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Abstract 
 

This paper presents an investigation into the 

construction of over-complete dictionaries to use in  

reconstructing a super resolution image from a single input 

low-resolution image for face recognition at a distance. 

The ultimate aim is to exploit the recently developed 

Compressive Sensing (CS) theory to develop scalable face 

recognition schemes that do not require training. Here we 

shall demonstrate that dictionaries that satisfy the 

Restricted Isometry Property (RIP) used for CS can achieve 

face recognition accuracy levels as good as those achieved 

by dictionaries that are  learned from face image databases 

using elaborate procedures. 

 

1. Introduction 

Developing face recognition schemes that perform well 

in uncontrolled conditions, such as in surveillance 

situations and at a distance, is a tough challenge due to 

many factors including difficulties in determining a model 

for image degradation that encompasses various 

conditions. The performance of face recognition schemes 

whose feature extraction is based on using training sets of 

images is strongly dependent on how representative of the 

real world is the training set.  

Face resolution enhancement is deemed to be necessary for 

accurate face recognition in many surveillance scenarios, 

where there is always a large distance between the camera 

and the objects (people) of interest or where a cheaper, 

lower resolution camera is used. Super-resolution (SR) is 

an inverse problem used as a pre-processing technique for 

face recognition, which deals with the recovery 

(reconstruction) of a high-resolution image from a given 

low-resolution image by a procedure that involves 

up-sampling, using criteria for estimating the missing 

details, followed by procedures to filter out distortions such 

as noise and blurring effects. Mathematically, the SR 

problem can be modeled as a solution of the matrix 

equation:  

                            𝑦 = HBx + n                                       (1) 

 

where y is the known low-resolution (LR) image, H and B 

are the decimation and blurring matrices respectively; x is 

the unknown high-resolution (HR) image and n is additive 

noise. SR image reconstruction is generally a severely 

ill-posed problem because of the insufficient number of LR 

images, ill-conditioned registration, unknown blurring 

operator and the solution from the reconstruction constraint 

is not unique. Therefore, various regularization techniques 

are proposed to stabilize the inversion of this ill-posed 

problem [1], [2], [3]. However, the performance of these 

algorithms degrades rapidly when the desired 

magnification factor is large or the number of the input 

images is small. 

The emerging paradigm of compressive sensing (CS) has 

been recently investigated as a method for improving 

signal/image resolution [4], [5], [6], [7]. Compressive 

sensing is a novel paradigm of signal sampling that exploits 

the empirical observation that many types of signals and 

images can be quite accurately approximated by sparse 

expansion in terms of suitable bases by a relatively small 

number of non-zero coefficients. The basic premise of CS 

is that sparse signals can be recovered from far fewer 

samples than those required by the classical 

Shannon-Nyquist Theorem, which specifies that, to avoid 

losing information when capturing/reconstructing a signal, 

one must sample at least two times faster than the signal 

bandwidth. 

The basic principle of sparse coding (sparse representation) 

assumes that a natural signal can be compactly expressed 

and represented efficiently as a linear combination of atom 

(vector) signals from a pre-specified over-complete 

dictionary, where most of the linear coefficients are zeros. 

A dictionary [8] is a generalization of vector space basis 

represented as an over-complete matrix 𝑚 × 𝑛, where 𝑚 ≪
𝑛 whose columns form a pool of bases whereby any vector 

in 𝑅𝑛  can have multiple representations in terms of 

different bases in R𝑚.    

The sparse coding problem to a column signal 𝑥 ∈ 𝑅𝑚 can 

be described as: 

 

              𝛼0 = min
𝑥
‖𝛼‖1 𝑠. 𝑡. ‖𝑥 − 𝐷𝛼‖2                       (1) 
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where 𝛼0  is the sparse presentation of 𝑥  and  𝐷 =
{𝑑1, 𝑑2, …… . . 𝑑𝑛}  ∈ 𝑅

𝑚×𝑛   is an over-complete 

dictionary.  

