2.2 Experimental Protocols

To evaluate the performance of the four state-of-the-art object detection algorithms chosen

over the ground truth nuclei datasets described in Section 5.2.1, experiments of nuclei proposal

box generations were conducted for each technique. Then, the results output by the different

techniques were analysed in terms of TP proposal boxes generated, FP proposal boxes, boxes’

precision, and their ground truth coverage ratio (GTCR).
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Performance Metrics

We defined as TP boxes, proposal boxes which overlap at least 50% with ground truth nuclei

boxes according to a computed intersection over union metric (IoU). FP boxes in opposite

correspond to proposal that do not overlap at least 50% with any ground truth nuclei locations.

The IoU metric enables to measure the overlap ratio between proposal boxes and ground truth.

It is a standard metric used in object recognition systems for evaluating the bounding box

accuracy of object detection algorithms made popular by the well-known benchmark Pascal

VOC challenge [30]. The IoU is defined by the following formula:

IoU =
area(A ∩B)

area(A ∪B)
(5.1)

Where area(A ∩B), area of overlap between boxes A and B is defined by:

area(A ∩B) = width ∗ height and area(A ∪B), area of union of boxes A and B is defined by:

area(A ∪B) = area(A) + area(B)− area(A ∩B)

Such that width: the width of the area of overlap corresponds to the closest right corner to the

y-axis minus the farthest left corner to the y-axis of both rectangles A and B, and height: the

height of the area of overlap corresponds to the closest bottom corner to the x-axis minus the

farthest top corner to the x-axis of both bounding boxes A and B as illustrated in Figure 5.2.

Figure 5.2: Intersection over union metric illustration. Blue rectangles A and B illustrate boxes

locations of 2 objects A and B. yellow rectangles represent their area of overlap. Both blue

rectangles merged into one represent their area of union
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Therefore, based on the IoU overlapping criterion, total number of TP and FP boxes were

counted, and models’ precision was derived according to Equation 3.3. Equally, the GTCR of

the different models were measured like the following:

GTCR =
GTPB

TGTN
(5.2)

where GTPB = the number of Ground Truth nuclei covered by Proposal Boxes of an image,

and TGTN = the Total number of Ground Truth Nuclei of an image.

NB: At this stage, the performance of the different systems at predicting correct background

patches were not assessed as the aim for proposal box generation is to make sure that all true

nuclei locations are covered by the candidate proposals as much as possible prior to adequate

object detection by category-specific classifiers.

Set of Experiments

For each object detection technique investigated, specific set of experiments were conducted.

These experiments consist of proposal box generation by sliding window, random generation,

objectness measure, training classifiers based multiple image cues over splits of labelled datasets,

and fine-tuning algorithm parameters.

• Experiments of proposal generation by Objectness Measure

To investigate proposal box generation by objectness measure over biomedical images,

three experiments were conducted: (i) the generation by sliding window and evaluation

of fixed-size bounding boxes to predict nuclei locations using different strides in horizon-

tal and vertical directions such as (1,2,10,20,50,60,80,100,160); (ii) the generation and

evaluation of random fixed-size bounding boxes over biomedical images to predict nuclei

locations following a normal distribution and using 1000 proposals per image 10 times;

(iii) the generation by objectness measure and evaluation of 1000 fixed-bounding boxes to

predict nuclei locations after training a Bayesian framework over 30 nuclei images. These

experiments enabled us to access and compare the performance of blind searching of nu-

clei objects inside images by sliding window and random boxes versus a search guided by

objectness criterion. Results of the three experiments are reported in Section 5.3.2.
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• Experiments of proposal generation by Selective Search

To investigate the quality of object hypothesises based on a Selective Search using graph

segmentation and hierarchical grouping, five types of proposal box generation experiments

were conducted over NRVM nuclei images according to the five different colour channels

from which the technique is derived. These experiments enabled us to assess the perfor-

mance of the selective search technique and identify the best parameters applicable to

nuclei images. Results of the five experiments are reported in Section 5.3.2.

• Experiments of proposal generation by Edge boxes

To investigate the performance of Edge-boxes based strategy for nuclei proposal genera-

tion in biomedical images, we adapted Piotr Dollar’s codes [97] that describe a random

Forest framework for edge strength learning over natural images to build, train, and test

a similar framework applicable to nuclei datasets. Originally, the available codes were set

to work on 8-bit depth images. We adapted them to work on 16-bit images and generate

fixed-size nuclei locations based on 3 default parameters (α, βandminimumscore). The

ground truth dataset was split into 75% for training and 25% for testing. Performances

of a standard technique and a customized framework trained with biomedical datasets

were reported and in results Section 5.3.2.

• Experiments of proposal generation by RPN

To analyse the quality of candidate nuclei locations generated by RPN over biomedical

images, a Faster R-CNN nuclei detector based on Resnet50 CNN was implemented, fine-

tuned, and tested. For specification restriction on our computer system (Dell XPS, Intel

Core i7, RAM 16 GB, NVIDIA GPU GeForce GTX 1050 Ti, 8GB, OS windows 10), we

were able to train the deep artificial neural network (ANN) only on 40 images instead of

75% of 250 the labelled nuclei dataset described in Section 5.2.1. The main hyperparame-

ters of the network were the following: Stochastic Gradient Descent (SGD) as optimizer, a

step-size of 0.004, and 40 epochs in total. We used 2 anchors instead of 9 by default. The

restricted ground truth dataset was split into 75% for training and 25% for validation and

the remaining 210 nuclei images were used for testing. The training procedure enabled

us to optimize by Stochastic Gradient Descent (SGD), convolution filters of ResNet50,

RPN weights, and last fully connected layers weights for nuclei detection in pre-processed

nuclei NRVM images.

During the pre-processing stage, input biomedical images with size 1040 x 1932 were
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resized into (224 x 224 x 3) according to the ResNet 50 input layer requirement. Labels

of negative and positive samples of the Ground Truth dataset were updated accordingly. A

set of data augmentation techniques such as horizontal-flipping and Poisson noise adding

were also applied to increase the training size and quality.

Technically, performances reported in Section 5.3.2 describe a full object detector rather

than RPN alone. However, the analysis of all categories of bounding boxes output by the

system gives an insight on the power of CNN. Following Section 5.3 reports our theoretical

and experimental investigations of the four state-of-the-art techniques for nuclei proposal

generation over biomedical images.

5.3 Evaluating State-of-the-Art Algorithms for Region

Proposal Generation in R-CNN Variants

In the past decade, several researchers reported techniques for generating category-independent

region proposals based on various segmentation strategies and image cues. These techniques

include the sliding window paradigm that can be enhanced by an objectness measure in image

windows [1], the selective search based on graph segmentation [75] [29], constrain parametric

min-cut [16], multi-scale combinatorial grouping [3], edge boxes [97] and RPN [96]. These state-

of-the-art object recognition algorithms have recorded great performances over natural images

they have been trained and tested on such as the Pascal VOC datasets. Here, we present a

theoretical and empirical evaluation of those techniques over biomedical images for candidate

object detection.

5.3.1 Description of the 4 State-of-the-art Techniques

The four object detection techniques we investigated differ essentially in two ways: a) the

sampling procedure of candidate object locations and b) the probability measure of bounding

boxes to contain objects. For some of them, the sampling procedure is carried exhaustively,

and the scoring probability requires learning a classifier based on multiple features (objectness

measure, and RPN), whereas, for others, the sampling procedure is more selective, and the

scoring probability does not always involve any leaning function (selective search and edge

boxes). The following subsections detail the sampling procedure and the probability measure
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of bounding boxes generated by objectness measure, selective search, edge boxes and RPN.

Region Proposal Generation by Objectness Measure

The objectness criterion technique is built on the assumption that anything inside an image

that stands out from its surrounding with a well-defined closed boundary, and a different ap-

pearance is an object [1] [2]. It is an exhaustive search, where the goal is to capture all possible

object locations that are opposed to background elements like grass and sands. To output

object hypotheses, the objectness measure technique randomly generates a maximum number

of 100 000 bounding boxes at different scales and locations according to an objectness heat

map computed all over images. The sampling procedure follows a random normal distribution

in image regions showing high scoring probabilities. A non-maximum suppression (NMS) filter

can be applied to control the sampling ratio based on proposal overlaps and objectness score.

The objectness heat map i.e. the scoring probability of candidate object locations is performed

by image patch classification through a trained Bayesian framework that combines four im-

ages cues: multi-scale saliency (MS), colour contrast (CC), edge density (ED) and superpixels

straddling (SS).

The MS descriptor is derived from Fourier Transform spectrum of images and enables to capture

image regions with a specific appearance. The CC descriptor enables to encode the dissimilarity

characteristic of image regions with their surrounding based on the Chi-square distance between

their Lab histograms. The ED descriptor allows measuring the closed boundary characteristic

of object bounding boxes based on Canny edge detector. The SS descriptor plays the same role

as the ED descriptor. Still, it relies on superpixel segmentation, i.e. the segmentation of image

contents into small regions of similar colour or texture. For more details about these four image

cues, please read [2].

Region Proposal Generation by Selective Search

As the objectness criterion, the selective search for guessing object locations in images, is data-

driven and uses images cues to guide the sampling procedure, i.e. to identify images patches

that are more likely to contain objects [87]. However, in contrast to the objectness measure

that uses a trainable Bayesian framework, the selective search adopts an unsupervised learning

approach that combines graph segmentation, k-mean clustering, and region growing or merging
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techniques. When the selective search algorithm is run, image contents are first subdivided into

small sets through graph segmentation; then the multiple regions are merged into bigger sets to

form full object parts thanks to multiple similarities functions and random seed points selection.

In details, authors first apply Felzenszwalb and Huttenlocher segmentation algorithm [94] to

generate initial object locations by graph representation of pixel points, then perform hierarchi-

cal grouping of candidate object locations based on four similarity functions computed at five

different colour channels: Hue Saturation Value (HSV), Intensity or greyscale image, Lab, RG

channels of normalized RGB plus Intensity (rgI), and Red Green Blue standard colour (RGB).

The scoring probabilities of object hypotheses are denoted from their order of generation from

the merging strategy. The four similarity functions consist of four different measures in image

patches such as colour, texture, gap filling and size. The colour similarity derives from the

one-dimensional histogram of each colour channel. The texture similarity is computed from the

histograms of Gaussian derivatives of the different channels. The filling gap similarity enables

to measure how close two regions can be based on their sizes and their bounding boxes.

All in one, those features associated to different similarity functions and random seed points

are meant to enable diversification in the search for objects that will work well in different

lighting conditions and image modalities. To know more about theses image cues implemented

in selective search for object detection, please read [87]. In the next section of this chapter, we

shall describe a powerful data-driven technique for proposal box generation in R-CNN that is

only based on a single image feature: object edges.

Region Proposal Generation by Edges Detection

As the selective approach, the edge-based technique for generating candidate object locations in

images aims to narrow down the sampling procedure based on image structure. However, rather

than segmenting images using a graph representation of pixel points prior to a hierarchical

grouping of the different segments, authors of Edge Boxes perform Sobel-edge deconvolution

over images and generate initial object locations only in places where strong object edges or

contours have been denoted and enhanced. The object contours are enhanced by structured

learning [24], and the candidate object locations are computed by sliding window at multiple

scales and orientations. The objectness ranking of the candidate locations is built on the

assumption that the number of contours that are fully contained in bounding boxes strongly
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determines their probability to contain objects [97].

User input parameters associated with the edge box-based algorithm are the following: alpha

(α), beta (β) and minimum score (ms) parameters. α is a percentage that controls the density

of window samples. The higher is α, and the bigger is the number of proposal boxes generated.

β represents a threshold value that controls the Non-Maximum Suppression filtering (NMS)

of boxes that overlap, i.e. the parameter that greedily reduces the sampling density. The last

parameter ms is also a percentage value that determines the minimum score of output boxes to

contain an object. The default parameters (α = 0.65, β = 0.75,ms = 0.1) mean for a window

density of 65%, all boxes with minimum scores and that overlap 75% are disregarded, whereas

each output box should have at least an object score of 10%.

All in one, though the Edge boxes technique is a non-exhaustive strategy solely based on a

single low-level image feature, it has achieved high performances over natural images in Pascal

VOC challenges. The next section of this chapter presents RPN, another state-of-the-art object

detection technique that relies on a richer and more complex feature extraction model called

CNN feature maps for region proposal generation in R-CNN variants.

Region Proposal Generation by RPN

In contrast to the first three techniques presented above that can be detached from R-CNN

variants, RPN is a joint module that is hardly detachable from the R-CNN models it is built-in.

As its name suggests, RPN is a neural network designed for computing fast and accurate object

locations from complex feature maps through multiple convolutional filters. Here the sampling

procedure does not perform any edge detection, nor graph segmentation and objectness measure

through multiple image cues over input images. In contrast, the sampling is more exhaustive

and essentially relies on a principle called anchor boxes. Anchor boxes are nine rectangular

locations that are generated around central points at various scale and orientations. In RPN,

candidate object locations are generated in the following manner:

• Compute anchor boxes by sliding multiple windows around pixel points at a stride of 16.

By default, for each anchor point, nine different boxes are computed according to three

scale values [8, 16, 32] and three aspect ratios [0.5, 1, 2].

• Classify each anchor box into foreground or background and learn the offsets for the

Page 115 of 202



foreground boxes to be adjusted. The adjustment is then achieved by cross-entropy

and smooth L1 loss functions through respective classification and regression layers. The

location and score differences between ground truth boxes and anchor boxes are the inputs

used to train the model. To learn more about the whole RPN training and deployment

process, please read [67].

To sum up, region proposals generation by RPN combines the strength of an exhaustive search

through multiple anchor boxes to the power of deep neural network through box classification

and regression of convolutional features. In the following sections, we report and discuss the

performances of the four state-of-the-art object detection techniques for nuclei proposal box

generation over biomedical datasets described above.

5.3.2 Experimental Results on Biomedical Datasets

The four state-of-the-art techniques for region proposal generation have different sampling pro-

cedures and scoring probabilities, i.e. they follow different techniques to identify and rank object

of interest in images as explained above. This section systemically evaluates their performances

over biomedical images datasets.

Performances of Region Proposal Generation by Objectness Measure

As explained in Section 5.3.1, the objectness measure assumes that objects can appear every-

where inside images at different scales and orientation according to four essential cues that

are multi-scale saliency, colour contrast, edge density and superpixels straddling. Therefore, to

assess the quality of candidate nuclei locations generated by objectness measure over our nuclei

datasets, we first measured the performances of a sliding window search with different strides

at predicting nuclei locations in biomedical images, and those of a random search following a

normal distribution. Then we measured the performances of a customized objectness measure

search trained and tested over splits of our nuclei datasets for comparison.

For these first two experiments, we recorded the following performances: a) The sliding window

strategy generates in average 155238 boxes per image with an average precision of 4.12% and an

average GTCR of 85.81% at multiple strides values of (1,2,10,20,50,60,80,100,160) as reported in

Table 5.1 and Figure 5.3. b) The analysis of a fixed number of 1000 of proposal boxes randomly
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generated by normal distribution shows an average precision of 5.88% and an average GTCR

of 3.33% per image as reported in Figure 5.4.

Stride Windows Run-time TP FP Precision% GTCR%

1 1 087 824 0.08138 47899 1 039 925 4.40 100

2 274 881 0.032032 12099 255 782 4.40 100

10 13 820 0.016686 597 13 223 4.32 100

20 5 574 0.016193 234 5 340 4.20 100

50 3 234 0.016125 129 3 105 3.99 99.73

60 3 099 0.016201 123 2 976 3.97 98.15

80 2 976 0.016289 118 2 858 3.97 86.47

100 2 901 0.016102 114 2 787 3.93 63.59

160 2 832 0.016137 111 2721 3.92 24.36

Table 5.1: Performances of nuclei proposal box generation by sliding window.

Each row of Table 5.3.2 illustrates respectively the step value taken in both horizontally and

vertically to generate [160 x 160] fix-candidate locations, the number of proposals generated per

image, the runtime of the algorithm, the number of true positive predictions (TP), the number

of false-positive predictions (FP), the precision and the GTCR of the boxes in percentage.

Figure 5.3 illustrates the performance of the sliding window strategy at predicting nuclei lo-

cations in biomedical images. The bar histogram shows in x-axis coordinates, the number of

proposal boxes generated per stride per image, and in y-axis coordinates, the average precision

recorded over 250 nuclei images for each stride value. It can be noticed the total number of

proposal boxes generated varies between 1 087 824 to 2832 while the precision of the boxes

stagnates between 4.4% to 3.9%. The other illustrations represent respectively a ground nuclei

image with 16 nuclei labelled in yellow boxes, then 13820 proposal boxes generated by sliding

windows in a step of [10 x 10] and labelled in black boxes, and their comparison with the ground

truth which gives 840 TP, 12980 FP and 6% of precision.

Figure 5.4 illustrates the performance of the random search strategy at predicting nuclei lo-

cations in biomedical images. The bar histogram shows in x-axis coordinates, the number of

proposal boxes generated per stride per image, and in y-axis coordinates, the average precision

recorded over 250 nuclei images for each stride value. It can be noticed that for a fixed number

of 1000 of random proposals generated by normal distribution ten times; the average precision
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Figure 5.3: Performances of sliding window search for nuclei locations. A: overall precision of

proposal boxes generated by sliding fixed-size windows over 250 NRVM images using various

strides. Number of proposals generated are below each bar of the histogram. B: an original

input NRVM image with 16 ground truth nuclei annotated under experts’ guidance. C: 13820

proposal boxes generated by sliding fixed-size windows at step [10 x 10] over the input image.

D: Comparison of the proposals with the ground truth enables performance measure in terms

of TP, and FP boxes, and precision.

of the boxes stagnates between 5.75% to 6%. The other illustrations represent respectively a

ground nuclei image with 16 nuclei labelled in yellow boxes, then 1000 proposal boxes randomly

generated by a normal distribution and labelled in black boxes, and their comparison with the

ground truth which gives 75 TP, 925 FP and 7.5% of precision.

After training an objectness model described in [1] and testing over splits of our biomedical

datasets, we recorded an average precision of 1.5% and a GTCR of 73.4% when generating a

fixed number of 1000 proposal boxes per image as reported in Figure 5.5. When generating an

increased fix number of 2000 and 3000 of proposal boxes per image respectively, the average

precision dropped down to 0.9% and 0.6% while the GTCR remains at 84.98%. For memory

restriction, the dataset was split into two separate sets: 30 images allocated to training and

220 images allocated to testing as described in the experimental protocols in Section 5.2.
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Figure 5.4: Performances of random window search for nuclei locations. A: overall precision of

1000 fixed-size proposal boxes randomly generated by normal distribution over 250 NRVM im-

ages using various seeds. Number of proposals generated are below each bar of the histogram.

B: an original input NRVM image with 16 ground truth nuclei annotated under experts’ guid-

ance. C: 1000 random proposal boxes generated by normal distribution at seed 1 over the input

image. D: Comparison of the proposals with the ground truth enables performance measure in

terms of TP, and FP boxes, and precision.

Figure 5.5 illustrates the performance of the objectness measure search strategy at predicting

nuclei locations in biomedical images. The lines chart shows in x-axis coordinates, the indexes

of the 220 images used to test the system, and in y-axis coordinates the average precision

and GTCR of the proposal boxes recorded for each image. It can be noticed that for a fixed

number of 1000 of candidate locations generated by objectness measure; the average precision

of the boxes is less than 2% while the GTCR is set to 73.4%. The other illustrations represent

respectively a ground nuclei image with 16 nuclei labelled in yellow boxes, then 1000 proposal

boxes with various sizes generated by objectness measure and labelled in black boxes, and their

comparison with the ground truth which gives 15 TP, 985 FP and 1.5% of precision.
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Figure 5.5: Performances of objectness search for nuclei locations. A: overall precision (blue

line) and GTCR (amber line) of 1000 proposal boxes generated by Objectness measure tested

over 220 NRVM images and trained over 30 NRVM images. B: an original input NRVM

image with 16 ground truth nuclei annotated under experts’ guidance. C: 1000 proposal boxes

generated by Objectness Measure over the input image. D: Comparison of the proposals with

the ground truth enables performance measure in terms of TP, FP boxes, GTCR, and precision

Performances of Region Proposal Generation by Selective Search

As stated in Section experimental protocols, we performed five different types of proposal

generation experiments to analyse the quality of object hypothesises based on selective search

according to the five different colour channels-based merging techniques used by the method

(HSV, RGI, H, Intensity, Lab). Since the selective search algorithm requires two user-input

parameters: the minimum segment (k) size and the graph threshold (σ), a grid-search was

later performed to fine-tune those parameters according to the best combination of similarity

functions and colour type applicable identified earlier.

In that sense, we found out that the best combination of the similarity functions and colour

type parameters applicable to our NVRM dataset consists of four similarity functions (two
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textures, and two-size variant criteria) and RGI colour type with fine-tune parameters k = 80

and σ = 0.6. With those parameters, the selective search-based technique achieved a maximum

average precision of 4.25% and a GTCR of 60.44% as reported in Figure 5.6.

Figure 5.6: Precision of Selective Search for nuclei locations. A: overall precision of fixed-size

proposal boxes generated by Selective Search over 250 NRVM images using various colours

channels. Number of proposals generated are below each bar of the histogram. B: an original

input NRVM image with 16 ground truth nuclei annotated under experts’ guidance. C: 91

proposal boxes generated by Selective Search over the input image. D: Comparison of the

proposals with the ground truth enables performance measure in terms of TP, and FP boxes,

and precision.

Figure 5.6 illustrates the performance of the selective search strategy at predicting nuclei lo-

cations in biomedical images. The bar chart shows in x-axis coordinates, the average number

of proposal boxes generated per colour type and using four similarity functions with the fine-

tuned parameters k = 80, σ = 0.6, and in y-axis coordinates the average precision recorded for

each colour type. It can be noticed that for an average number of 149 of candidate locations

generated by Selective Search over biomedical images; RGI colour-based segmentation strategy

outperforms with an average precision of 4.25%. The other illustrations of Figure 5.6 represent
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respectively a ground nuclei image with 16 nuclei labelled in yellow boxes, then 91 proposal

boxes with various sizes generated by Selective Search and labelled in black boxes, and their

comparison with the ground truth which gives 13 TP, 78 FP and 14.28% of precision.

Performances of Region Proposal Generation by Edge Boxes

As reported in the experimental protocols Section, two types of experiments for nuclei proposal

generation were performed on biomedical images to assess performances of Edge boxes at finding

nuclei locations. In the first type of experiment, a standard MATLAB implementation of edge

boxes was used to generate nuclei proposal boxes from 250 images stained with DNA marker.

The average precision recorded was equalled 15.4% for around 21 proposals per image with a

GTCR of 45,36% on the entire dataset as illustrated in Figure 5.7.

In the second type of experiment, a customized fast edge detection technique using structured

forests [22] was used to generate nuclei proposals on splits of biomedical images stained with

DNA marker. The average precision recorded for this second experiment increased to 30.61%

with a GTCR of 95.43% as illustrated in Figure 5.8. However, the average number of proposal

boxes per image is drastically high (8364), i.e. too big for efficient object detection.

Figure 5.7: Performances of standard edge box algorithm for nuclei proposal generation. Av-

erage precision = 15.39%.
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Figure 5.8: Precision of customized edge box algorithm for nuclei proposal generation. GT

stands for Ground Truth nuclei; BG for proposal boxes generated, BGI for average BG per

image, TP for True Positive, FP for False Positive, P for precision, and GTCR for Ground

Truth Coverage Ratio.

Performances of Region Proposal Generation by RPN

To assess the performance of RPN at finding nuclei proposals in biomedical images stained with

DNA marker, a faster R-CNN model was built and tested over splits of our labelled dataset like

described in Section 5.2. Early training of 10 epochs achieved 30% of average precision. Longer

training sessions made of 40 epochs enabled 66% of average precision on a reduced validation

dataset made of 30 images, and 57% of precision over 220 unseen test images. Next Section

5.3.3 reports our discussions on the findings denoted from the experimental results.

5.3.3 Discussion of the Techniques Performances

As expected, the results of the different experiments of nuclei proposal box generation by

exhaustive search or guided search (sliding windows, random boxes, objectness measure, edge

boxes, selective, anchors and CNN boxes) enabled us to draw the five following observations

and conclusions regarding to the four state-of-the-art techniques investigated.

a) The sliding window search for biomedical objects in every location is secure but not

realistic because of the number of image regions to check. The sliding window search is

secure because it assumes that objects can appear everywhere in any size inside images.

However, if images are big and the stepping size is not guided, looking at every potential
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location inside images may quickly become an impossible task due to the number of

locations to visit. In our case study, experiments with different strides values of 1, 2,

10, and 20 reported in Section 5.3.2 show that millions of proposal locations of fix-size

boxes can be generated with similar GTCR (100%) and precision (4%) as thousands of

locations. These observations mean a waste of energy or computing resources as a system

built on such a sliding window approach will imply checking a huge number of false

positive locations, i.e. 96% of proposal generated. Moreover, experiments of generating

1000 fix-size windows by random normal distribution demonstrate to be more precise than

an exhaustive search by sliding windows (5.88% versus 4.12%) despite a smaller average

GTCR of 3.33% versus 85.81%. These poor results of an exhaustive search by sliding

windows or randomness argue for a sampling rate guided by image contents such as the

objectness measure strategy.

b) The Objectness Measure strategy for finding nuclei proposals in biomedical images reduces

the sampling rate but shows damaging low precision in overall to build an efficient object

detector. The experiments reported in Section 5.3.2 demonstrate that with only 1000

proposals of various sizes, the Objectness Measure strategy achieves a GTCR of 73.4%.

However, drawbacks remain at the precision of the proposals. The recorded precision of

1.5% means that only 15 locations are genuine over 1000 proposals. A proportion that

keeps getting smaller as the sampling rate increases (0.9% of precision for 2000 proposals).

These promising results led us to investigate another object detection technique based on

image contents such as the Selective Search.

c) The generation of candidate nuclei locations by Selective Search using graph segmentation

and hierarchical grouping exhibits a smaller number of proposals (149 in average) with

more precision (4.25%) but lower GTCR (60.44%) as reported in Section 5.3.2. Since

our testing datasets was encoded in greyscale format, we argue that the Selective Search

technique may under-perform on them because the technique relies on multiple colour

channels to compute similarity functions and generate object proposals. These contrasting

results argue in favour of a further investigation of object detection technique based on

image structure such as edge detection using structured forests.

d) The generation of nuclei hypotheses by Edge boxes using structured Forests shows the

most promising results over biomedical datasets with an average precision of 30.61% and

a GTCR of 95.43% as reported in Section 5.3.2. However, the huge number of proposals
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generated per test image (8364) jeopardizes the usage of the technique into a R-CNN

model to build an object detector taking as input the proposal boxes generated. This

huge number of proposals boxes generated by the Edge Boxes approach is essentially due

to overlapping tiles, a sampling ratio that might be controlled by fine-tuning user-input

parameters α and β of the algorithm. α and β stand respectively for window density

parameter and overlap threshold value.

e) CNN filters are powerful at capturing biomedical images features. The experiments of

nuclei detection by Faster-RCNN model based on Resnet show that, despite a relatively

small training dataset (28 images), CNNs enable to detect cells in 210 unseen images

with a precision of 57% as reported in Section 5.3.2. A close analysis of the behaviour of

the deep neural network detector on some problematic images showing weak boundary

cells, various cellular shapes and heterogeneous background elements shows that CNNs

generalize well across multiple image contents variability as illustrated in Figure 5.9(A)

and Figure 5.9(C). The number of proposal boxes output by RPN is very low on average

as illustrated in Figure 5.9(B), where for a single nuclei location, the system effectively

proposes one single true location.

5.3.4 Techniques Comparison

Based on the results of the testing of the different proposal box generation techniques over

splits of our nuclei ground truth datasets, the following qualitative comparison can be drawn

as illustrated in Table 5.2.

Although the techniques have been tested on different splits of our dataset due mainly to

computer system restriction, Table 5.2 demonstrates that Edge Boxes based strategy for finding

nuclei proposals in biomedical images is the outstanding performer because it achieved the

highest average GTCR (30.61%) and Precision (95.43%). This technique enables to narrow

down the sampling rate of proposal boxes according to object contours learned by random

Forest classification of image pixel points. Providing that images exhibit strong edges that

can be easily detected, the system will show some limitations for images showing the extreme

weak boundary and vague-contour cells like illustrated in Figure 5.10. Another drawback of

the Edge Boxes approach is related to the huge number of proposals generated per biomedical

images. Here, the average number of proposal boxes is equalled to 8364, which makes it hard
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Figure 5.9: Faster R-CNN performance over nuclei images. A: Faster R-CNN ability at de-

tecting weak boundary nuclei. Faster R-CNN ability at predicting the unique location of a

single nucleus inside an image. C: Faster-CNN ability at ignoring misleading background with

heterogeneous illumination and noise. D: predictions made by the system over 4-nuclei image.

E: System failure at predicting the location of a nucleus with vague contour. F: System failure

at ignoring misleading background patches.

to implement efficient object detection framework.

Figure 5.10 shows the output of the edge box method for nuclei proposal generation over two

cells images. The first column of the two rows of the Figure represents the input NRVM images

with nuclei ground truth locations highlighted in yellow boxes. The second column represents

the initial edges maps output by the edge-based method for the generation of nuclei object

proposals. For visual comparison ground, the yellow boxes are overlaid to show the location

of the nuclei ground truth. The final column represents the output of the edge-based proposal

method highlighted in red boxes against the yellow boxes ground truth nuclei. The proposal

boxes derived from the edge strength obtained by Sobel filtering and classified by random

forest. Variable performances are observed, as shown in the last column. In the first image the

system identified only 6 nuclei over 16 ground truth through 60 boxes over a total number of

165 proposals. In the second image, the system fails to identify any single nuclei location as it

did not generate proposal boxes. Visually, it is evident that the edge-based method performs
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Techniques Proposals Window size Precision % GTCR% Datasets

Sliding Windows 155238 [160 x160] 4.12 85.81 (0, 250)

Random Boxes 274881 [160 x 160] 5.88 3.33 (0, 250)

Objectness Measure 1000 variable 1.5 73.4 (30, 220)

Selective Search 149 variable 4.25 60.44 (0, 250)

Edge Boxes 8364 variable 30.61 95.43 (175, 75)

RPN/ Faster R-CNN 69 variable 57 57 (30, 220)

Table 5.2: Comparison of different techniques for nuclei proposal generation in biomedical

images. Column Techniques: proposal generation techniques. Column Proposals: average

number of proposals generated per testing image. Column Window size: size proposal boxes

generated. Column Precision: precision of the boxes generated. Column GTCR: GTCR of

the boxes generated. Column Datasets: pair of numbers telling the number of images used

respectively for training and testing. For instance (0,250) means no training occurs as the

technique is not trainable, and the system has been tested over the entire dataset made of 250

labelled images.

better over good contrast nuclei images (first-row output) than low-contrast one (second-row

output). But overall, the method is not ideal because all the ground truth should be covered

even if with a high number of proposal boxes.