In the past few years, many people have been using CS on 

single image SR problems to reconstruct a high-resolution 

image. In [5], [6], [7], Yang, et al. proposed a new method 

to reconstruct a super resolved image based on sparse 

representations from an appropriately chosen pair of 

over-complete dictionaries whose columns are closely 

related to patches of high and low resolution images. In 

particular, the high and low dictionaries, 𝐷𝐻  and 𝐷𝐿 , are 

created by simply randomly sampling raw patches from the 

HR and the corresponding LR training images from a 

database of similar statistical nature to the input image, 

where the LR images are generated from the HR training 

images database by blurring and down-sampling. A sparse 

representation 𝛼0 of the input LR image patch 𝑦  is 

computed using the low-dictionary 𝐷𝐿 built from LR 

images, and the HR image patch 𝑥  is estimated using the 

given sparse representation with respect to the 

high-dictionary 𝐷𝐻 . Back project iterative method is used 

to remove possible artifacts from the sparse representation 

stage and to eliminate the reconstruction errors in the 

estimated HR image (see also [9], [10]). 

Studer and Christen, in [11], presented the K-SVD method 

for generating the learning dictionary to up sample the LR 

image. It is an iterative algorithm that alternates between a 

sparse coding of the training samples for a current 

dictionary and dictionary update step, such that it better fits 

the data. The K-SVD algorithm performs a singular value 

decomposition (SVD) for each of the K different 

sub-matrices, and hence the name K-SVD (K is used as the 

number of columns in the dictionary; and SVD will be 

defined in section 2). 

In [12], Biswas et al. proposed an approach for matching 

non-frontal LR image with HR frontal gallery images by 

using Multidimensional Scaling (MDS) technique to 

transform the feature of LR and HR images such that the 

distance between them approximate the distances had the 

probe image been taken in the same conditions as the 

gallery. They used SIFT descriptors at fiducial locations as 

the features for performing recognition. Suitable scale 

changes in SIFT descriptor computation are made to make 

the comparison across resolution feasible. 

In recent work [13], we considered the problem of 

matching LR probe face images with HR gallery images. 

We proposed to reconstruct the feature vector of the LR 

probe image by using dictionaries constructed from the 

high frequency training face images and compared the 

method with state-of-the art adaptive learning dictionary 

based SR method [6]. Where learning dictionary based on 

images database help wavelet-based features of 

super-resolved LR face images from SD cameras to achieve 

similar levels of accuracies with those of costly HR images 

captured from HD cameras. 

In this paper, we investigate CS based sparse representation 

of a sample image in order to reconstruct a HR image for 

face recognition by taking different approaches to construct 
dictionaries as an alternative to the learning dictionary (LD) 

approach that is based on images (see section 3.3). In 

particular, our focus is on constructing dictionaries without 

relying on training images. We shall evaluate the 

performance of different dictionaries in terms of the quality 

of their super-resolved images, face recognition accuracy, 

as well as their CS properties.  

The rest of the paper is organized as follows. Mathematical 

Properties of CS is presented in section 2. Restricted 

Isometry Property of dictionaries is reviewed in section 3. 

Experiments and results are discussed in section 4, and 

finally, section 5 is devoted to conclusions. 

2. Properties of CS Dictionaries 

The main concern of CS is the recovery of a sparse signal 

from a relatively small number of measurements of the 

signal. A vector 𝒙 is k-sparse if at most k coefficients 𝑥𝑖 are 

non-zero.  

Two closely related properties of underdetermined matrices 

have been identified in the CS literature in relation to 

recovery of sparse signals: the Null Space Property (NSP) 

and the Restricted Isometry Property (RIP). 

The Null Space Property (NSP): 

An 𝑚 × 𝑛  matrix (i.e. dictionary) 𝐴 ∈ 𝑅𝑚×𝑛 , 𝑚 ≪ 𝑛,  is 

said to be an NSP of order k if every 2k columns of A are 

linearly independent. This definition shows that NSP 

matrices can be formed as a concatenation of different 

bases as long as certain conditions are satisfied. The 

following well-known theorem is straight forward, [14], 

but for clarity, we repeat its proof below. 

Theorem 1.  If 𝐴 is NSP of order k matrix then 𝐴𝑥 = 𝑏 has 

a unique k-sparse solution.  