The second-best proposal generation technique investigated according to Table 5.2 is the Ob-

jectness Measure approach which achieves an average GTCR of 73.4% against 1.5% of Precision.

In contrast to the Edge Boxes that uses a single image feature, the Objectness Measure derives

from multiple image cues (saliency, colour contrast, edge density and superpixel straddling)

combined in a Bayesian Framework to find object hypotheses. As illustrated in Figure 5.11,

though the Objectness Measure can exhibit great GTCR (100% in Figure 5.11(C)) over biomed-

ical images, the average precision is still very low, i.e. the proportion of FP too high (984 FP

over 1000 proposals Figure 5.11(B-C)).

Figure 5.11 illustrates both the power and weakness of Objectness Measure at searching for

nuclei locations in biomedical images stained with DNA-marker. The illustration labelled (A)

represents a FM image that shows 6 nuclei to be identified. The illustration labelled (B) repre-

sents 1000 proposal boxes generated by Objectness Measure at different scales and orientations

to predict the 6 Ground Truth nuclei shown in (A). The illustration in (C) represents the correct
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Figure 5.10: Standard edge box algorithm tested on NRVM nuclei images. yellow boxes rep-

resent ground truth location of nuclei set manually by biologist experts. Red boxes represent

true positive nuclei locations generated by the system

predictions made by the Objectness Measure and the resulting Precision (1.6%) and GTCR

(100%) recorded. Visually, it can be noticed despite 16 proposals that overlap with the six

ground truth nuclei; there are still 984 proposals that can be classified as FP. This proportion

of FP ratio is massively disadvantageous to Objectness Measure approaches when someone aims

to build R-CNN object detector upon their outputs.

The remaining state-of-the-art object detection techniques investigated such as the Selective

Search and RPN come respectively at the third and fourth position of Table 5.2. The former is a

data-driven approach that combines the power of exhaustive search and the precision of image

segmentation using graph representation and hierarchical grouping of image segments. The

latter is also data-driven but relies essentially on anchor boxes and deep convolutional feature

vectors to regress and classify image content into the foreground and background elements.

Closed analysis of the Faster-RCNN model developed to assess RPN behaviour shows that

CNN generalizes well across challenging image contexts. Indeed, despite hardware limitations

to train the a ResNet 50 based Faster-RCNN, our system enabled to predict nuclei locations

in images showing vague contour and weak boundary cells.
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Figure 5.11: Objectness measure power and weakness at finding all nuclei locations. A: Original

input NRVM image with reference nuclei locations highlighted by colourful rectangles. B: 1000

proposal locations computed by Objectness Measure to predict the true nuclei locations of A. C:

Comparison of the proposals with the Ground returns 100% of GTCR versus 1.6% of precision.

Thus, knowing the fact that data-driven techniques such as Edge Boxes and Objectness Mea-

sure can achieve promising results, we made the following postulate: a customized R-CNN

framework using an image-content based region proposal generation technique might be an

efficient solution for automated detection of cell/nuclei in biomedical images.

5.4 Summary

Our investigations about various proposal box generation techniques used in R-CNN architec-

ture for object detection in biomedical images show that the sliding window and the random

techniques are time-consuming, exhaustive and in practice not realistic to implement because

of the huge number of potential locations to be examined in high-resolution images. Object-

ness Measure, Selective search and Edge box-based algorithms, which were proposed as better

alternatives to the sliding windows had limitations in terms of the number of FP ratio of nuclei

proposals and the sampling rate when applied on biomedical images. For Objectness measure,

the average precision is very low (1.5%). For selective search, the GTCR and the precision

are both low (4.25% versus 60.44%). For Edge Boxes, the sampling rate per image is too high

(8364 proposals in average) despite great GTCR of 95.44%. The analysis of RPN through

Faster-RCNN model enabled us to measure the ability of CNN at capturing fine details of nu-

clei elements in challenging image context such as background heterogeneity, and illumination

artefacts.
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All in one, having in mind the fact that edge box strategy based on edge detection and ran-

dom forest classification of edge strength can generate promising candidate locations for nuclei

detection (30.61% of average precision), and the fact that CNN detectors are more precise in

detecting nuclei objects in various conditions (66%), we formulated the hypothesis that a data-

driven strategy for nuclei proposal generation combined with a deep classifier should enable us

to achieve better performances for nuclei location proposals in FM images.

In order terms, a customized variant of R-CNN based on candidate bounding box generation

algorithm by supervised learning should enable us to reduce the number of false-positive, i.e.

the proportion of sampling windows where to search for nuclei objects while a deep classifier will

ultimately detect the accurate nuclei locations. Custom R-CNN technique based on adaptive

nuclei region proposal generation for nuclei detection in NRVM images obtained by FM is the

main theme of Chapter 6.
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Chapter 6

Customized R-CNN for Nuclei

Detection based on Adaptive Region

Proposal Generation

The main conclusion from the theoretical and empirical analysis reported in the previous chapter

is that the variants of R-CNN based on proposal box generation algorithms tested on natural

images are limited and inadequate to detect nuclei in biomedical images. Hence, one can argue

for the need to take a step forward and investigate ways in which candidate nuclei locations

could be generated and enhanced.

This chapter proposes a new scheme for adaptive region proposal generation that would enhance

the accuracy of identifying candidate locations and reduce the number of sampling windows

prior to ultimate image patch classification by CNN. The proposed scheme works in three steps.

First, initial nuclei locations are generated by local adaptive thresholding, followed by a filtrat-

ing step using linear Support Vectors Machines (SVM) fusion model. The SVM model is built

upon four different features: Histograms of Oriented Gradients (HOG), Local Binary Patterns

(LBP), Grey-Level Co-occurrence Matrix (GLCM) and Phase Congruency (PC). Finally, the

filtered proposal boxes are classified into nuclei and background elements through a deep learn-

ing approach. This chapter extensively reports and discusses the experimental results about

the three steps of the proposed scheme. Thus, its contributions are twofold:

1. Demonstrating that data-driven object proposal generation technique using local adap-

131



tive thresholding and SVM filtering based on hand-crafted features can help reduce the

sampling rate of candidate objects while keeping a high level of sensitivity.

2. Demonstrating that a deep object detector for image patch classification integrated into a

customized R-CNN model can help build a robust nuclei detection framework applicable

to FM images.

The chapter consists of five sections. Section 6.1 is an introductory set of paragraphs that

emphasize on the need for machine and deep learning approaches for nuclei detection in FM

images. Section 6.2 presents an overview of our proposed solution for nuclei detection based on

a customized R-CNN and describes in detail all the steps of the algorithm. In Section 6.3, the

nuclei ground truth dataset, and the experimental protocols used to validate each step of our

proposed solution are presented. Then the results and discussion on the findings are reported

in Section 6.4. Finally, the chapter ends by a summary in Section 6.5.

6.1 Introduction

In recent literature, various techniques including deep semantic segmentation methods (U-Net

[48]) and traditional methods such as thresholding [61], watershed [61], and LoG [57] have been

proposed for nuclear detection and segmentation over several images modalities: histological

tumours sections stained with haematoxylin and eosin (H&E), breast cancer images obtained

by immunochemistry, and light microscopy Hela cells stained with cytoplasm markers. One

major of the bottlenecks of these traditional methods is related to the fact that algorithms

performances are dependent to the imaging datasets used for training and/or testing the tech-

niques. For instance, thresholding, LoG filters and watershed ridges are sensitive to noise and

therefore would be difficult to apply over new imaging datasets without prior knowledge as

discussed in the literature review (Chapter 2);.

In contrast, deep neural networks approach for nuclear detection or segmentation [54], [25],[48]

are widely believed to be robust against cell variability (size, shape, texture) and noisy artefacts,

because of neural networks ability to learn rich image feature maps gathered at different levels

of abstraction. Moreover, we demonstrated in Chapter 5 that RCNN models using data-driven

technique to generate object proposal boxes could be an interesting path to follow as it would

reduce the number of sampling rate and increase the accuracy of a nuclei object detector using
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CNN features for classification [35].

The R-CNN based approach adopted in this chapter considers the nuclei detection task as a

general object recognition problem where object locations are represented by their bounding

boxes, i.e. the smallest rectangle that contains an object. To locate nuclei, we need to find

the smallest bounding box that fully contains a nucleus which is different from the pixel-level

classification method described in [48]. Based on the investigations presented in Chapter 5,

we developed an R-CNN based strategy where proposal box generation is done in an adaptive

way using thresholding and SVM classifiers and the final object detection is performed by CNN

classification. Next Section 6.2 describes the overall scheme of our proposed solution for nuclei

detection by adaptive R-CNN.

6.2 Proposed Solution for Nuclei Detection based on R-

CNN

Our proposed solution is inspired from the guided search approaches investigated in Chapter

5 for object proposal generation, i.e. the Objectness measure [1], the Selective Search [87] [32]

and the Edge Box strategy [97]. However, instead of relying on the same features or sampling

procedure such as a Bayesian framework built on superpixel straddling, edge detection by

Sobel filtering or a graph segmentation technique combined with a hierarchical grouping of

image segments, our method generates initial object locations from adaptive thresholding and

a combination of four image texture features, namely HOG, LBP, GLCM and PC to generate

reliable candidate locations based on an SVM fusion framework.

The above four features were chosen to integrate variable texture related features into a nuclei

proposal generation algorithm in order to maximise our chances to encode nuclei features that

can be hard to capture in FM images due to illumination artefacts, noises, cell variability, and

image modalities. The combination of HOG, LBP, GLCM and PC features makes our approach

different than the selective search described in [87] [32] which used colour SIFT descriptors to

perform graph-based segmentation and the edge box strategy that relies on raw pixel values

to build a Bayesian framework [97]. After filtering the initial nuclei locations, candidate nuclei

patches are fed into a CNN model for final classification as in the methodology described in

[35] -using specific domain fine-tuning of R-CNN for natural objects detection in Pascal VOC
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dataset. Figure 6.1 highlights the three main steps of our overall scheme for nuclei detection

using customized R-CNN. Figure 6.2 that follows illustrates the outputs of the different stages

of our algorithm.

Figure 6.1: Overview of customized R-CNN for nuclei detection based on adaptive proposal

box generation. (A): initial proposal generation stage by local adaptive thresholding. (B):

feature extraction and SVM classification stage. (C): ultimate nuclei detection stage by CNN

classification.

Figure 6.1 illustrates the overall R-CNN scheme adopted to detect nuclei in FM images based

on three main steps. The first step (1) consists of generating from input images, initial nuclei

locations based on intensity thresholding. This is done in two ways. First, local adaptive

thresholding with a kernel of [161 x 161] is applied to images and proposal boxes are drawn

around connected components with size greater than 16. Second, around sets of isolated pixels,

further nuclei candidate locations are generated by a sliding window with a kernel of [21 x 21]

and a step of [8 x 8]. Outputs of the first step (1) is illustrated by Figure 6.2(B and F) where

from two input images Figure 6.2(A and E) are detected respectively 128 and 122 nuclei by

Local Adaptive Thresholding.

The second step (2) of the proposed solution for nuclei detection by customized R-CNN consists

of filtering the initial proposals by using hand-crafted features and SVM fusion. The initial

proposal boxes generated by local adaptive thresholding correspond to image patches that are

more likely to contain nuclei instances. However, segmentation by intensity thresholding means

that all foreground elements should be distinguished from background thanks to their pixel

intensity distribution [65], which is not always the case. The hand-crafted feature extraction

step we included in our automated routine enables us to consider extra image features for

describing foreground patches and background counterparts such as HOG, LBP, GLCM and PC.
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Figure 6.2: Output of the different stages of R-CNN based nuclei detection framework. (A,E):

original input nuclei images. (B,F): results of initial proposal box generation by local adaptive

thresholding. (C,G): results of proposal box filtering by SVM models. (D,H): results of fine-

grained nuclei detection by CNN.

Once features vectors are extracted from initial candidate locations, the corresponding proposal

boxes are filtered into nuclei and background classes thanks to trained linear SVM models

(HOG-based SVM, GLCM-based SVM, LBP-based SVM, and PC-based SVM). We investigated

various feature concatenation models, but experiences reported in Section 6.4 showed that a

fusion model made at score level and built upon the four above individual models achieved the

best results. This is illustrated in Figure 6.2(C and G) where respectively 30 and 28 boxes

have been filtered out from 128 and 122 nuclei candidates initially detected by Local Adaptive

Thresholding.

The last step of our proposed solution consists of validating the right nuclei locations previously

generated by local adaptive thresholding and SVM classification by using CNN fine-grained

classification. Compared to hand-crafted feature extraction, CNN enables transfer learning

and to extract new rich feature maps with different levels of abstraction from image patches

and thus may guaranty ultimately accurate object detector. Something that is hard to im-

plement in hand-crafted feature extraction models without prior knowledge of the datasets or

intensive feature engineering. Finally, to avoid duplicate locations of the same nuclei objects,

a customized Non-Maxima Suppression algorithm is applied over the output of the CNN clas-
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sification. NMS consists of keeping the bounding boxes with the highest objectness score, i.e.

more likely to contain objects by ignoring those which overlap with them at a certain IoU ratio.

Outputs of this last step (3) are illustrated by Figure 6.2(D and H) where from sets of proposals

filtered by SVM fusions (Figure 6.2(C and G), ultimate nuclei objects are detected by CNN

classification. In the following subsections, we describe in detail the above three steps of our

proposed solution based on R-CNN for nuclei detection in FM images.

6.2.1 Initial Nuclei Detection by Local Adaptive Thresholding

As demonstrated in Chapter 5, the guided search approach for generating object proposals in

images is the most efficient way to build robust object detector based on R-CNN architecture

because it may help reduce the sampling rate and prevent someone searching for objects ev-

erywhere inside images in an exhaustive manner. Based on such observation, we investigated

a simple way of generating initial nuclei locations from the local variation of pixel intensity

profiles in image regions, i.e. by local adaptive thresholding.

The principle of generating initial nuclei locations from intensity thresholding of NRVM images

derived from two series of observations. First, when analysing intensity profiles of nuclei regions

and non-nuclei regions, we noticed that in most images, there is a clear separation between

background and nuclei patches in such a way that a global threshold value based on pixel

intensity can help separate them. This is usually observed in images of cells showing the solid

boundary and great contrast that demarcate them from their surrounding background like

described in Figure 6.3.

Figure 6.3 illustrates good contrast nuclei images where nuclei regions are brighter than back-

ground elements. Figure 6.3(A) represents an example NRVM nuclei image with two ground

truth labels: a background patch highlighted in blue and a nucleus patch highlighted in red.

The two labelled regions are crossed by horizontal blue and red lines. Figure 6.3(B) represents

the pixel intensity profiles of the labelled regions where the respective blue and red line cross

the regions. As it can be noticed visually, the greyscale intensity of the nuclei region is brighter

than the one of the corresponding background patches. Figure 6.3(C) represents the output of

a global threshold using Otsu to segment the regions. Figure 6.3(D) shows the yellow bounding

box drawn around the connected component obtained by global Otsu threshold and correspond-

ing to the ground-truth nuclei labelled in Figure 6.3(A). Thus, in good contrast images with
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Figure 6.3: Good-contrast images: nuclei regions have higher intensity profiles than background

patches’ ones. (A): original input nuclei image 2 annotations: a nuclei patch in red and an image

background patch in blue. (B): intensity profile comparison of both nuclei and background

image patches. (C) binary image of global Otsu thresholding. (D) Comparison of the Otsu-

derived bounding box with ground truth

clear pixel intensity demarcation between background and nuclei patches, a global threshold

can be helpful. But this is not always the case in FM images.

The analysis of the intensity profile of some intriguing sample patches of our datasets that

show little contrast between background and foreground elements revealed different patterns.

In low-contrast images with heterogeneous backgrounds, some illuminations artefacts tend to be

brighter than regions containing cells, as illustrated in Figure 6.4. Moreover, in some extreme

cases, nuclei and background elements may share the same pixel intensity fluorescence. Those

complex scenarios are denoted by crossing intensity profiles curves. In such cases, it is evident

that global thresholding based on pixel intensity will fail to segment cells and background

regions into two distinct sets.

That is why we opted for a local adaptive threshold approach as these techniques have shown

great ability to capture local contrast variations in image regions regardless of their relative

illumination [65]. Thus, we argued that nonetheless the illumination fluctuation of image
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windows containing nuclei or background elements, nuclei regions are still brighter than their

immediate neighbouring pixel elements corresponding to the relative image background in those

image patches. In other terms, local adaptive thresholding can be an interesting starting point

to guess rough locations of nuclei in FM images as illustrated in Figure 6.4(C).

Figure 6.4: Low-contrast images: background contents are brighter than nuclei but handled by

local adaptive thresholding. (A): original input nuclei image 2 annotations: a nuclei patch in

red and an image background patch in blue. (B): intensity profile comparison of both nuclei

and background image patches. (C) binary image of local adaptive thresholding. (D) Results

of the local adaptive thresholding overlaid on original input image

Figure 6.4 illustrates the ability of local adaptive thresholding to segment nuclei in low contrast

images where background patches look brighter than cellular regions. Figure 6.4(A) represents

an example NRVM nuclei image with two ground truth labels: a background patch highlighted

in blue and a nucleus patch highlighted in red. The two labelled regions are crossed by two

horizontal lines: blue and red. Visually it can be noticed that the nucleus is fade contrasted and

darker than the selected background region. Figure 6.4(B) represents the pixel intensity profiles

of the labelled regions where the respective blue and red line across the selected regions. As

it can be noticed visually, the greyscale intensity of the nuclei region is effectively darker than

the corresponding background patch. Figure 6.4(C) represents the output of a local adaptive
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threshold using the arithmetic mean of neighbourhood pixels (161x161). Here it is clear that

local adaptive thresholding has wrongly detected a potential nucleus inside a background patch

due to the heterogeneous illumination within that area of the input image. Figure 6.4(D) shows

that bounding boxes are generated for each labelled region which means a false background

element is segmented as nucleus. Therefore, local adaptive thresholding may be better at

capturing fading nuclei regions than global thresholding, but bright heterogeneous background

may mislead to false nuclei proposals.

To generate initial nuclei locations from local adaptive thresholding, our system performs the

following steps:

Figure 6.5: Flowchart diagram for initial nuclei boxes locations from adaptive threshold. CC

stands for connected component obtained after adaptive thresholding of NRVM images with

kernel 161 x 161.

Figure 6.5 represents the flowchart diagram of our routine for generating initial nuclei proposal

boxes by adaptive thresholding. The routine follows six mains steps labelled tasks B to G.

First, over an individual greyscale image of NRVM nuclei, local adaptive thresholding using

the mean statistic in a kernel of 161 x 161 is applied (Figure 6.5(B)). We selected this pair of

odd numbers (161, 161) because our technique should deal with nuclei that cannot exceed 160

x 160-pixel size.

After local adaptive thresholding, the resulting binary images are further processed by morpho-

logical operations such as filling holes. Then, connected components are computed, and their
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properties such as area and average greyscale pixel intensity are extracted (Figure 6.5(C)).

At the next step illustrated by Figure 6.5(D), the system begins generating initial nuclei loca-

tions by drawing fixed-size boxes of 160 x 160 around each connected component whose areas

are greater than 25 (i.e. 160 x 160 / 1000).

At stage Figure 6.5(E), further nuclei locations are generated around groups of isolated pixels

whose number of pixel elements are greater than 10 and fits within a window of 20 x 20.

This second routine for nuclei proposal box generation around small connected components

is performed in a sliding window manner with a step of 8 x 8. We chose to draw potential

nuclei bounding boxes around groups of isolated pixels in a controlled-sliding-window manner

because we wanted to make sure that no potential nuclei locations are left behind due to low

illumination or low image contrast.

At stage Figure 6.5(F), the system sorts all generated nuclei proposal boxes in descending order

according to the average greyscale pixel intensity of the region they refer to in the original input

image. This is done to prepare for the final step of the routine corresponding to Figure 6.5(G),

i.e. the filtering of all initial proposal boxes into non-overlapping windows according to their

pixel intensity.

By default, when two image windows overlap, the brightest one is kept. This filtering of image

windows assumes that in contiguous image regions brighter pixel points are more likely to

belong to cellular regions. The image windows that are ignored correspond to the ones which

overlap with the brighter image regions. The IoU ratio between regions is set to 0.5.

To sum up, our proposed technique for the generation of initial nuclei locations from local

adaptive thresholding argues that despite disparities in background and nuclei illuminations, it

is possible to generate relevant guesses of nuclei locations from connected binary components

and set of white isolated pixels. The connected components selected are the binary objects

whose areas are larger than 1/1000th of the maximum size of nuclei within NRVM images. From

sets of ten isolated white points located in a neighbourhood of 21 x 21 window, the system

also generates potential nuclei locations. The performance of our method for generating initial

nuclei locations from local adaptive thresholding is presented and discussed in Subsection 6.4.

Figure 6.6 illustrates initial candidate locations output by our procedure based on local adaptive

thresholding over an example nuclei image.
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Figure 6.6: Initial nuclei proposal box generation by local adaptive thresholding. A: original

grayscale input nuclei image displayed in pseudo colour. B: binary image after local adaptive

thresholding. C: results of initial proposal box generation overlaid on original grayscale input

image. D: results of initial proposal box generation overlaid on binary image after local adaptive

thresholding.

Figure 6.6(A) represents an original greyscale image containing 14 right nuclei. The image has

been displayed in pseudo-colour for visual purpose. Blue shades correspond to smaller pixel

intensities, whereas warm or red shades represent higher pixel values. Figure 6.6(B) represents

the binary map obtained when a local adaptive threshold is applied to Figure 6.6(A). Figure

6.6(C) represents 35 nuclei proposal boxes generated from the binary map in Figure 6.6(B)

and overlaid on the original input image in Figure 6.6(A). Figure 6.6(D) represents 35 initial

guesses of nuclei locations output by our system and overlaid on the binary map in Figure

6.6(B). Visually, it can be noticed that all the ground truth nuclei locations of the input image

in Figure 6.6(A) have been covered by the initial guesses.

However, unnecessary locations were also generated around small bright background regions as

Page 141 of 202



highlighted in the top-left corner and the middle-right border of Figure 6.6(C). These limitations

linked to background fluctuations and unnecessary proposal boxes argue that pixel intensity

features alone may not be enough to generate high-quality nuclei proposals in FM images. In

Next Subsection 6.2.2, we introduce four powerful image cues: HOG, LBP, GLCM and PC

features that may help produce better nuclei hypotheses than intensity features alone in image

regions in an SVM fusion framework.

6.2.2 High-quality Nuclei Proposals Filtering by SVMs

To filter nuclei locations output by local adaptive thresholding, we investigated four types of

feature (HOG, LBP, GLCM, and PC) and built SVMs models upon them. SVM was chosen

due to its simplicity and effectiveness for binary classification. The aim of filtering the initial

locations is to make sure that all patches that are more likely to contain nuclei are kept whereas

those that are more likely to represent background patches are ignored. The filtering is per-

formed by estimating the probability of candidate patches to be nucleus or not. In that way,

our model aims to achieve a better sampling rate than the state-of-the-art object detection

techniques investigated in Chapter 5 such as the objectness measure, the selective search, the

edge boxes, and the RPN.

The flowchart diagram in Figure 6.7 illustrates our SVM filtering approach to generate high-

quality nuclei proposals after initial generation by local adaptive thresholding. It implies to

build a fusion model consisting of four linear SVM classifiers based respectively on HOG, LBP,

GLCM and PC feature vectors and to perform hand-crafted feature extraction from image

patches corresponding to the initial nuclei locations previously generated by local adaptive

thresholding. As it can be seen from the diagram to output nuclei hypotheses, the fusion model

first extracts HOG, LBP, GLCM and PC features from initial proposal boxes and normalised

them. Then, each SVM model assigns one category and a score to the input patches’ feature

vectors. Scores of nuclei categories are set to positive sign, while scores of background cate-

gories are set to negative sign. Finally extracted feature vectors are classified into nuclei and

background through the four different linear SVMs based on the fusion of all scores output by

the four classifiers. Experiments demonstrated that the comparison with an optimum score

threshold value of T = -0.275 enables the binary classification as illustrated in Figure 6.7 and

demonstrated in 6.23.
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Figure 6.7: SVM fusion model for filtering initial nuclei proposal boxes. L.A. stands for Local

Adaptive.

The performance of our method for generating nuclei proposals after SVM filtering of initial

nuclei locations generated by local adaptive thresholding is presented and discussed in Subsec-

tion 6.4.2. In next Subsections 6.2.2 and 6.2.2, we describe the two types of SVM fusion models

we built based on HOG, LBP, GLCM and PC.

SVM Models based on Fusion at Feature Level

The disparity of HOG, LBP, GLCM and PC feature response to challenging image regions such

as weak-boundary cells, fading-texture cells, and heterogeneous background elements made us

argue that models based on a single feature type may not be enough to distinguish nuclei

patches from background elements. A single feature type does not seem to capture all rele-

vant characteristics of nuclei objects in NRVM images due to non-exhaustive factors such as:

image quality, illumination artefacts, and noises. The flow-chart diagram in Figure 6.8 de-

scribes the standard training routine we adopted to build 14 SVM models based on all possible

combinations of the 4 basic feature types: HOG, LBP, GLCM, and PC.

As the flowchart diagram suggests, the combination of the four basic features enabled us to

build different linear SVM models by 10-cross validation i.e., 10 random splits with the usage

of 10 predefined different seeds. Knowing the seeds of the different round of validation allowed

us to compare the behaviour of different models on a particular testing image, and therefore to

perform qualitative and visual analysis. Systematic analysis was performed by computing and
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Figure 6.8: Flowchart diagram for training SVM model based on HOG, GLCM, LBP, and PC

combination.

comparing all models performance metrics such F1 scores, sensitivity, specificity, and accuracy.

These performance metrics adopted are described in Section 6.3.

Following Figures 6.9, 6.10, 6.11, and 6.12 illustrate the output of four basic SVM models built

respectively from HOG, LBP, GLCM, and PC feature vectors and tested over example NRVM

images. As it can be denoted visually, the four classifiers perform differently in the presence

of fading cells vague-contour or weak-boundary and heterogeneous background and can even

output opposing results - another reason in favour for investigating SVM models based on

feature fusion at score level.

Figure 6.9: HOG based SVM classifier fails to predict 2 fading cells locations. A: Original input

NRVM image with 5 nuclei (red boxes) and five background patches (white boxes) labels. B: 3

TP and 5 TN predictions by the HOG based classifier C: 2 FN predictions by the HOG based

system.

Figure 6.9(A) represents five nuclei (red boxes) and five background patches (white) that are

Page 144 of 202



fed into a HOG SVM classifier for object class prediction. Figure 6.9(B) illustrates the output

of the HOG classifier. 3 TP & 5 TN means that the classifier correctly predicts three nuclei

patches (white) over 5 and 5 background patches over 5. In Figure 6.9(C), 2 FN predictions

are recorded, which means that the HOG based classifier predicts wrongly two nuclei patches

as part of the image background.

Figure 6.10: GLCM based SVM classifier fails to predict 1 cell with vague contour. A: Same

original input NRVM image with 5 nuclei (red boxes) and five background patches (white boxes)

labels as in 6.9. B: 4 TP and 5 TN predictions by the GLCM based classifier C: 1 FN prediction

by the GLCM based system.

Figure 6.10(A) represents the 5 same nuclei (red boxes) and 5 background patches (white) early

used in Figure 6.9. Here, their GLCM features are fed into a GLCM-based SVM classifier for

prediction. Figure 6.10(B) illustrates the output of the GLCM classifier. 4 TP & 5 TN means

that the classifier correctly predicts four nuclei patches (white) over 5 and 5 background patches

over 5. In Figure 6.10(C), 1 FN prediction is recorded, which means that the GLCM based

classifier predicts wrongly 1 nuclei patch with vague contour as part of the image background.

Compared to HOG, GLCM is outperforming in overall, but the missing of one nucleus region

showing vague contour suggests that HOG and GLCM should be fused at a certain level to be

determined.

Figure 6.11(A) represents the same 5 nuclei (red boxes) and five background patches (white)

used for HOG and GLCM SVM classifiers in previous Figure 6.9 and Figure 6.10. Figure

6.11(B) illustrates the output of the LBP classifier over the ten patches. 2 TP & 4 TN means

that the classifier correctly predicts only two nuclei patches (white) over 5 and 4 background

patches over 5. In Figure 6.11(C), 3 FN and 1 FP predictions are recorded, which means that

the LBP based classifier wrongly predicts 3 nuclei patches as part of the image background

and one background patch as a nucleus. Compared to HOG and GLCM, LBP based model is
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Figure 6.11: LBP based SVM classifier fails to predict 2 fading cells and a weak-boundary cell.

A: Same original input NRVM image with 5 nuclei (red boxes) and five background patches

(white boxes) labels as in 6.9. B: 2 TP and 4 TN predictions by the LBP based classifier C: 3

FN and 1FP predictions by the LBP based system.

under-performing in overall. However, the missing of a nuclei patch showing a vague-contour

cell by GLCM and captured by LBP, suggests a fusion of LBP and GLCM feature at a certain

level to maximize the detection of all challenging cellular patches. The problematic nuclei patch

is the furthest window at the top-right side in Figure 6.11(B).

Figure 6.12: PC based SVM classifier fails to predict three cells with vague contour and fading

texture. A: Same original input NRVM image with 5 nuclei (red boxes) and five background

patches (white boxes) labels as in 6.9. B: 2 TP and 5 TN predictions by the PC based classifier

C: 3 FN predictions by the GLCM based system.