Assume that there are two k-sparse signals x1 and x0 ∈ Rn 

with 𝐴x1= 𝐴 x0, which implies 𝐴 (x1-x0) = 0. However, 

(x1-x0) is 2k-sparse, so there is a linear dependency between 

2k columns of A, contradiction due to A is NSP. 

This theorem shows how to construct the unique solution to 

the  𝐿0 −minimisation problem. Unfortunately, this is a 

non-convex optimization problem, which in contrast to the 

𝐿2 − minimisation problem (least-squares) is 

computationally intractable. Fortunately, the corresponding 

𝐿1 − minimization problem can be solved efficiently and 

under certain slightly stronger condition than the NSP, it 

has a unique solution that is also the solution of the 

corresponding  𝐿0 − minimization problem. The required 

sufficient condition that the dictionary must satisfy, in this 

case, is the Restricted Isometry Property first introduced by 

Candes and Tao [14]. RIP is defined as follows: 

The Restricted Isometry Property (RIP): 
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A matrix 𝐴 of size 𝑚 × 𝑛 is said to have the RIP of order k 

if there exists a Restricted Isometry Constant (RIC)               

0 < δk < 1 such that: 

 

(1 − 𝛿𝑘)‖𝑥‖2 ≤ ‖𝐴𝑥‖2 ≤ (1 + 𝛿𝑘)‖𝑥‖2          (3) 

for all k-sparse vectors 𝑥. 

 

RIP requires that all column sub-matrices of 𝐴 of 𝑘 

columns must be well conditioned. This is a very restrictive 

condition and quite difficult to check. Calculating the 

condition number of the matrix 𝐴  is a simpler way of 

ensuring recovery of sparse vectors. The condition number 

of 𝐴  can be calculated using the Singular Value 

Decomposition (SVD) of 𝐴. 

Singular Value Decomposition (SVD): 

The SVD of any matrix 𝑅𝑚×𝑛   𝑤ℎ𝑒𝑟𝑒  𝑚 < 𝑛, is of the 

form 𝐴 = 𝑈𝑆𝑉𝑇  where 𝑈  and V are unitary-matrix 

matrices of size 𝑚 ×𝑚 and 𝑛 × 𝑛, respectively, and 𝑆 is a 

𝑚 × 𝑛 rectangular matrix with non-negative real numbers 

on the diagonal and zero elsewhere. The columns of each of 

𝑈 and 𝑉 form orthonormal bases.  

The diagonal entries  𝑆𝑖,𝑖  , 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝜎𝑖 , are the non-zero 

singular values of 𝐴 arranged in decreasing order. In fact, 

𝜎𝑖  are the square roots of the non-zero eigenvalues 𝜆𝑖  of 

𝐴𝐴𝑇 , 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑟. 
 The condition number of the matrix 𝐴, defined as:  

 

           𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝐴) =  
𝜎𝑚𝑎𝑥
𝜎𝑚𝑖𝑛

 

 

where 𝜎𝑚𝑎𝑥  and 𝜎𝑚𝑖𝑛 represent the maximum and 

minimum singular values of 𝐴. A high condition number 

points to an ill-conditioned matrix, whereas a low condition 

number points to a well-conditioned matrix [2], [15]. This 

will be a measure of the strength of the RIP. 

3. RIP Dictionaries – Examples 

In this section, we describe examples of different, 

random as well as deterministic, dictionaries and discuss 

their RIP strength. We shall investigate the use of these 

dictionaries, as alternatives to the existing methods of using 

training images to create dictionaries, for CS based 

super-resolution. 

3.1. Gaussian Random Matrix (GRM) 

A widely used RIP dictionary is the Gaussian Random 

Matrix. For Gaussian Random Matrix, the entries  𝑥𝑖,𝑗 of 

the matrix 𝐴 of size 𝑚 × 𝑛 are independently sampled from 

a normal distribution  𝑥𝑖,𝑗~𝑁(0,1/𝑚) with expectation of 

𝜇 = 0  and variance 𝜎2 = 1/𝑚 , where the normal 

distribution function is as follows:- 

                           f(x) =
1

√2πσ2
e
−1

2
(
x−μ

σ
)
2

                                  (4) 

 