Figure 6.12(A) represents the same five nuclei (red boxes) and five background patches (white)

used for HOG, GLCM and LBP SVM classifiers. Figure 6.12(B) illustrates the output of the

PC classifier over the ten patches. 2 TP & 5 TN means that the classifier correctly predicts

only 2 nuclei patches (white) over 5 and 5 background patches over 5. In Figure 6.12(C), 3 FN

predictions are recorded, which means that the PC based classifier predicts wrongly 3 nuclei

patches as background patches. Compared to LBP, the PC based model seems identical in
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terms of a number of right nuclei predictions. Still, each model has identified a cell that has

been ignored by the other one (nuclei located in far-right hand side of images 6.11(B) and

6.12(B)).

Figure 6.13: SVM model based on fusion of 4 features fails to predict any nuclei locations in a

challenging NRVM image showing weak-boundary and fading cells.

After investigating the behaviour of SVM models built upon individual features over challenging

image regions, we also analysed the output of SVM models based on the plain concatenation of

HOG, LBP, GLCM and PC features. Figure 6.13 represents the output of an SVM model using

a combination of the four basic features vectors over the same cells’ locations discussed in Figure

6.9 - Figure 6.12. 0 TP and 5 TN means that the fusion model could only accurately predict five

background patches over 5, but no nuclei locations over the five ground true locations checked.

Visually, it is evident that despite encouraging results for SVM models based on unique features,

a model based on the concatenation of HOG, LBP, GLCM, and PC at features level may not

achieve better performances. The visual analysis of results output by different SVM fusion

models using various concatenations of HOG, GLCM, LBP and PC features demonstrated that

a fusion at score level might be necessary to increase the ratio of TP predictions.

The overall performance of the procedure for initial nuclei locations filtering by linear SVMs
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fusion at feature level over the NRVM nuclei dataset is presented in result Section 6.4. The

next section presents our investigation on fusion SVM models at score level for nuclei patch

filtering.

SVM Models based on Fusion at Score Level

To perform SVM fusion at score level, we analysed the scores of the classes output by the 4

SVM models built upon individual feature vectors such as HOG, LBP, GLCM and PC. From

the output scores of the unique-feature-based classifiers, we computed a signed average score

and performed score fusion in the following manner: 1) output scores for nuclei classes are

set positive, while output scores for background classes are assigned negative; 2) compute the

average of all signed scores predicted by the 4 SVMs and for all signed average scores greater

than -0.275, we consider the corresponding predictions as of class nuclei otherwise background.

The entire procedure of the fusion model at score level we built to predict nuclei and background

patches is schematized in Figure 6.7. The analysis that led to the identification of the optimal

fusion score threshold -0.275 is presented in Section 6.4.2 and demonstrated in Figure 6.23. An

illustration of the system’s output on an example NRVM image is also illustrated by Figure

6.14.

Figure 6.14: Fusion at score level of HOG, LBP, GLCM and PC SVM models with T = -0.275.A:

output of TP and FP by the system. B: output of FP by the system. White numbers represent

signed average scores output by the fusion model for patches predicted as nuclei. Black numbers

represent signed average scores output by the fusion model for patches predicted as background.

Visually, it can be noticed that the model based on fusion at score level outperforms the feature

Page 148 of 202



concatenation model illustrated previously in Figure 6.13. With a score threshold of -0.275,

all potential nuclei locations are correctly predicted (as white-highlighted in Figure 6.14(A)).

However, Figure 6.14(B) shows that a background patch has been wrongly predicted as nuclei

with a signed average score of -0.05 (as white-labelled), which means that further processing is

still required for ultimate right nuclei detection with less errors.

The overall performance of the procedure for initial nuclei locations filtering by linear SVMs

fusion at score level over the NRVM nuclei dataset introduced in 6.2 and detailed in Section

6.3.3 is presented in result Section 6.4.1. In next Section 6.2.3, our final procedure for image

window classification by the deep neural network is fully described.

6.2.3 Fine-grained Object Detection by CNN Classification

Once high-quality proposals are obtained by local adaptive thresholding, and SVM filtering,

ultimate nuclei patch detection, the last step of our customized R-CNN model for automated

nuclei detection can resume. Here, the aim is to perform a fine-grained object detection through

a deep learner by feeding into the network, high-quality proposal boxes for classification and

refinement. We argue that neural networks provide rich feature maps with different levels of

abstraction that can help distinguish spurious background contents that was misclassified as

nuclei locations by SVM models based on hand-crafted features. The overall performance and

accuracy of the three different CNN networks investigated for fine-grained object detection

(AlexNet, GoogLeNet, and Inception V3) are explored in Subsection 6.4.3. Before then, next

Subsections give a brief overview of their architecture.

AlexNet model

AlexNet is a convolutional neural network made of eight layers and trained on more than a

million natural images of ImageNet database. The eight main layers consist of three fully con-

nected layers and five convolution layers separated by max-pooling layers and using a rectifier

linear unit (ReLu) activation function. It is one of the most famous pioneering CNN that won

the annual software contest in computer vision and machine learning, the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) in 2012 [51]. AlexNet requires input images of 227 x

227 x 3. The network is powerful as it has learnt a rich feature representation of about 1000

Page 149 of 202



categories of objects whose it has been trained to classify the images [51]. However, AlexNet

was outperformed quickly by deeper CNNs due to its relatively small depth (a series of eight

layers), and a huge number of parameters (61 million weights).

GoogLeNet model

The second CNN we investigated for nuclei proposal patch classification is a deeper CNN that

consists of twenty-two layers organized in parallel or in a direct acyclic graph called GoogLeNet.

GoogLeNet was also trained on ImageNet datasets and won the ILSVRC 2014 contest due to

its architectural complexity with the introduction of the concept of inception module but with

fewer parameters to train (7 million). The inception module consists of multiple convolutions

filters applied to the same input, with some pooling to prevent redundancy and overfitting.

Thus, GoogLeNet was designed to be deeper and lighter than AlexNet. Besides, the network

only requires 224 x 224 x 3 as input images [83] versus 227 x 227 x 3 for AlexNet.

Inception V3 model

The third CNN backbone model we investigated for proposal patch classification is called

Inception V3 and goes deeper than GoogLeNet. Its architecture is made of forty-eight layers

organized in parallel and trained on ImageNet datasets. Inception V3 requires 229 x 229 input

images and contains more than 23 million parameters to train [84]. Inception V3 achieves

greater classification accuracy on the ImageNet dataset with higher relative prediction time

than the GoogLeNet and AlexNet. For positive performances, we argue that Inception V3

might be the best network backbone for building our deep neural network strategy to classify

nuclei proposal boxes. In next sections, we describe the materials and experimental protocols

followed to measure the performance of the different steps of our proposed solution based on

R-CNN for nuclei detection in images of FM.

6.3 Materials & Experimental Protocols

Since our proposed solution for nuclei detection in FM images involve initial generation of nuclei

proposals by local adaptive thresholding, SVM filtering of high-quality candidate locations
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based on HOG, LBP, GLCM and PC features, and image patch classification by CNN, we

developed materials and experimental protocols accordingly. In terms of materials, ground

truth datasets based on full input images and image patches were necessary to assess the

performance of each step of our proposed algorithms. Performance metrics such as F1 score,

sensitivity, specificity, the mean average precision (mAP) and GTCR were used to measure the

efficiency of the system at each step. Following Subsections give an insight on the ground truth

datasets we relied on and the experimental protocols we followed to assess the performances of

our proposed solution for nuclei detection at every steps, i.e. initial nuclei proposal generation

by local adaptive thresholding, SVM filtering of high-quality nuclei proposals based on HOG,

LBP, GLCM and PC features, and image patch classification by deep neural networks.

6.3.1 Ground Truth Datasets

Two datasets have been used as ground truths of our deep learning model for nuclei detection

in NRVM images. The first datasets correspond to the 250 labelled nuclei images described in

Chapter 5. The second datasets consist of 2734 labelled individual images of nuclei, and 2734

labelled individual images of background patches obtained by the cropping of size (160 x 160).

We used the first datasets made of 250 labelled images to build a customized region proposal

algorithm for nuclei detection in FM images. The second ground truth dataset made of 2734

nuclei labels and 2734 background labels was used to develop and fine-tune a CNN detector

for nuclei patches classification. Both datasets were split into 70% for training and 30% for

testing.

6.3.2 Experimental Protocols

According to the three main steps of our proposed solution for nuclei detection by customized R-

CNN based on adaptive region proposal generation, three types of experiments are conducted.

First initial nuclei locations are generated from local adaptive thresholding map over the 250

NRVM images as described in 6.2.1, then the initial nuclei proposals are filtered by SVMs

models using different feature concatenation models, i.e. fusion at feature and score levels

of HOG, LBP, GLCM and PC as described in 6.2.2. Finally, the filtered proposal boxes are

classified by different fine-tuned CNNs (AlexNet, GoogLeNet, Inception V3) into true nuclei or

background patches as reported in Section 6.2.3.

Page 151 of 202



Assessment of initial proposal generation technique

To assess the performance of the method for initial nuclei proposals boxes generation by local

adaptive thresholding, we used two performances metrics: the GTCR and the mAP. First, the

Ground Truth Coverage Ratio (GTCR) which is equivalent to the percentage of ground truth

nuclei covered by the proposal boxes; and the mean average precision (mAP) which corresponds

to the ratio of the number of nuclei proposal boxes that overlap with the ground truth nuclei

over the total number of proposals boxes generated.

mAP =
NPGT

TNPG
(6.1)

where NPGT = the number of nuclei proposals boxes overlapping with Ground Truth, and

TNPG = the total number of nuclei proposal boxes generated.

Two boxes A and B are said overlapping when their IoU is greater than 0.5, according to

the formula described in Figure 5.2. The higher are the GTCR and the mAP metrics, and the

more accurate are the initial nuclei proposals generated. However, at this stage, only the GTCR

matters because the aim is to reduce the sampling rate of the proposal generation technique

by guiding the search to image locations that are more likely to contain nuclei rather than

searching at every location and orientation inside images.

Assessment of high-quality proposal locations by SVM classification

To assess the performance of the different SVM filters built upon HOG, LBP, GLCM and PC

and the different deep neural networks investigated, and to compare them; four metrics were

used: the True Positive Rate (TPR or sensitivity or recall), the True Negative Rate (TNR or

specificity), the accuracy (AC) and the F1score according to the following equations:

TPR = sensitivity =
TP

TP + FN
(6.2)

TNR = specificity =
TN

TN + FP
(6.3)

Accuracy =
TP + TN

TP + FP + TN + FN
(6.4)
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F1 = 2 ∗ precision ∗ sensitivity
precision+ sensitivity

(6.5)

TP correspond to all nuclei predictions that overlap with ground truth nuclei locations with

IoU >= 0.5; TN correspond to all background predictions that overlap with ground truth

background patches (or do not overlap with any ground truth nuclei) with IoU >= 0.5; FP

correspond to all nuclei predictions that do not overlap with ground truth nuclei with IoU

>=0.5; FN correspond to all background predictions that do not overlap with any ground

truth background patches (or do overlap with a nuclei ground truth patch) with an IoU >=

0.5.These same metrics were used to assess the performance of the ultimate nuclei detection by

CNN.Next Subsection 6.3.3 describes the training and testing protocols adopted to build the

different SVM and CNN classifier models for nuclei detection in biomedical images.

6.3.3 SVM and CNN Training and Testing Protocols

In this section, we describe the training and testing protocols we follow to build the various SVM

models investigated for high-quality nuclei proposals generation and the three CNN classifiers

developed for fine-grained nuclear object detection.

SVM Training and Testing Protocols

As indicated in the SVM models introduced in Section 6.2.2, we investigated four types of

feature vectors such as HOG, LBP, GLCM, and PC and built SVMs models upon them. Based

on various combinations of these four features, we built 14 different linear SVM fusion models

at the feature level and one fusion model at score level using the four basic features. Training

and testing routines of the different models were performed by 10-cross validation over splits

(70% for training and 30% for testing) of our 250-image-labelled datasets.

In details, to train SVM models based only on HOG, we extracted from nuclei and background

sample patches, 8100 vector lengths of HOG features and normalized them. The normalization

was done by maximum ratio i.e. computing the ratio of the feature values extracted from

image patches by the maximum values extracted from those patches. In the same way, to train

SVMs models based only on LBP, we computed LBP images of the ground truth dataset and

extracted 59-bins histograms from their corresponding nuclei and background sample patches
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to fit the models. To build SVMs models based only on GLCM, we computed GLCM images

of the NRVM ground truth dataset and extracted and normalized 236-vector-length features

from nuclei and background samples patches to fit the models. The 236-vector length GLCM

parameters consist of the concatenation of four texture statistics such as contrast, correlation,

energy, and homogeneity. Finally, to build SVM models based on PC, we computed PC images

of NRVM ground truth dataset and extracted 59-bins histograms from nuclei and background

sample patches to fit the models.

For every round of 10 cross-validations, we reshuffled the training and testing sets. All the

feature vectors extracted get max-normalized. We measured the average performance of our

trained models through the computation of F1 score, the level of sensitivity, specificity, and

precision of the predictions. In such a way, we were able to identify the best SVM kernel that

works well for our dataset, and feature types, i.e. a linear kernel of multi-class SVM investigated

with LIBSVM library described in [17] and MATLAB proprietary functions. The result section

presents a detailed performance of the different SVM models based on concatenation of HOG,

LBP, GLCM and PC features for filtering nuclei proposal boxes generated initially by local

adaptive thresholding.

CNN Training and Testing Protocols

To train the three CNN based image patch classifiers, we fine-tuned the pre-trained networks

(AlexNet [51], GoogLeNet [83] and Inception V3 [84]) by transfer learning using a MATLAB

GPU implementation over splits of our datasets made of 2734 nuclei and 2734 background

patches(70% for training versus 30% for testing). By doing so, we kept the middle layers of the

pre-trained networks and replaced the final layers with learnable weights by new final layers with

higher learning rate and two output categories: nuclei and background. Thus, the fine-tuned

networks are used for both feature extraction and image window classification. Our training

used asynchronous stochastic gradient descent (SGD) with 0.9 momentum, a mini-batch size

of 16, an initial learning rate of 0.0003, and a maximum number of six epochs per model. We

minimized the SGD cost function and achieved training convergence for InceptionV3 model

after five epochs, and AlexNet and GoogLeNet after six epochs.

To prevent overfitting, while increasing the accuracy of the network, and complying with the

input size requirement, we performed image resizing, and data augmentation by random trans-
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lation, reflection, and scaling in two directions. Theoretically, the augmentation techniques

enabled us to multiply our working datasets size by a factor of six. The translation data aug-

mentation technique involves moving the image along the X and Y direction. It is useful as

it forces CNN to look everywhere for the labelled ROIs that have been translated in the aug-

mented datasets. This learning ability is interesting in biomedical images where ROIs could be

found anywhere in images i.e. nuclei to be pick up and background elements to be ignored. The

reflection data augmentation technique involves reflecting the ROI along the X or Y direction.

It is useful as it may help CNN recognize nuclei or cells in a cluster environment. The scaling

technique involves onward or inward zooming of ROIs or images. It is helpful as it may also

force the network to learn ROIs with multiple sizes. The model evaluations were performed

using a running average of the network parameters computed over time.

To test the deep learning models based on AlexNet, GoogLeNet and Inception V3 for image

patch classification as described in Section 6.2.3, we performed two types of experiments. The

first one used a known set of nuclei and background patches to test the different CNN classifiers

while the second relied on the segmentation results of adaptive thresholding and SVM filtering

to do the testing. In that way, the effect of the guided search on the system overall performance

could be easily assessed. In Section 6.4. all the findings are reported.