In order to reconstruct a HR image from a single LR image 

for face recognition via sparse representation, two 

over-complete Gaussian random matrices 𝐷𝐻  and 𝐷𝐿  of 

size 25 × 512  and 100 × 512  respectively have been 

created from a zero mean Gaussian distribution with 

variance  1/25, and 𝐿2 − norm used to normalize each 

column. Therefore, the over-complete dictionary 𝐷𝐻  

satisfies the sufficient property for CS and its condition 

number (i.e. ratio between largest and minimum singular 

value) is known to be of high RIP strength. In fact, the 

Gaussian dictionary, generated in our experiments, has a 

reasonably low condition number   
5.3466

3.6789
=1.453. 

3.2. Toeplitz-Circular Random Matrix (T-CRM) 

The Gaussian matrix provides an optimal condition for 

the minimal number of required samples for sparse 

recovery. However, some CS applications often do not 

allow the use of “completely” random matrices, but put 

certain physical constraints on the measurement process 

and limit the amount of randomness that can be used. This 

leads then to a structured random measurement matrix. 

Bajwa et al. [16] have shown that Toeplitz-structured 

matrices are sufficient to recover undersampled sparse 

signals. These matrices are important in applications such 

as wireless communications and radar [17], [18]. Toeplitz 

and Circular matrices of the size 𝑘 × 𝑛 are of the form, 

respectively: 

T = [

tn     tn−1     … t1
tn+1     tn     … t2

⋮
tn+k−1 tn+k−2… tk

], 

and 

C = [

tn     tn−1     … t1
t1        tn      … t2

⋮
tn−1  tn−2   … tk

] 

 

where every left-to-right descending diagonal is constant. 

These matrices satisfy the RIP. The high-dictionary 𝐷𝐻  of 

size 25 × 512  and the low-dictionary 𝐷𝐿  of size 100 ×
512 are generated as Toeplitz-Circular Random Matrices 

where the first row consist of standard Gaussian random 

variables with zero mean and standard deviation equal one, 

and the rest of the rows are permuted versions of the first 

row as indicated in the above format. The high-dictionary 

satisfies the compressive-sensing RIP property with a 

similar strength to that of Gaussian dictionaries. In fact, the 

condition number of the T-CRM high dictionary generated 

for our experiments is equal to  
5.25290

3.6146
= 1.453. 
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3.3. Image Learning Dictionary (LD) 

Learning dictionary is based on the work of Yang et al. 

[5], [6] referred to in the introduction. 

The LD approaches for SR uses two appropriately chosen 

over-complete dictionaries, 𝐷𝐻  𝑎𝑛𝑑 𝐷𝐿 , that are created by 

simply randomly sampling raw patches from HR and the 

corresponding LR training images from a database of 

similar statistical nature to the input image. The LR training 

images are generated by blurring and down-sampling HR 

training images.  

For example, Yang et al. prepared dictionaries using flower 

images as training data to generate high-quality images 

from LR images with simple texture. In another 

experiment, they created dictionaries relying on animal 

images to reconstruct LR input images with complex 

textures. 

We note that exhaustively testing Yang’s LD 

dictionary 𝐷𝐻 , for NSP property is not realistic since there 

are   

(
512
25
) =

512 !

25!  (512 − 25)!
 

 

such 25 × 25 submatrices of the dictionary. As an 

indicator, however, we opted to evaluate the determinants 

of more than a hundred randomly selected 25 × 25 

submatrices. The results are displayed in Figure 2, below, 

which illustrates that although in theory, the dictionary may 

satisfy NSP but practically and computationally this is not 

the case because the determinant of most of these 

submatrices are very close to zero. Moreover, the condition 

number of the learning dictionary is very large, nearly 

1.00E+15, which makes this dictionary slightly 

ill-conditioned with extremely low RIP strength. 

These observations have motivated our search for other 

dictionaries with reasonable RIP strength. 

 

 
Figure 2. Determinant of submatrices from the High-Learning 

Dictionary. 

 

3.4. Constructed Deterministic Dictionaries 

Our approach to constructing deterministic dictionaries 

is motivated first by the desire to build NSP dictionaries by 

concatenated bases and second by attempt to reduce the 

amount of randomness in the dictionary construction. We 

construct an over-complete dictionary of size 𝑚 × 𝑛 where 

𝑚 ≪ 𝑛  by concatenating a carefully selected sets of 

linearly independent m-column vectors that are not only 

distinct but any pair of which satisfies the NSP property.  

We shall refer to the proposed class of dictionaries as 

Linearly Independent Dictionary (LID). The constructed 

dictionary is a collection of bases, starting with an identity 

matrix and gradually adding 𝑚 ×𝑚 matrices with linear 

independent vectors of 𝑅𝑚 and each non-zeros coefficients 

vector from the matrix is a linear combination of the other 

set of vectors. The proof that such dictionaries could have 

the NSP property is beyond the scope of this paper. We 

shall now describe such a construction. Moreover, discuss 

their properties. 

Let,                  Id = (

1 0… 0
0 1… 0

⋮
0 0… 1

), 

 

For real number𝑠  𝑝𝑖 > 1  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝𝑖 ≠ 𝑝𝑖+1 ; 
 

  𝐴𝑝𝑖 =

(

 
 
 

1   
1

𝑝𝑖
      

1

𝑝𝑖
2…  

1

𝑝𝑖
24

1

𝑝𝑖
  1      

1

𝑝𝑖
…  

1

𝑝𝑖
23

⋮
1

𝑝𝑖
24   

1

𝑝𝑖
23      

1

𝑝𝑖
22… 1)

 
 
 

, where 𝑖 = 1,2, . . , 𝑘 

and 

         C =

(

 
 
 
 
 

1   
1

2
       

1

3
   …     

1

12
1

2
   1       

1

2
   …     

1

11

⋮
1

12
    

1

11
       

1

10
 …    1

⋮
1

m

1

m−1
   

1

m−2
…

1

m−11)

 
 
 
 
 

 

 

Then, the 𝑚 × 𝑛  dictionary is as the following form:- 

 

                 𝐷 = [𝐼𝑑, 𝐴𝑝1 , 𝐴𝑝2 , … , 𝐴𝑝𝑘 , 𝐶]                      (5) 

 

First we generated the high-dictionary 𝐷𝐻  of size 25 × 512 

using the integers numbers 2 ≤ pi ≤ 20, where 𝑖 =
1,2, … ,19. 

To test the strength of evidence that such a dictionary 

satisfies the NSP property, we display in Figure 3 the 

determinants of more than a hundred 25 × 25sub-matrixes. 

In comparison to the LD dictionary, all the determinant 

values of the example LID (i.e. LID1) are comfortably away 

from zero. Moreover, the over-complete dictionary is well 

conditioned as its condition number is small and equal 

to  
6.79695 

3.4363
= 1.977 < 2.5.  

On the other hand, we constructed another such an 

over-complete dictionary (i.e. LID2) with real numbers 1 <

-6.00E-10

-4.00E-10

-2.00E-10

0.00E+00

2.00E-10

4.00E-10

0 30 60 90 120 150

D
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𝑝i < 2. This dictionary seems to have a weak RIP property 

where the condition number is equal  
13.82 

1.19
= 11.55. This 

indicates that the RIP strength is 𝑝𝑖  dependent. 

 

 
 

Figure 3. Determinant of submatrices from the Constructed 

dictionary with 2 ≤ 𝑝𝑖 ≤ 20 

 

For simplicity, the low-dictionary 𝐷𝐿  of size 100 × 512 in 

all the experiments is created from a Standard Gaussian 

Random Matrix (SGRM) with zero mean and variance of 

one and uses 𝐿2 -norm to normalize each column in the 

dictionaries. 

4. Experimental Work 

A number of experiments were conducted on two 

publically available face databases to evaluate the 

suitability of the proposed dictionaries to super-resolve 

face images and for face recognition in particular. A brief 

description of the two databases and experiment protocols 

are given below before discussing the results in section 4.2. 