6.4 Result and Discussion

In this section, we explore the performance of our customized R-CNN solution for automated

nuclei detection based on adaptive proposal generation against our ground truth datasets made

of 250 labelled images, 2734 nuclei patches and 2734 background patches. Since our automated

routine consists of three main steps which are initial nuclei proposal generation by local adaptive

thresholding, proposals filtering by SVM classifiers and image patch classification by CNN, the

results of the findings have been presented and discussed accordingly.

6.4.1 Initial Nuclei Detection by Local Adaptive Thresholding

The experiments over 250 NRVM nuclei images showed that the method for initial nuclei

proposal boxes generation by local adaptive thresholding achieved a good performance of 99.40%

GTCR. This ground truth coverage ratio means that our technique based on thresholding enable
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to cover almost all potential nuclei locations in NVRVM images. However, the mean-average

precision recorded is low (mAP = 0.24604) with an average of 60.844 nuclei proposal boxes

being generated per image as the sampling rate.

Compared with the state-of-the-art object detection techniques investigated in Chapter 5, the

small sampling rate (61 candidate locations per image) output by our proposed technique makes

it more realistic to implement. Indeed, in Chapter 5, we reported that the investigated edge-

based strategy, the technique with the highest average precision (30.75%) and great ground

truth coverage (95.43%) over NRVM nuclei images, generates in average 8364 proposal boxes

per image which is 137 times bigger than the sampling rate of our proposed method.

Moreover, despite this huge sampling rate, the edge-based strategy, does not outperform our

proposed technique in GTCR (95.43% vs 99.40%). Figure 6.15 reports our proposed technique

performance at generating initial nuclei locations from adaptive thresholding over NRVM nuclei

images.

Figure 6.15: Performance of initial nuclei proposal box generation from adaptive thresholding

mask. Red line: average ground truth coverage ratio per image. Blue line: average precision

of proposal boxes per image. X-axis: NRVM image index or our dataset. Y-axis: values in

percentage

In Figure, 6.15, red line shows the ground truth coverage per image. The blue shows the

precision of proposal box generation per image. X-axis represents NRVM image index or our
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dataset. Y-axis values in percentage.The red line in Figure 6.15 shows that most NRVM images

truth nuclei locations are covered by the threshold-based candidates except few of them (5 in

the current illustration). When analysing the outputs of our proposed routine, we noticed 2

fundamental limitations: 1) some overlapping or touching cells are detected as single cellular

entities, and 2) some unique cell’s locations are covered by multiple overlapping boxes. The

detection issues related to overlapping or touching cells, are since local thresholding tends to

generate single connected components rather than multiple as per cellular units. The sampling

issues related to multiple overlapping boxes in the same cellular regions can be explained by

the fact that our system fails to consider that several broken binary elements could belong to

the same cells. Thus, a kind of region merging strategy may be needed.

To solve the cellular promiscuity problems, watershed transform-based techniques are well-

known solutions that rely on image content segmentation into ridges and valleys [56], [85].

However, these techniques are sensitive to image illumination and thus can easily lead to over-

segmentation of cellular regions. Here, we applied a simpler technique that separates two

overlapping cells by using regional maxima segmentation. Regional maxima correspond to the

consecutive pixels with constant intensity values and surrounded by pixels with lower values.

We derived regional maxima of overlapping cells from morphological reconstruction by opening.

To solve the problem associated to multiple bounding boxes around same cellular elements, a

region merging technique could be the path to follow, but this is beyond the scope of this

research. 6.16 illustrates the limitations of adaptive thresholding technique for identifying

proposal boxes in touching or overlapping cells cases. Figure 6.17 illustrates our method for

separating two overlapping cells in the same image patch.

Figure 6.16(A) shows 34 ground truth nuclei highlighted in white bounding boxes over an input

NRVM image displayed in pseudo-colour. Blue shades correspond to smaller pixel intensities,

whereas warm or red shades represent higher pixel values. Figure 6.16(B) shows local adaptive

thresholding mask of the input NRVM image in A. In the middle and at the bottom right

corner of B overlapping cells are represented as unique connected components (next to the red

stars labels). Figure 6.16(C) shows 76 initial proposal boxes output from the threshold mask

in B. Figure 6.16(D) represents the comparison of the proposal boxes with the ground Truth

in A. Visually, it can be noticed that only 30 ground truth nuclei (white boxes) are covered by

32 true-positive proposal boxes (red bounding boxes). The missing four ground truth nuclei

locations correspond to three image patches containing five overlapping cells identified as two
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separate entities. The first group of overlapping cells is at the top centre of Figure 6.16(D) and

are represented by a single proposal box (red labels) instead of two (white labels). The two

remaining sets of overlapping cells are at the bottom right of Figure 6.16(D) and are represented

by two separate proposal boxes (red labels) instead of five (white labels).

First column of Figure 6.17 shows greyscale patches of overlapping cells. Visually it can be no-

ticed that there are two overlapping cells labelled (A), two touching cells labelled (E) and three

touching cells labelled (I). Second column represents outputs of foreground elements marking

after morphological opening-reconstruction. The foreground marking aims to increase the im-

age contrast by brightening cellular regions. It uses a 15-size diamond structuring element.

Visually it can be noticed that in cells labelled (B) and (F), cellular regions corresponding

roughly to the centre of every nuclei unit are emphasized except in (J) where only 2 cells are

marked over 3. Third column of Figure 6.17 shows global Otsu segmentation result of the re-

constructed regions of the second column. Visually it can also be noticed that for each cellular

region emphasized or marked, separated connected components have been generated (C, G). In

Figure 6.17(K), interestingly only two regional maxima have been segmented as only two cells

were correctly marked instead of three in total.

Last column of Figure 6.17 illustrates the theoretical border set to separate overlapping cells.

The separation border between two overlapping cells is theoretically set in the middle of the

centre of the connected components of the maxima regions obtained by segmentation in (C),

(G) and (K). To estimate the borderline between two connected components, we computed the

Euclidean distance between the two regions’ centres and the slope of the line that is perpen-

dicular to the line joining both centres.

As illustrated in the Figure 6.17 red-labelled (D), (H), and (L), the border between the cells is

materialized in the red line, and each cell centre is displayed in a green dot. In this illustration,

it can be noticed that the procedure for separating touching or overlapping cells works relatively

well for two cells at a time but not for three touching cells at a time (Figure 6.17(L)). In total,

we recorded a performance of 60.87% of precision (i.e. 14 overlapping cells correctly detected

over 23 touching cells observed in NRVM nuclei patches we analysed). The following section

explores the performance of SVM filtering of nuclei proposal boxes generated by local adaptive

thresholding into high-quality candidate locations based on a fusion of multiple image features

such as HOG, LBP, GLCM, and PC.
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6.4.2 Filtering Initial Nuclei Proposals by SVM Models

When comparing the different SVMs models investigated, we focused on the TPR because our

aim was to minimize the number of initial nuclei locations that would be wrongly discarded by

the system rather than filtering out background patches to be filtered. In other terms, at this

stage, we wanted to make sure that, after the initial generation of nuclei potential locations by

local adaptive thresholding, all the good potential nuclei locations are effectively picked up by

our trained SVMs models, and all the evident background patches are ignored, no matter the

false-positive ratio, i.e. the percentage of background patches wrongly predicted as nuclei by

the system.

To do so, we performed two types of experiments: 1) feed various SVM models with known

nuclei and background patches for classification to identify the best models and 2), feed SVM

models with initial nuclei locations generated by adaptive threshold segmentation to assess

the true performance of our proposed technique. According to the two types of feature fusion

analysed, the SVM models investigated were divided into two categories: 1) the models based

on single or multiple feature concatenation of HOG LBP, GLCM and PC at feature level;

and 2) those models based on a fusion of HOG, LBP, GLCM and PC features at score level.

Figure 6.18 summarizes performances recorded for all SVMs models built upon a combination

of HOG, LBP, GLCM and PC and using category-known images patches as testing samples.

For all those experiments, the datasets were divided into 70% for training and 30% for testing

through a 10-cross validation routine.

SVM Fusion Models at Feature Level to Increase Sensitivity

Figure 6.18 illustrates that without segmentation, linear SVM models based on concatenation

of GLCM features achieved the highest sensitivity (0.84) and F1 score (0.83). In overall, these

recorded performances of the SVMs models based on feature level combination show that an

important proportion of TP nuclei locations are still ignored by the system (in average 16%).

Since the highest sensitivity level recorded is 84%, 16% of potential nuclei candidate may be

ignored by SVMs models based on features vectors concatenation. But a closer look at the

patches predicted by individual SVM models using single feature type on challenging images

give us varying insights of their relative sensibility.
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• GLCM-based SVM classifiers are the most precise at detecting nuclei patches but may

fail at recognising vague-contour cells. Figure 6.19 illustrates GLCM feature performance

over an example NRVM nuclei image.

• PC-based SVM mobility shows great ability at capturing background elements despite

varying illumination artefacts with high confidence. Figure 6.20 illustrates PC feature

performance over an example NRVM image.

• HOG-based SVM models outperform LBP models in well-shaped nuclei images but under-

perform in the presence of heterogeneous background elements. Figure 6.21 illustrates

HOG-based SVM models in such cases.

• LBP-based SVM models, in contrast, show great ability at assigning the correct cate-

gory to cells exhibiting intense texture stains. Figure 6.22 illustrates such a comparison

between LBP and HOG models over two NRVM image examples.

Figure 6.19 shows the performance of GLCM based SVM model for NRVM patches classification

without segmentation. The first column of Figure 6.19 represents input nuclei (Figure 6.19(A),

yellow boxes) and background patches (Figure 6.19(B), black boxes) that are fed into the

SVM model. The greyscale NRVM image displayed here is shown in pseudo-colour for visual

purpose. Blue shades correspond to smaller pixel intensities, whereas warm or red shades

represent higher pixel values. The remaining columns of Figure 6.19(C, D, E, and F) represent

the GLCM based SVM model classification results. Figure 6.19(C) shows that the GLCM

model was able to correctly predict 7 nuclei regions (TP) out of 8 with maximum confidence

of 100% for all predictions. With regards to the background patches fed to the model, Figure

6.19(D) shows that the model was able to identify all of them (TN) with confidence greater

than 90%. Figure 6.19(E) illustrates that there were no background regions misclassified as

nuclei by the system. Finally, Figure 6.19(F) shows that GLCM based SVM model wrongly

predicted a single nuclei patch as a background region with relatively low confidence of 73%.

These results confirm our assumption derived from a visual representation of GLCM feature

(in Figure 2.4): GLCM may not be enough for capturing all nuclei information inside NRVM

images especially in the case of weak boundary cells like here.

Figure 6.20 shows the PC feature ability to capture background elements despite varying il-

lumination artefacts. The first column of Figure 6.20 represents input nuclei (Figure 6.20(A),

yellow boxes) and background patches (Figure 6.20(B), black boxes) that are fed into the SVM
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model. The greyscale NRVM image displayed here is shown in pseudo-colour for visual purpose.

The remaining columns of Figure 6.20(C, D, E, and F) represent the PC based SVM model

classification results. Figure 6.20(C) shows that the PC SVM model was able to only predict 8

nuclei locations (TP) over 11 ground truth with confidences varying from 53% to 99%. With

regards to the background patches fed to the model, Figure 6.20(D) shows that the model was

able to identify almost all of them (10/11 TN) with confidence greater than 80% despite bright

spots and varying background illumination all over the input image. The only background

patch that was wrongly predicted as nuclei (1 FP) is highlighted in Figure 6.20(E) with long

confidence of 52%. At this stage, FP ratio is not a big deal because we are aiming at detecting

all candidate nuclei locations, i.e. maximizing the TP rate. However, Figure 6.20 (F) shows

that PC based model could also fail at recognizing nuclei regions with weak boundaries (3 FN)

with varying low confidences (less than 77%). These results confirm our former assumptions

that PC may be good at recognizing background elements, hence increasing detector precision

but contradict the fact they may outperform GLCM at detecting nuclei with weak boundaries.

Figure 6.21 compares HOG and LBP based SVM models over the same NRVM cells. It illus-

trates HOG feature ability against LBP to capture nuclei objects with diverse shapes despite

their low illumination and weak boundaries. In details, Figure 6.21(A) shows that over 14

input nuclei patches, LBP based model was able to predict 9 TP. The 5 (FN) misclassified

nuclei patches are displayed in Figure 6.21(F). Visually, they are effectively characterised by

low illumination and week boundary artefacts.

In contrast, over the same input cells, Figure 6.21(C) shows that HOG-based SVM classifier

achieved better performances. 14/14 nuclei sample patches were correctly predicted with 100%

of confidence. With regards to background prediction, Figure 6.21(D) also confirms HOG-based

model outstanding performance (11 TN) over LBP-based model (10 TN) whose performance is

reported in 6.21(B). All in one, these results confirm our hypothesis in 2.2 about HOG features’

ability at encoding nuclei shapes despite illumination artefacts.

Figure 6.22 describes LBP feature ability against HOG to capture nuclei objects with high

texture intensity inside image patches. These challenging image patches are due to abnormal

accumulation of Green Fluorescence Protein in cells. The performance of LBP-based models is

verified in Figure 6.22(A) where all nuclei locations are correctly predicted by LBP against 1

missed by HOG as emphasized in Figure 6.22(C) and Figure 6.22(F).
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With regards to the performance of both models at predicting background patches, Figure

6.22(B) and Figure 6.22(D) demonstrates that LBP still outperformed HOG with a 2 TN mar-

gin despite the disparity in confidence values. Finally, although LBP-based models relatively

perform better in the presence of GFP accumulation, Figure 6.22(E) shows that further filter-

ing will be needed to deal with FP background patches, i.e. the background patches wrongly

predicted as nuclei. Moreover, the disparity of all SVM models based on unique feature vectors

confirmed our hypothesis to build a fusion model. Next Section 6.4.2 discuss our findings about

SVM models based on fusion at score level to filter initial proposal boxes.

SVM Fusion Model at Score Level to Increase Sensitivity

As stated earlier in this Chapter, we introduced initial proposal filtering by SVM fusion models

to make sure that all potential nuclei locations are kept by the system while ignoring as much as

possible evident background patches i.e., to make a trade-off between sensitivity and specificity

of the system performances as sensitivity depends on the true positive rate (TPR) and specificity

on the opposite (True Negative Rate, TNR). To do so, we built a SVM score fusion model based

on HOG, GLCM, LBP and PC features, then recorded and compared their average sensitivity

and accuracy at different fusion threshold values as described in Section 6.2.2. Figure 6.23

demonstrates this ambivalence between sensitivity and specificity of the system at the stage of

initial proposal filtering. Indeed, when pushing down the scoring threshold, system sensitivity

increases, while its specificity decreases (Figure 6.23(B)).

Figure 6.24 summarizes the results obtained by the score-fusion model we built over HOG,

GLCM, LBP and PC single SVM models and tested over user-input nuclei and background

patches extracted from our entire labelled dataset. Experiments were done in 10-cross validation

manner where 70% of the datasets were used for training the models and 30% for testing.

As reported in the graph, the sensitivity of the score fusion model is close to 100% (0.98).

However, the average specificity (0.41) and accuracy (0.7) reported tells that many FP need

further processing, i.e., the proportion of background patches assigned to the wrong category.

That is why, we introduced an ultimate classifier of the image patches by CNN as CNN can

generalize well across image content variability and can provide a rich and autonomous feature

extraction [31], [40].

Figure 6.25 reports performances output by the same score fusion SVM model tested but this
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time over nuclei locations initially generated by thresholding. The filtering by SVM fusion

model at score level enables to increase the accuracy (52.21%) and sensitivity (97.23%) of the

initial nuclei locations derived from local thresholding. But many misclassified background

patches need further filtering.

Figure 6.26 illustrates the performance of the score fusion SVMs at filtering initial nuclei loca-

tions generated by local adaptive thresholding over an NRVM image. Figure 6.26(A) represents

an input NRVM image with 15 ground truth nuclei locations highlighted by yellow boxes. Figure

6.26(B) shows the first 56 initial nuclei proposal boxes generated by local adaptive thresholding.

The Proposal boxes are highlighted by white boxes for visual purpose and overlaid on the input

image A. Figure 6.26(C) represents the true positive predictions output by the system based

on SVM fusion at score level (18 TP highlighted in red boxes and red scores). A comparison of

the filtered proposal boxes with the nuclei ground truth shows that all right nuclei have been

covered. However, there is a great concentration of boxes around inter-cellular spaces and few

background areas that are away from nuclei regions as potential cellular units.

Figure 6.26(D) shows that our proposed SVM fusion model was able to correctly predict 9

background patches (highlighted in black boxes and scores) over 38 potential ones. Figure

6.26(E) represents the FP predictions output by the fusion model, i.e. the background patches

that were misclassified by the model. Visually it can be noticed that most of the FP predictions,

i.e. the background patches assigned to the wrong category correspond to boxes containing

parts of nuclei elements that are less than 50% of the total cell area.

Finally, Figure 6.26(F) shows that there is no FN recorded, i.e. no nuclei element has been

wrongly predicted as background. Which means that the SVM filtering does not introduce

further errors into the initial proposal box generation procedure using thresholding in terms

of potential nuclei locations being discarded. In contrast, the SVM classification enables the

filtering of proposals by ignoring a proportion of candidate locations that are truly part of the

background of NRVM images. In the current example, the total number of initial proposals

boxes get reduced from 56 to 47 after 9 TN boxes got filtered. However, many FP predictions

need further assessment specially in inter-cellular regions.

To sum up, by analysing single SVM feature model performances, we found that HOG, LBP,

GLCM and PC features performed unequally in critical situations such as heterogeneous back-

ground illuminations, bright spot artefacts, high-intensity texture cells, fade nuclei texture,
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weak nuclei boundaries or vague contour cells. Based on the example images that we analysed

and the confidence ratio output by individual classifiers, it can be argued that GLCM features

and HOG are roughly good at encoding nuclei characteristics whereas PC and LBP may be

best at detecting background elements. GLCM-based models output the highest sensitivity

equalling to 0.84, and F1score equalling to 0.83; HOG-based models reach 0.82 of sensitivity

and 0.72 of F1score; while models based on a concatenation of LBP and PC achieved the high-

est true-negative rate or sensitivity equalling to 0.80 (according to Figure 6.18 Performances of

SVM models based on fusion at feature level for nuclei detection).

However, the contrasting sensibilities exhibited by the different SVM models made us take a

fusion approach at score level of the four features. The fusion model at score level enabled us

to filter the initial nuclei proposals generated by thresholding into better candidate locations

by increasing the sensitivity of the model and reducing the number of the sampling rate.

Experiences proved that for a threshold score set at -0.275, we could reach an acceptable

compromise in terms of sensitivity (97.23%), accuracy (52.21%) and specificity (29.5%) of nuclei

proposal boxes as demonstrated in Figure 6.23. Thus, we concluded that further filtering of

the proposal boxes is necessary to increase the overall system accuracy. Using CNN for final

classification of the proposal boxes initially generated by local adaptive thresholding and filtered

by score fusion SVM model is the object of the next experiment report.

6.4.3 Findings on Nuclei Bounding Boxes Classification by CNN

The filtering of initial nuclei locations by SVM fusion models enables to capture roughly 97.23%

of all potential nuclei regions inside NRVM images, with an overall accuracy of 52.21% against

24.60% for the initial proposals generated by local adaptive thresholding. This accuracy level

of the fusion model means that despite the filtering of higher-quality proposals boxes, nearly

half of them should have been discarded by the system as FP. To overcome such problem by

increasing the overall accuracy while maintaining the sensitivity level, we fine-tuned three pre-

trained CNNs (AlexNet, GoogLeNet and Inception V3) and analysed their performances in a

10 cross-validation routine as explained in Section 6.3.

With a nuclei patch detector based on AlexNet, we achieved a validation accuracy of 94.51%.

For GoogLeNet, we achieved a validation accuracy of 95.24%, and for InceptionV3, the vali-

dation accuracy increases to 96.27%. These results confirmed the general assumption that the
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deeper go CNNs, the more accurate they become until reaching a certain plateau [35] [84].

They also validated our former hypothesis made in the literature review at Chapter 2 that

deep learning strategies can outperform classification models based on hand-crafted features

vectors and generalize well over variable image conditions in terms of cell illumination, and

ROI characteristics.

Figure 6.27 illustrates the power of CNN learner at identifying ambiguous nuclei and back-

ground patches with strong confidence compared to SVMs classifiers based on hand-crafted

feature engineering. Figure 6.28 illustrates the ability of CNN detector at outperforming SVMs

classifiers in extreme low-contrast images. In both figures, the cell images are displayed in true

greyscale colour to emphasize on the cell illumination disparities.

Figure 6.28(A) shows a low contrasted NRVM image that contains 14 nuclei and 14 background

used to compare our proposed SVM and CNN models trained for nuclei patches classification.

Figure 6.28(B) and (F) show that CNN outperforms SVM in detecting an extra fade nucleus

with weak boundary located in the middle right of the image. In total, over 14 ground truth

(GT) nuclei, SVM fusion enables to detect 11, while CNN enables to find 12. Figure 6.28(C)

and Figure 6.28(G) show these differences in terms of FN predictions (3 FN for SVM and 2 FN

for CNN). Figure 6.28(D) and (H) illustrates that CNN still outperforms SVM at predicting

more background patches (13 for CNN and 7 for SVM for a total of 14 GT background). These

differences are also illustrated in Figure 6.28(E) and Figure 6.28(I) where the corresponding

FP predictions made by both classifiers are displayed.

Figure 6.29 and Figure 6.30 summarize the average performances recorded in a 10-cross val-

idation routine over splits of our dataset (70%, 30%) without or with segmentation. Both

experiments respectively exhibit a standard deviation of 0.16% and 0.34% between the rounds

and for all the performance measurements.

6.5 Summary on Nuclei Detection by Customized R-

CNN

In summary, our practical investigation about automated nuclei detection by customized R-

CNN showed the following. First, a data-driven based technique for generating nuclei proposals

is efficient as it helps reduce the sampling rate (less than 61 boxes per image) and improve the
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GTC ratio of nuclei proposal boxes (97.23%) prior to fine-grained classification by CNN object

detector described in Section 6.2.3. Second, Hand-crafted feature engineering based on HOG,

LBP, GLCM, and PC is tedious and may not be sufficient to encode all nuclei features in

challenging situations such as heterogeneous image backgrounds, vague-contour cells, broken-

edges cells, fading and high-intensity texture cells. Third, a deep image patch classifier based

on Inception V3 CNN increases the accuracy of the whole system with a fine margin of accuracy

= 0.75.

In details, the region proposal generation technique we developed consists of 2 steps: 1) local

adaptive thresholding for computing initial nuclei locations; 2) a score-fusion model using four

linear SVM Classifiers built upon HOG, LBP, GLCM, and PC features for filtering the initial

proposal boxes. Combining local adaptive thresholding and SVM classification enables us to

perform a kind of selective based on image content rather than a blind search involving window

sliding over entire input images. Compared to the most promising object detection technique

we investigated in Chapter 5, the edge-box based strategy, which generates more than 8 000

bounding boxes per NRVM image with an overall accuracy of 30.61%, our solution is more

realistic and applicable to FM datasets, as it generates fewer candidate locations and more

accurate ones. Indeed, the SVM filtering procedure, we applied to the initial proposal boxes

generated by thresholding, enabled to output candidate nuclei locations that cover 97.23% of

the nuclei ground truth with 52.21% of accuracy.

The ultimate object detection routine we applied after SVM filtering relies on the power of CNN,

such as Inception V3. The rationale behind the usage of CNN for final nuclei patches detection

was to reduce the number of FP predictions of SVM models, i.e. to filter out background patches

wrongly classified as nuclei. Results discussed in Section 6.4.3 proved that CNN features could

effectively generalize well and outperform SVM models based on hand-crafted feature vectors

with better accuracy and confidence scores.
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Figure 6.16: Limitations of initial nuclei proposal generation in handling cell overlaps. 3 cellular

regions showing overlapping candidates are labelled with red stars in B. A: original reference

image with 34 ground truth nuclei labels. B: binary mask after applying local adaptive thresh-

olding. C: results of the initial proposal box generation. D: comparison of the initial proposals

with the reference image.
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Figure 6.17: 17 Finding locations of overlapping or touching cells from regional maxima cen-

tres. A, E, I: 3 original grayscale nuclei patches with overlapping or touching elements. B,

F, J: foreground element marking by morphological opening-reconstruction. Regional maxima

segmentation mask. Separation edges set between touching or overlapping cells.

Figure 6.18: Average performances of SVM models based on fusion at feature level for nuclei

detection.
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Figure 6.19: GLCM SVM classifiers outperform in presence of vague contour cells but under-

perform in heterogeneous image backgrounds. A: reference image with 8 ground truth nuclei

locations. B: reference image with 8 ground truth sample background patches. C: 7 TP nuclei

locations predicted by the system built on GLCM features. D: 8 TN background patches

predicted by the system. E: no FP predicted by the system. F: only 1 FN predicted by the

system. Decimal numbers represent the level of confidence of the classifier.
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Figure 6.20: PC SVM classifiers outperform in presence of heterogeneous background. A:

reference image with 11 ground truth nuclei locations. B: reference image with 11 ground truth

sample background patches. C: 8 TP nuclei locations predicted by the system built on PC

features. D: 10 TN background patches predicted by the system. E: only 1 FP predicted by

the system. F: 3 FN predicted by the system. Decimal numbers represent the level of confidence

of the classifier.

Page 170 of 202



Figure 6.21: HOG SVM may outperform LBP SVM in well-shaped nuclei images but under-

perform in presence of fading texture. A: reference image with 14 ground truth nuclei locations.

B: reference image with 14 ground truth sample background patches. C: 14 TP nuclei locations

predicted by the system built on HOG features. D: 11 TN background patches predicted by

the system built on HOG. E: 3 FP predicted by the HOG based system. F: 5 FN predicted by

the LBP based system. Decimal numbers represent the level of confidence of the classifiers
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Figure 6.22: LBP SVM may outperform HOG SVM in intense-texture nuclei images. A: All

TP nuclei detected by LBP based model. B: 9/11 TN predicted by LBP based model. C: 10

TP/11 nuclei locations predicted by the HOG based system. D: 7 TN/11 background patches

predicted by the HOG based system. E: 2 FP nuclei predicted by the LBP based system.

F: only 1 FN predicted by the HOG based system. Decimal numbers represent the level of

confidence of the classifiers.
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Figure 6.23: Optimum score fusion Threshold: trade-off between sensitivity and specificity. A:

Table of sensitivity and accuracy performances recorded for filtering initial proposals by SVM

fusion at score level with different thresholds applied over half of the testing dataset. B: plot of

sensitivity (blue line) and specificity (orange line) performances over fusion threshold values.

Optimum threshold is the point of junction of both curves i.e., the cut-off dashed line with x

= -0.275

Figure 6.24: Average performances recorded after 10 Cross-validation of SVM model based on

Fusion at score level for image patch classification without segmentation.
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Figure 6.25: Average performances recorded after 10 Cross validation of SVM model based on

Fusion at score level for image patch classification with segmentation.
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Figure 6.26: Initial threshold nuclei location filtering by SVMs models using fusion at score

level. A: original input NRVM image with 15 ground truth labelled nuclei. B: 56 initial locations

generated by local adaptive thresholding. C: 18 high-quality boxes filtered by SVMs using score

fusion. Confidence scores plotted in red numbers. D: 9 TN boxes filtered out by SVMs using

score fusion. Confidences scores plotted in black numbers. E: 29 FP boxes output by SVMs.

Confidence scores plotted in white numbers. F: SVMs model ability at filtering all background

samples from the initial proposals.
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Figure 6.27: Inception V3 based R-CNN detector is highly confident at detecting challenging

nuclei and background. The label [Nc/Nc, 100%] means the classifier has predicted a nuclei

class at a location labelled as nuclei patch with 100% confidence. In the same way, the label

[Bg/Bg, 98.6%] means the classifier has predicted a background class at a location labelled as

background patch with 98.6% of confidence.
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Figure 6.28: CNN classifier outperforms hand-crafted feature based SVM models for nuclei

patch classification. White boxes in A: represent initial known proposal boxes fed to SVM

fusion model and CNN for classification. Red boxes in B: and F: represent TP predictions

made by both classifiers i.e., nuclei boxes correctly classified as nuclei. Blue boxes in C: and

G: represent FN predictions made by the classifiers i.e., nuclei boxes wrongly classified as

background. Yellow boxes in D: and H: represent TN predictions made by the classifiers i.e.,

background boxes correctly classified as background. Magenta boxes in E: and I: represent FP

predictions made by the classifiers, i.e., background patches wrongly classified as nuclei
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Figure 6.29: Performance of nuclei patch classification by CNN Inception V3 without segmen-

tation.

Figure 6.30: Performance of nuclei patch classification by CNN Inception V3 with segmentation.
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Chapter 7

General Conclusion

This chapter presents our thesis conclusion in terms of achievements, limitations, and areas for

future research in automated analysis of cellular parameters based on fluorescence microscopy

(FM) video imaging. The following sections will report those ending notes about our research

for automated calcium signalling analysis in cardiac myocytes, and nuclei detection in FM 2D

images.

7.1 Achievements

To sum up, our investigation about automated analysis of intracellular signalling parameters

through FM video imaging enabled us to reach to some achievements in both computing and

cell biology under the following two topics: intracellular calcium signalling in cardiac myocytes

and nuclear detection.

7.1.1 Calcium Signal Analysis for Understanding Arrhythmia

Regarding intracellular calcium analysis, we proposed automated solutions for calcium hotspots

detection and measurement and calcium hotspot signal processing. The calcium hotspot detec-

tion technique proposed was based on a two-level segmentation strategy that combines calcium

signal segmentation by multi-level thresholding and the hit-ratio computation of calcium signal

locations (3). To the best of our knowledge, our proposed routine for calcium signal hotspot de-
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tection in FM video is the first of its kind for automated analysis of best active cardiac myocytes’

frequency of calcium signals without prior knowledge in terms of size of the ROIs. Compared to

pioneering techniques developed by Cheng [21], our proposed technique outperformed with an

average precision margin of 12.2%. The measurement of calcium signal monitored in hotspots

sets the platform for our next investigation: calcium hotspots signal processing (4).