4.1. Experiment Protocol and Datasets  

The UBHSD video database [19] contains 160 videos of 

20 subjects recorded in two sessions. It includes videos 

captured in indoor and outdoor locations; two video 

recordings – one high-definition (HD) and one 

standard-definition (SD) – of a subject were captured at 

each location. Twelve frames are selected to capture a 

subject at four distance ranges. The database consists of 

blurred face images, faces with eyes closed and slightly 

varying poses. Each subject has 96 face images of size 

128 × 128 pixels capturing a total of 1920 images. The 

gallery set G consists of 60 images (3 images per subject) in 

Session 1 and the probe set consists of 480 images (24 

images per subject) from all four ranges, in both indoor and 

outdoor videos in Session 2. 

The second database is the widely used Extended Yale B 

[20], [21] which consists of images of 38 subjects, each 

having 64 images size of each image is 192 × 168 pixels 

captured under different illumination conditions. The total 

number of images in the database is 2414.The images in the 

Extended Yale B are divided into five illumination subsets 

according to the direction of light source of the camera. We 

selected the P00A+000E+00 image of each subject for the 

gallery set and the remaining images, which we blurred and 

down sampled by half, make up the probe set (i.e. LR 

images). 

4.1. Results - Accuracy 

Dictionary based SR is used on four different 

combinations of gallery/probe image resolutions to 

super-resolve LR images of size 64 × 64 – the LR images 

were obtained by down sampling the original images – to 

their original size of 128 × 128 pixels. Z-score normalized 

LH subband coefficients of Haar wavelet transform at 

decomposition level three is used as a feature vector for 

recognition [22]. Nearest-neighbor classification with City 

Block distance is used to classify probe images. In all the 

experiments, the learning dictionary (LD) is constructed 

using the training set, which contains three HR images of 

each subject from subset 1 of Extended Yale B database 

unattached from gallery/probe images.  

The experimental results for UBHSD database in Table 1 

show that, the SR by GRM, T-CRM and SR by learning 

dictionary produced marginally better accuracy rates in 

some cases and less by a similar amount in some other 

cases. Moreover, there is no significant difference in 

identification accuracy rates whether one use T-CRM, 

GRM, LD or LID1 and LID2 for dictionaries.  

Dictionary methods on the Extended Yale B database were 

also tested. We observed similar results for the experiments 

on this database, but could not include details due to page 

limitations. Therefore, table 2 shows only the results on the 

well-lit face images in set1 and set2 and demonstrates there 

is no difference in identification accuracy rates between 

dictionary methods when the LH3 subband features are 

used. In general, the experimental results in the two 

databases demonstrate that there is no significant difference 

in the identification accuracy rates between these methods 

of building the Dictionary. 

 

G         P                               

set      set 
SR  

Gallery Image Range 

R1 R2 R3 R4 

SD128 SD64 

 

LD 76.25 68.33 71.25 69.79 

GRM 76.04 68.33 71.45 69.79 

T-CRM 76.04 68.54 71.45 69.79 

LID1 76.04 68.12 71.25 69.58 

LID2 76.04 68.12 71.25 69.58 

BC 76.66 68.75 71.66 69.79 

SD64HD128 

 

LD 75.62 71.04 71.25 67.91 

GRM 75.41 71.04 71.25 68.54 

T-CRM 75.41 71.04 71.45 68.54 

LID1 75.41 71.04 71.25 68.33 

LID2 75.41 71.04 71.04 68.33 

BC 75.62 71.25 71.25 68.75 

HD128SD64 

 

LD 68.95 65.62 72.08 74.58 

GRM 68.75 65.41 72.08 75 

T-CRM 68.75 65.41 71.87 74.58 

LID1 68.54 65.62 71.87 74.58 

0.1

0.3

0.5

0.7

0.9

1.1
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LID2 68.54 65.41 71.87 74.58 

BC 68.75 66.66 72.50 75 

SD64  SD64 

 

LD 76.25 68.54 71.25 69.58 

GRM 76.04 68.12 71.66 69.79 

T-CRM 76.04 68.12 71.66 70.00 

LID1 76.04 68.12 71.66 69.16 

LID2 76.25 67.91 71.66 69.79 

BC 76.04 68.95 71.45 69.79 

 
Table 1. Recognition accuracy rates (%) for the UBHSD database 

using different dictionaries in the super-resolution process. 