The fundamental contribution of our research about calcium signal processing is related to

photobleaching detection and correction in calcium signals of cardiac myocytes through FM

image sequences. Photobleaching is a degenerative photochemistry phenomenon that shows

fluorescence molecules losing their ability to re-emit light at a certain expected wavelength with

time [90]. In calcium imaging using FM, the advent of photobleaching causes loss of information

about the real level of signal amplitudes. The photobleaching detection and correction we

proposed and tested in cardiac myocytes enables scientists to accurately measure of intracellular

signalling regardless of experimental conditions.

Chapter 4 demonstrates that photobleaching correction in cardiac myocytes loaded with calcium

indicators can be modelled by mono-exponential curve fitting with an MSE varying between

[0.09013, 6.41796]. The photobleaching signal recovery method we derived from the curve

fitting model is based on signal baseline adjustment. The adjustment is made by adding to the

original signals the differences between the expected flat baselines and the estimated baselines

exhibiting photobleaching loss. When applied to 80 hotspots exhibiting photobleaching decays

in recorded calcium traces, our method achieved a performance of 0.7875 of correction.

Several cardiac dysfunctions, like arrhythmia involving PVCs, one of the cell types used in this

study, are caused by abnormal intracellular calcium signals within the cardiac myocytes. Our

automated solutions allow a faster and more reliable analysis of these processes and enable

experiment replicability. Our proposed routine enabled the automation of the data analysis

extracted by biologists from the observation in the laboratory of cells undergoing arrhythmia

and transient calcium signals. For the easiness of use, we developed a graphical user interface

MATLAB toolbox (INCAS software) for such analysis of video of cardiac myocytes stained

with calcium indicators. The INCAS stands for Intracellular Calcium Signal Software. Its

description is available in the appendix A.
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7.1.2 Nuclei Detection for Autophagy Evolution Analysis

Cell and/or nuclei detection is the starting point for multiple biological-image analysis analyses.

Our investigations reported in Chapter 5, and Chapter 6 about deep neural network strate-

gies for nuclei detection in NVRM images showed that data-driven proposal box generation

combined to CNN could achieve great performances over ground truth expert labelled dataset.

Experiments demonstrated that standard object proposal techniques such as the sliding window

search, the selective search, the objectness search, and the edge box strategy showed huge

limitations in terms of the sampling rate (more than 8 000 proposals/image) and mAP (less

than 0.3) when applied to NRVM nuclei images. The data-driven proposal box generation we

proposed used local adaptive thresholding mask to generate initial nuclei locations, then SVM

models to filter the initial locations into better candidates. With such a data-driven strategy,

our proposed technique achieved a TPR of 0.9723, an accuracy of 0.57, and an average sampling

rate of 61 proposal boxes per image. The final nuclei patch classification by CNN enabled to

keep similar TPR (0.9830) and to increase the accuracy by roughly 0.4 (0.9479). All in one,

the automated detection of NRVM nuclei undergoing autophagy through FM images enabled

us to provide biologist with accurate measurement for autophagy evolution monitoring.

7.2 Limitations

As the contributions, the limitations associated to our research about automated analysis of

cellular parameters through FM video imaging can be classified into two main groups: calcium

signal analysis and cell segmentation.

7.2.1 Automated Solution for Calcium Signal Analysis

As stated in Section 3.1 cardiac myocytes can show multiple types of calcium signals according

to their spatiotemporal characteristics: rising time, spatial spread, amplitude. These calcium

signals are essentially calcium puffs, calcium sparks that are localized signals and calcium oscil-

lations, and waves that can are high-intensity repetitive phenomenons and can spread through

several neighbouring cells. Our proposed technique for hotspot detection and measurement

does not provide such classification of calcium signals in particular, as there is no cell boundary
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detection associated to the hotspot segmentation method we investigated.

However, since the automated procedure for intracellular active regions (hotspots) detection

depends on initial segmentation of calcium signals events in individual frames no matter their

spatiotemporal properties, someone can argue our technique’s ability to generalize well onto

multiple datasets involving different calcium signal types. Indeed, unlike techniques discussed

in the literature that define a fixed size radius for calcium signal event ([34]), or user-input

threshold value ([28]), our techniques default parameters for hotspot detection are automatically

computed by the algorithm based on the initial calcium signal segmentation output.

Besides, for the validation of our solutions, it can be argued that the manually annotated ground

truth dataset we used may not be enough as there were no other available ground truth nuclei

images obtained by FM to test against. The validation of the photobleaching detection and

correction techniques suffers from the same limitations associated to the lack of other ground

truth calcium signals altered by photobleaching decay.

7.2.2 Automated Solution for Cell Detection

The proposed solution for nuclei detection by adaptive R-CNN based on data-driven proposal

box generation shows essential limitations at two levels: the initial generation of candidate

nuclei location by thresholding and the classification of best candidate locations by CNN.

Although the locally adaptive thresholding mask enables to capture almost all potential nuclei

objects in NRVM images, pairs of touching and overlapping cells are still output as single

entities. Our proposed solution for separating touching cells is semi-automated as it supposes

the touching cells patches identified. Besides, the proposed technique for separating overlapping

cells depends on the local maxima of image regions. That may be misleading as experiences in

Section 6.2 showed that background objects could be brighter than the cells in some extreme

cases.

7.3 Areas for Future Research

Areas for future research could include calcium signal classification in FM cardiac myocytes

images to give valuable insights to biologists about the cell’s frequency of calcium signals.

Page 182 of 202



Integrating into the proposed routine for automated calcium signal detection and measure, cell

boundary segmentation and thus ultimate calcium signal differentiation or classification would

be highly beneficial to cell biologists.

Although, the proposed automated routine for calcium analysis was tested on cardiac myocytes

image sequences, the hotspot detection strategy based on thresholding at frame and video level

and using connected component filtering and the hit-ratio principle can be customized and

applied to a range of variety of intensity-based measurements of cellular domains involving

video recordings such other ions channels (sodium, potassium), or single molecules stains, or

cellular domains tracking (marked cancer cells, virus).

Another topic for further research could be to investigate and develop an automated detection

and separation of overlapping cells based on CNNs and/or regression algorithms rather than

standard image processing techniques such as advanced morphological operations and watershed

transforms.

Finally, an area for future study could be the development of biological ground truth datasets at

the level of ImageNet made of millions of images classified into different cell domain categories

or types (blood cells, neurons, cardiac myocytes, other muscle cells, epithelial cells, bone cells,

teeth cells, cancer cells, healthy cells, lysosomes, vesicles, mitochondria, nuclei, etc.). Such huge

publicly available datasets may enable the development of deep neural networks with the same

performances as the state-of-the-art techniques developed for object detection, recognition, and

image classification over natural images.
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Appendix A

Description of INCAS:Intracellular

Calcium Analysis Software

This appendix presents the description of INCAS, the Intracellular Calcium Analysis Software

developed in MATLAB through our research study to provide biologists with a Graphical

User Interface (GUI) app integrating some of the automated solutions we presented in the

thesis. INCAS can be defined as a data analysis toolbox for biomedical images processing and

dedicated to calcium signal imaging. It works only on standard Windows Personal Computers

set up with Windows 7 and the latest Windows Operating System. The software package can

handle image stacks and videos of several formats: TIFF, MPEG, AVI, and MOV and process

up to 1500 frames at a time. It output segmentation masks into image formats, and hotspots

locations into MATLAB files. It also provides a set of measurements derived from changes

of calcium concentration into text, excel sheets, and MATLAB files. The following sections

give an overview of the software application in cell biology, its interface description, and some

measurements output.

A.1 Overview

Monitoring intracellular calcium signalling in cardiac myocytes loaded with fluorescent calcium

indicators often involves the detection of the most active cells, i.e. the calcium hotspots and the

monitoring of the changes of calcium concentration inside them. To the best of our knowledge,

there is no software solution that fully automates such process in a friendly manner. In contrast,
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intracellular calcium hotspot analysis usually proceeds manually or semi-automatically through

the combination of multiple proprietary software such as ImageJ and GraphPad Prism.

INCAS comes as an all-in-one solution that enables both image processing and statistical mea-

surements for automated intracellular calcium signal analysis through calcium movies. The

new software package we describe here is meant to fulfil biologists’ need for a data analysis

toolbox that allows the detection and measurement of intracellular calcium hotspots from 2-D

fluorescent image stacks or video inputs of cardiac myocytes. The imaging data should involve

cells stained with calcium indicators with a single wavelength. INCAS can automatically scan

calcium imaging video experiments, detect the most active cells, and quantify signal measure-

ments into curves, peaks, frequencies of peaks, amplitudes of maximum responses, inter-spikes

intervals, rise times, and area under curves.

A.2 Interfaces and Features Description

The software interface consists of two main Microsoft Window-like forms: a main interface

for segmentation of calcium signal areas and hotpots (Figure A.1), and a second interface for

plotting calcium signals and extracting measurements (Figure A.2).

As it can be noticed in Figure A.1, through the main interface, users can upload videos of

calcium imaging experiments and perform thresholding and hotspot detection automatically

or semi-automatically by setting up parameters through available user-friendly control buttons

(red labels 1,3,4,7). The screenshot below shows that 43 hotspots have been detected from a

video of 301 frames showing calcium imaging experiments involving PVC cells. By scanning

all the frames, the software we’re able to compute an optimum threshold of 0.64 to segment

calcium signal areas in individual frames and to detect the best active regions highlighted in

white (red label 9) based on default parameters automatically defined such as hotspot size,

hit-ratio and separating distance (red label 4).

The whole main interface illustrated in Figure A.1 for essentially uploading calcium imaging

videos, thresholding calcium signal area at two levels and detecting calcium hotspot can be

described as the following:

• Red label 1 of Figure A.1 represents a set of functionalities that allow users to upload
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Figure A.1: INCAS main page - screenshot

fluorescent video into the app according to a range and step of frames, and to play the

video once uploaded. During the loading process, an optimal threshold is computed by

the system and enables the segmentation of calcium signal events in individual video

frames according to the routine described in the thesis section 3.2. Here it can be noticed

that a video recorded at a rate of 30 fps, has been uploaded from the D directory of a

computer in a such way that all his 301 frames are accessible to the user and loaded into

the working space of the app.

• Red label 2 shows a group of features that enable users to navigate through individual

greyscale frames and binary frames obtained after optimum thresholding. Radio buttons

“original” and “binary” indicate to users which frame to display. If hotspots have been

detected, options button “Hotspot(s)” enables overlaying the hotspots locations on the

frames to display as highlighted in white regions. The option “Calcium” allows users to

overlay calcium signal locations on frames.

• Red label 3 shows a set of functionalities that enable users to manually set an optimum

threshold to detect calcium signal events of individual frames. By default, the optimum

threshold is computed at frame and video level according to the routine described in
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Section 3.2.

• Red label 4 corresponds to a set of input boxes that allow users to set parameters for

automated hotspots detection such minimum and maximum sizes, hit ratio minimum

and maximum values, and the minimum distance between hotspots. By default, the size

parameters are calculated based on the mean and the standard deviation of the size of

calcium event segmented in frames. The default hit-ratio range is set between 1 to 100%,

whereas the minimum distance is set to 2 pixels. When the option “ignore persistent

bright areas” is selected, the system tries to get rid of noisy illumination artefacts that

may be output as hotspots according to the principle described in the thesis Section 3.5.

• Red label 5 shows a list box that displays the list of hotspots detected by the system if they

exist. The first column contains the centroid coordinates [x, y] of hotspots, then follow

their sizes, their hit-ratios, and the index of their frame of origin in the next columns.

• Red label 6 represents a set of radio buttons that enable users to view detected hotspots

or overlay their locations on individual frames.

• Red label 7 and 10 represents a set of action buttons whose functions are suggested by

their names.

• Red label 8 and 9 respectively correspond to a title section or an information panel and

an output display area. Here, the system has output 43 hotspots and overlaid them over

the last frame of a calcium video made of 301 frames.

The second interface in Figure A.2 illustrates the signal processing functionality of INCAS

toolbox. It consists of two main features: - first, calcium signal adjustment by photobleaching

detection and correction, - and second measurements of calcium signal parameters. The whole

calcium signal processing interface that is illustrated in Figure A.2 can be described like the

following:

• The output display panel of Figure A.2 red-labelled 6 shows plotting of curves of the 43

hotspots highlighted in Figure A.1. The y-axis represents concentration change units,

and x-axis time in seconds that is calculated based on the video frame rate and length.

• The list box red-labelled 1 contains properties of the detected hotspots. The set of op-

tions buttons red-labelled 2 enable users to select the type of curve to plot i.e. an average
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Figure A.2: Calcium signal processing - Screenshot

frame background illumination, initial average intensity of calcium traces, corrected fluo-

rescence, the change of calcium concentration or the adjusted calcium measurement after

photobleaching correction.

• The set of parameters red-labelled 3 and 4 enable users to select the types of statistical

measurements to retrieve from the hotspots’ calcium traces. Measurements can be the

time of slopes, peaks frequencies, inter-spike intervals and areas under curves. Those

measurements are made according to default parameters of frame rate, peak prominence,

threshold, and minimum amplitude.

• The group of radio buttons red-labelled five allows to retrieve measurements from single

or multiple hotspots.

• The group of actions buttons red-labelled 7 enable actions according to their respective

names.

Figure A.3 illustrates INCAS ability to produce statistical measurements into dynamical tables

that can be exported into MATLAB, text and excel sheet files. The measurements displayed

here for illustration are from left to right, maximum amplitudes, Mean amplitudes, and peak

frequencies of each hotspot (ROI) in the first form and all peak values per ROI in the second
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Figure A.3: Statistical measurements - Screenshot

form. They are produced when users click on the button “Get readouts” after selecting options

“All Hotspots” and “Normalized” of the main software interface. Those measurements can also

be obtained, when users click on the button “Extract parameters” of the form “Signal analysis”

displayed in Figure A.2.

A.3 Appendix Conclusion

All in one, INCAS is a first attempt to fully automate in one place intracellular calcium hotspots

detection and measurement from a fluorescent video of cardiac myocytes. The software package

has been tested over pulmonary veins sleeve cells and neonatal rat ventricular myocytes. We

argue that the toolbox could be applied to any fluorescent video datasets showing dynamic

cellular patterns that can be repetitive and quantified by illumination fluctuation.

All in one, INCAS is a first attempt to fully automate in one place intracellular calcium hotspots

detection and measurement from a fluorescent video. INCAS is a standalone application that

works only on Windows computers. It provides a graphical user interface to upload fluores-

cent video files, automatically detect areas and hotspots or set them up manually, and extract

measurements from the calcium traces recorded over time. The main features of the toolbox

consist of a set of functionalities such as a video frame visualization toolkit based on the func-

tionality of MATLAB Image processing and Computer Vision toolbox. INCAS also integrated
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a set of algorithms for hotspot detection and measurement based on thresholding and video

fusion we presented in Chapter 3 of the thesis, and for photobleaching detection and correc-

tion using non-linear least square regression we introduced in Chapter 4. The INCAS software

package has been tested over special cardiac cells such as PVCs and NRVMs. Still, we argue

that the toolbox could be applied to any fluorescent video datasets showing dynamic cellular

patterns that can be repetitive and quantified by illumination fluctuation. The code source of

the INCAS toolbox is available at the School of Computing of the University of Buckingham

(https://www.buckingham.ac.uk/computing).
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