 
S SB LD GRM TCRM LID1 LID2 BC 

S1 

LL3 98.68 98.68 98.68 98.68 98.68 98.68 

LH3 92.10 92.10 92.10 92.10 92.10 92.10 

HL3 92.10 90.78 92.10 92.10 90.78 92.10 

HH3 78.94 78.94 78.94 78.94 78.94 78.94 

S2 

LL3 78.72 78.72 78.72 78.72 78.72 77.63 

LH3 100 100 100 100 100 100 

HL3 95.61 96.27 95.61 95.83 96.05 95.83 

HH3 98.02 98.24 98.24 98.24 98.24 99.56 

 

Table 2. Recognition accuracy rates (%) for the Extended Yale 

B database using different dictionaries in the super-resolution 

process. 

4.2. Results – Image quality 

The second stage of the experiments is to compare the 

performance of SR by different dictionaries with 

well-known Bicubic-interpolation (BC) in terms of 

enhancing the resolution of the LR input image; the 

reconstruction fidelity was quantified using PSNR 

measure. The original images of the database are used as 

the ground truth to calculate the PSNR values. It can be 

seen from Figure 4 that, there is a small difference in 

quality of images between super resolutions by different 

dictionaries independent of the tested images. Moreover, 

SR by LD slightly outperforms the well-known 

interpolation method at each distance range and for each 

sessions and different conditions (indoor and outdoor). 

Figure 5 illustrates PSNR results for the Extended Yale B 

database. The results show that, the BC method produced 

lower quality image than dictionary methods. In addition, 

LD based on images produce better quality images than SR 

methods by dictionary not depend on images. In general, 

our experiments show that the slightly better improvement 

in resolutions comes from the SR by dictionary based on 

images but this improvement is no significant. This leads us 

to the final stage of our work. A sever degradation function 

(atmospheric turbulence) has been used to obtain LR test 

image and the different dictionary methods are used to 

reconstruct its HR image. This model of degradation can 

even take into account environmental conditions that cause 

degradations. This model has a form: 

 

                                 𝐻(𝑢, 𝑣) = 𝑒−𝑘(𝑢
2+𝑣2)

5
6⁄
                        (6) 

 

Where a constant 𝑘  depends on the nature of the 

turbulence, in this case severe turbulence when 𝑘 =
0.05 𝑜𝑟 𝑘 = 0.07.  In subjective tests, as can be seen in 

Figure 6, the reconstructed images by different dictionaries 

methods are quite similar to each other. This leads to 

conclude that a training images database is not necessary to 

create the dictionaries for image super resolution. 

 

 
HD and SD video data from indoor, session 1 

 
HD and SD video data from outdoor, session1 

 

 
HD and SD video data from indoor, session 2 

 
HD and SD video data from outdoor, session 2 
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Figure 4. A comparison of PSNR values for super resolved images 

in the different distance ranges are found. 
 

 
Figure 5. Comparison of PSNR values for super resolved images 

in Extended Yale B database. 

5. Conclusion 

We investigated the use of random and deterministic CS- 

based over-complete dictionaries for SR enhancement of 

low-resolution degraded images for face recognition in 

 

uncontrolled conditions and/or captured at a distance, and 

compared the results with that of using an existing learning 

dictionary that is trained on a set of high-resolution face 

images and their low-resolution versions obtained by 

blurring and down sampling. The experimental results 

demonstrated that the non-adaptive (i.e. independent of 

images) dictionaries perform as well as the LD dictionary 

in terms of recognition accuracy and quality of recovered 

images. The significance of this work, that will be further 

developed in the future, is that CS can be used to design 

scalable face recognition schemes in unsupervised manner.  

Considerations of the fundamental CS properties of NSP 

and RIP, which ensure k-sparse vectors, the experimental 

results raise some fundamental questions about the 

importance of these properties for pattern recognition and 

on the practical implications of non-compliance with 

theoretical CS hypothesis. These issues need to be further 

investigated in the future. 
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 LR, k=0.07 GRM TCRM LID1 LID2 LD 

 
Figure 5. Comparison between SR approaches by different dictionaries. 
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